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ABSTRACT

PURPOSE Failure to respond to induction chemotherapy portends a poor outcome in
childhood acute lymphoblastic leukemia (ALL) and is more frequent in T-cell
ALL (T-ALL) than B-cell ALL.We aimed to address the limited understanding of
clinical and genetic factors that influence outcome in a cohort of patients with
T-ALL induction failure (IF).

METHODS We studied all cases of T-ALL IF on two consecutive multinational randomized
trials, UKALL2003 and UKALL2011, to define risk factors, treatment, and
outcomes. We performed multiomic profiling to characterize the genomic
landscape.

RESULTS IF occurred in 10.3% of cases and was significantly associated with increasing
age, occurring in 20% of patients age 16 years and older. Five-year overall
survival (OS) rates were 52.1% in IF and 90.2% in responsive patients (P < .001).
Despite increased use of nelarabine-based chemotherapy consolidated by he-
matopoietic stem-cell transplant in UKALL2011, there was no improvement in
outcome. Persistent end-of-consolidation molecular residual disease resulted
in a significantly worse outcome (5-year OS, 14.3% v 68.5%; HR, 4.10; 95% CI,
1.35 to 12.45; P 5 .0071). Genomic profiling revealed a heterogeneous picture
with 25 different initiating lesions converging on 10 subtype-defining genes.
Therewas a remarkable abundance of TAL1 noncoding lesions, associatedwith a
dismal outcome (5-year OS, 12.5%). Combining TAL1 lesions with mutations in
the MYC and RAS pathways produces a genetic stratifier that identifies patients
highly likely to fail conventional therapy (5-year OS, 23.1% v 86.4%; HR, 6.84;
95% CI, 2.78 to 16.78; P < .0001) and who should therefore be considered for
experimental agents.

CONCLUSION The outcome of IF in T-ALL remains poor with current therapy. The lack of a
unifying genetic driver suggests alternative approaches, particularly using
immunotherapy, are urgently needed.

INTRODUCTION

T-cell acute lymphoblastic leukemia (T-ALL) is an aggres-
sive malignancy comprising 10%-15% of childhood ALL.1

Although most children are cured, outcomes remain infe-
rior to B-cell ALL (B-ALL), particularly in relapsed and re-
fractory disease.2 Failure to respond to induction therapy, on
the basis of morphologic assessment, has long been rec-
ognized as a predictor of poor outcome.3 Previously, we
redefined induction failure (IF), demonstrating that a level of
molecularminimal residual disease (MRD) above 5%, even in

the absence of morphologic blasts, more accurately iden-
tifies IF, selecting 10% of T-ALL cases, 3-fold more than in
B-ALL.4 Historically, IF in T-ALL was demonstrated to have
a particularly dismal outcome with a 10-year survival rate of
only 19% in a large international study.3 Although there has
been an improvement in outcome with survival around 50%
in contemporary trials,4,5 better treatments are clearly
needed.

Despite the preponderance of IF in T-ALL, little is known
about the factors that predict resistance and influence
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outcome, largely because patients are taken off trial, limiting
details of subsequent treatment and response. Although our
group and others have identified genetic drivers of IF in
B-ALL, facilitating use of targeted therapies,4,6,7 the genomic
landscape of IF T-ALL remains undefined, restricting
treatment to conventional agents. Furthermore, no genetic
biomarker has been associated with poor outcome in T-ALL,
limiting the potential for treatment stratification.

To address this, to our knowledge, we present the largest
cohort of T-ALL IF reported, comprising all IF cases on two
large multinational randomized trials, UKALL2003 and
UKALL2011, which recruited 5,876 patients over a 15-year
period. We used existing trial data, supplemented with ad-
ditional clinical data, and combined whole-genome se-
quencing (WGS) and RNA-sequencing (RNAseq), to
comprehensively characterize the clinical and functional
genetic landscape of T-ALL IF.

METHODS

Patients

The study uses two patient cohorts (Fig 1A). The trial cohort
includes all 5,876 patients treated on the UKALL2003 and
UKALL2011 trials, of whom 70 had T-ALL IF (combined
median follow-up of 8.6 years [IQR, 5.5-10.5]). Both trials
were conducted in accordance with the Declaration of Hel-
sinki. Patients were enrolled at individual treatment centers
by principal investigators after written informed consent
from carers or patients was obtained. UKALL2003 was ap-
proved by the Scottish Multi-Centre Research Ethics Com-
mittee. UKAL2011 was approved by the North Thames
Research Ethics Committee. The genomics cohort includes
all patients with T-ALL IF from the trial cohort with samples
available (n 5 35) plus an additional 13 patients treated on
nontrial protocols with identical induction therapy.

The responsive patient cohort used for comparison com-
prised 264 patients with T-ALL treated on the COG
AALL0434 trial,5 all of whom responded to induction
chemotherapy, that is, did not suffer IF. This group has
been extensively characterized using a combination of
WGS, whole-exome sequencing, RNAseq, conventional
cytogenetics, and SNP array as previously reported.8

Samples were also subjected to targeted sequencing at
noncoding hotspots.

IF was defined as end-of-induction (EOI) MRD ≥5%, irre-
spective of morphology, or an M2 or M3 marrow (mor-
phologic blasts 5%-25% or >25%, respectively) without an
MRD result, as per our previous study4 and reflecting the
current definition used in contemporary clinical trials, such
as the ALLTogether-01 study. Choice of subsequent therapy
was discussedwith the trial PI and left to the discretion of the
treating center.

UKALL2003 (ISRCTNNumber 07355119) and UKALL2011
(ISRCTN Number 64515327)

UKALL2003 and UKALL2011 recruited children and young
people (age 1-24 years) with ALL in the United Kingdom and
Ireland between October 2003 and December 2018. The re-
sults of both UKALL20039,10 and UKALL201111,12 have been
reported, with further details and full protocols available in
the Data Supplement (online only).

Induction therapy was identical across both trials com-
prising dexamethasone, vincristine, pegylated L-aspar-
aginase, and daunorubicin. In UKALL2003, patients with
morphologic IF (M3 marrow) were taken off trial. From
2008, in recognition of poor prognosis, patients with
MRD >10% were also recommended to be treated off trial. In
UKALL2011, patients with M3 marrow and/or MRD high risk
(day 29 >5% or week 14 >0.5%) were taken off trial.

CONTEXT

Key Objective
What clinical and genomic factors predict occurrence and outcome of induction failure (IF) in childhood and young adult
T-cell acute lymphoblastic leukemia (T-ALL)?

Knowledge Generated
Incidence of IF increases with age and is associated with an immature leukemia dominated by the early thymic precursor
phenotype and HOXA genetic subtype. Outcome is worse in patients with leukemias of the TAL1 subtype or carrying
mutations in the RAS or MYC pathways, indicating novel therapies are required in this group.

Relevance (S. Bhatia)
The heterogeneity in the genetic landscape of T-ALL patients with IF and the very poor outcomewith current therapy present
a critical need for novel therapies in this population.*

*Relevance section written by JCO Associate Editor Smita Bhatia, MD, MPH, FASCO.
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FIG 1. T-ALL IF cohorts and outcome. (A) Seventy-one patients of the 711 patients with T-ALL on the UKALL2003 and UKALL2011 trials suffered
IF. One patient withdrew consent and was excluded from further analyses, leaving 70 cases in the trial cohort. Thirty-five of these patients were
included in the genomics cohort with an additional 13 nontrial IF cases. (B) Kaplan-Meier curve showing event-free survival for patients with IF
versus those who achieved remission on the UKALL2003 and UKALL2011 trials. (C) Kaplan-Meier curve showing overall survival for patients with
IF versus those who achieved remission on the UKALL2003 and UKALL2011 trials. aIncludes 16 UKALL 2003 patients in CR but with no details and
one UKALL 2011 patient with no data postregistration submitted. bAny MRD. cRising WCC, switched treatment before D28. dAny MRD. BM, bone
marrow; CR, complete remission; IF, induction failure; MRD, minimal residual disease; T-ALL, T-cell acute lymphoblastic leukemia; WCC, white cell
count.
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Samples

Samples were largely provided as frozen viable mononuclear
cells, which were thawed and used for flow cytometric
characterization to ascertain early thymic precursor (ETP)
status, and DNA and RNA extraction.

Sequencing

WGSwas performed by Novogene Company Ltd (Cambridge)
using Illumina sequencing to generate 150-base-pair
paired-end reads on all samples at 503 coverage in tumor
samples and 303 in germline samples. Total RNAseq was
performed to generate 30 million 150-base-pair paired-end
reads per sample.

Further details of sample processing, sequencing, and data
analysis are provided in the Data Supplement.

RESULTS

Clinical Features

UKALL2003 and UKALL2011 recruited 5,876 patients be-
tween 2004 and 2019, of whom 711 (12.1%) had T-ALL; 688
were assessable at EOI. In total, 10.3%of patientswith T-ALL
experienced IF (n 5 71; Fig 1A). Survival was significantly
worse in IF (5-year event-free survival [EFS], 47.9% [95%
CI, 35.8 to 59.1] v 84.0% [95% CI, 80.7 to 86.8]; HR, 4.14
[95%CI, 2.82 to 6.07];P< .001; Fig 1B; 5-year overall survival
[OS], 52.1% [95% CI, 39.7 to 63.1] v 90.2% [95% CI, 87.4 to
92.5]; HR, 6.38 [95% CI, 4.17 to 9.76]; P < .001; Fig 1C).

Multivariable assessment of factors associated with IF
revealed a significant relationship with increasing age; IF
occurred in 5.6% of patients younger than 10 years, 12.9%
age 10-16 years, and 20% older than 16 years (P < .001; Data
Supplement [Table A1]).

Since most patients with IF were treated off protocol, ad-
ditional data were obtained on subsequent nontrial therapy
from treating centers. Importantly, although patients failed
to remit with induction therapy, only four patients never
achieved remission, with all others responding to subse-
quent treatment. Postinduction therapy varied across the
cohort but mainly followed two pathways, either continu-
ation of the standard protocol or escalation to a nelarabine-
containing regimen, most commonly in combination with
cyclophosphamide and cytarabine as per COG AALL0434
consolidation,5 followed by hematopoietic stem-cell
transplantation (HSCT; Fig 2A).

In line with international practice, there was a clear trend
toward increasing use of nelarabine over time. Earlier patients
treated on UKALL2003 commonly remained on standard trial
chemotherapy (74.2%; 26/35) asmost (63%; 22/35) were in a
morphologic remission with molecular MRD > 5%; at this
point, the IF definitiondid not includeMRDand these patients

were therefore considered to be in remission. By contrast,
later patients, on UKALL2011, were frequently treated with
nelarabine andHSCT (68.6%;24/35;P5 .0007).However, this
did not translate into an improved outcome across the two
trials (Data Supplement [Tables A2 and A3]). Accordingly,
analyses of individual treatments showed no difference in
outcome for patients who received nelarabine compared with
those who did not (5-year OS, 39.1% [95% CI, 20.3 to 57.5] v
59.2% [95% CI, 43.3 to 72.0]; HR, 1.72 [95% CI, 0.88 to 3.42];
P5 .11; Data Supplement [Table A4]) or those who underwent
HSCT compared with those who did not (5-year OS, 52.8%
[95%CI, 34.3 to 68.4] v 61.3% [95%CI, 42.0 to 75.9]; HR, 1.23
[95%CI, 0.58 to2.58];P5 .59; Figs 2Band2C). Although these
were nonrandomized groups, with patients undergoing HSCT
having higher levels of MRD (Data Supplement [Table A5]),
the lack of improvement in outcome over time, despite the
marked increased use of nelarabine and HSCT, suggests these
approaches fail to overcome this high-risk disease. Notably,
patients who relapsed after IF had a dismal outcome, with a
median survival of only 3.9 months (IQR, 1.5-7.6; Data
Supplement [Fig A1]).

Univariable and multivariable analyses of factors associated
with outcome found no impact of age, white cell count, EOI
morphology or MRD, or trial (Data Supplement [Tables A2
and A3]). However, a higher end-of-consolidation (EOC)
MRD level was associated with inferior EFS (HR [1 log in-
crease], 1.30 [95%CI, 1.06 to 1.55]; P5 .011; Data Supplement
[Table A6]). Patients with ≥1% EOC MRD had a 4-fold in-
creased risk of death (5-year OS, 14.3% v 68.5%; HR, 4.10
[95% CI, 1.35 to 12.45]; P 5 .0071; Fig 2D) with only one of
seven patients achieving long-term remission, despite all
undergoing HSCT. By contrast, of the nine patients with
MRD < 0.01%, eight of whom underwent HSCT, none re-
lapsed but two died from HSCT-related mortality.

Genetic Classification

Previously, we identified PDGFRB fusions as amajor driver of
B-ALL IF, allowing the use of targeted therapy.4 To identify
analogous targetable lesions in T-ALL IF, we performedWGS
on 48 cases (Fig 1A); 33 cases had paired germline material
available, and 37 cases underwent RNAseq (Data Supplement
[Table A7]). The outcomes and characteristics of the ge-
nomic cohort were representative of the full IF cohort (Data
Supplement [Table A8 and Fig A2]).

We initially focused on classification of samples to conven-
tional phenotypic and genetic subtypes. Flow cytometric
analysis allowed identification of cases with an ETP pheno-
type, indicating a less differentiated, stemcell–like leukemia.13

Twenty-twoof 46 cases (48%)with informative results had an
ETP phenotype, significantly higher than the 10% of cases
reported in responsive T-ALL (P < .001; Fig 3A).8

Historically, classification of T-ALL into genetic subtypes
has relied on dysregulated expression of key transcription
factor genes and hierarchical clustering of gene expression
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FIG 2. Treatment of T-ALL IF. (A) Swimmer plot displaying postinduction treatment of patients with IF split by trial. Standard
chemotherapy indicates standard trial treatment. Nelarabine indicates nelarabine given either alone or in combination with other
agents. High-dose chemotherapy indicates other non–nelarabine-containing regimens, most commonly FLA-IDA. (B) Kaplan-Meier
plot showing OS of patients treated with nelarabine versus those not treated with nelarabine. (C) Kaplan-Meier plot showing OS of
patients who received SCT versus those who did not. The SCT group included 33 patients (continued on following page)
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data.14 More recently, as with B-ALL and AML,15,16 there has
been a progressive shift toward a system predicated on
causative genomic lesions. WGS enables comprehensive
interrogation of the genomic landscape permitting definitive
allocation through detection of subtype-defining genetic
lesions (Data Supplement [Fig A3]). Using this approach,
initiating lesions were identified in 41 cases (85%), allowing
allocation to conventional T-ALL genetic subgroups (Fig 3B).
The genes involved, in decreasing order of frequency, were
TLX3 (n 5 9), TAL1 (n 5 8), LMO1 (n 5 6), the HOXA locus
(n 5 6), KMT2A (n 5 5), LMO2 (n 5 4), MYC (n 5 4), MLLT10
(n5 3), NUP98 (n5 3), and NUP214 (n5 3). A single case had
an ETV6-NCOA2 fusion, a previously described driver of
T/myeloid leukemia.17 Notably, all TAL1 cases co-occurred
with either a LMO1 or LMO2 lesion, with LMO1 lesions sig-
nificantly more frequent in IF than in responsive cases
(10.4% v 1.5%; P5 .006). No driver lesion could be identified
in the remaining seven cases, six of which could be allocated
to genetic subgroups using RNAseq.

The relative proportion of genetic subtypes differed sig-
nificantly between responsive and IF cases (Fig 3C). IF was
restricted to theHOXA, TAL1, TLX3, and LMO2/LYL1 subtypes,
with almost half the cases allocated to the HOXA subtype, a
significantly larger proportion than in responsive T-ALL
(P < .001; Fig 3C). By contrast, there were significantly fewer
TAL1 cases (P 5 .026) with no TLX1, TAL2, or NKX2-1 cases
whatsoever, in keeping with the good prognosis reported in
these subtypes. There was clear correlation between ETP
status and genetic subtype; 75% of HOXA cases had an ETP
phenotype, whereas 74% of TAL1, LMO2/LYL1, and T-other
cases were non-ETP (P 5 .002).

Although the overall proportion of TAL1 cases was lower in
IF, there was an unexpected dominance of noncoding TAL1
enhancer mutations. Although present in responsive cases,
these only account for 24.6% of TAL1 cases, with TAL1 more
commonly driven by the STIL-TAL1 deletion.8,18 The converse
is seen in the IF cases, with noncodingmutations accounting
for 87.5% of TAL1 cases, indicating a previously unrecog-
nized link with treatment resistance (P < .001; Fig 3D). As
characterized previously, the majority of mutations created
novel binding sites for the transcription factor MYB (Data
Supplement [Fig A4]).18,19

Co-Operating Genetic Variants

There was a median of 21 coding, nonsynonymous
SNV/indels (range, 4-144) per sample; the sample with the
highest number of mutations had a somatic missense MSH2

mutation, likely to result in acquired mismatch repair de-
ficiency (Data Supplement [Tables A9-A11]). Driver gene
discovery was limited to those previously reported in T-ALL
or genes with mutations in more than two samples with
germline available to confirm somatic status. As shown in
Figure 4A, driver events occurred almost exclusively in
known T-ALL genes, with the most frequent being CDKN2A
(50%), NOTCH1 (38%), and PHF6 (25%). We found signifi-
cantly higher mutation frequency in IF compared with re-
sponsive patients in two known T-ALL genes, WT1 (22.9% v
11.4%; P 5 .037) and MED12 (16.7% v 2.7%; P < .001; Fig 4B).
By contrast, several highly recurrent T-ALL genes were less
frequently mutated in IF, particularly NOTCH1 (35.4% v
74.6%; P < .001), FBXW7 (2.1% v 25.4%; P < .001), consistent
with their previously reported association with good prog-
nosis,20,21 and CDKN2A (50.0% v 78.4%; P < .001). LEF1 and
USP7 are commonly mutated in T-ALL but we found no
mutations in either gene in IF (0% v 17.4%; P < .001; 0% v
12.5%; P 5 .004, respectively; Fig 4B).

In addition, two genes not previously reported in T-ALLwere
recurrently mutated in IF. Five cases had mutations in the
chromodomain-helicase-DNA-binding protein 4 (CHD4)
gene, previously identified as a rare driver in B-ALL but not
T-ALL,22 which encodes a core member of the nucleosome
remodeling and deacetylase (NuRD) complex.23 Variants
were clustered in a highly conserved region encompassing
the helicase ATPase domain, in close proximity to variants
reported as loss of function in endometrial cancer and
Sifrim-Hitz-Weiss syndrome (Data Supplement [Fig A5]).24,25

Inspection of crystal structures of the nucleosome-CHD4
complex revealed mutations affect key amino acids involved
in DNA binding and ATPase activity (Data Supplement [Fig
A6]). Four of the five CHD4 lesions occurred in HOXA cases,
further supporting their functional relevance. A second gene,
lysine acetyltransferase 6A (KAT6A), a histone acetyl-
transferasemutated in AML,26 harbored variants in four cases
including a focal deletion and three truncating frameshift
events likely to result in loss of function (Data Supplement
[Fig A5]).

Genomic Determinants of Outcome

Outcome differed significantly across genetic subtypes
(Fig 5A; Data Supplement [Table A12]). TAL1 cases had a
particularly dismal outcome with OS of 12.5% (0.6-42.3).
Notably, none of the seven patients with a TAL1 noncoding
driver lesion survived, and two never achieved remission,
identifying this as a very high-risk genetic lesion in the
context of IF. Despite the preponderance of ETP, the

FIG 2. (Continued). (one excluded as underwent SCTwhen not in remission). The no SCT group included all 31 patients who remitted
and were alive and in remission on day 91 (the date of the earliest SCT). (D) Kaplan-Meier plot showing OS of patients with end-of-
consolidation MRD more than 1% versus MRD < 1%. CR, complete remission; FLA-IDA, fludarabine, cytarabine, idarubicin che-
motherapy; HSCT, hematopoietic stem-cell transplantation; IF, induction failure; MRD, minimal residual disease; OS, overall survival;
SCT, stem-cell transplant; T-ALL, T-cell acute lymphoblastic leukemia.
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outcome was similar between ETP and non-ETP cases (Data
Supplement [Fig A7]). Similarly, the absence of biallelic
deletion of the TRG locus (ABD), an alternate means of
identifying immature cases of T-ALL,27 showed no associ-
ation with outcome (Data Supplement [Fig A7]).

Analysis of recurrently mutated genes showed significantly
poorer survival in patientswithmutations inMYCN andNRAS
(Data Supplement [Fig A8]). Given the relatively small
numbers ofmutations in individual genes, we grouped genes
by key oncogenic pathways (RAS, PI3K/AKT, IL7R/JAK, and
MYC/MYCN), identifying significantly worse outcomes in
patients with mutations in the RAS or MYC pathways (Data
Supplement [Fig A9]). Since thesemutations largely occur in
the non-TAL1 subtypes (Fig 4A), selecting patients with a
TAL1 lesion and/or mutations in the MYC or RAS pathways,
which we term TMR lesions, allows division of the cohort
into two groups with markedly different outcomes (Data
Supplement [Table A13]). Those with a TMR lesion had a
5-year OS of only 23.1% compared with 86.4% in those
without a TMR lesion (HR, 6.84 [95% CI, 2.78 to 16.78];
P < .0001; Fig 5B). Notably, six patients never achieved re-
mission, all of whom were in the TMR group.

Subclonal Landscape

The genomic results show a highly heterogeneous landscape
of genetic variants, almost all of which are also seen in
responsive disease. This raises the possibility that a re-
fractory subclone, below the level of WGS detection, exists at
presentation and expands through the selective pressure of
induction therapy to become the dominant clone at EOI. To
test this hypothesis, we performed WGS on three cases with
EOI samples available. Although there was evidence of clonal
heterogeneity at diagnosis, we did not observe clonal evo-
lution over the course of induction, with only a single variant
in PTEN lost in one case (Data Supplement [Fig A10]).
Specifically, no new variants emerged, indicating that dis-
ease at presentation is representative of true refractory
leukemia and that IF does not occur as a result of
chemotherapy-induced mutagenesis.

DISCUSSION

In this study, comprising over 700 children with T-ALL, we
demonstrate that IF occurs in 10% of patients, with only half
of this group achieving long-term survival, a dismal out-
come in the context of pediatric ALL. IF was particularly
common in older patients, with one infive older than16 years
suffering IF, a previously unreported association high-
lighting the need to counsel this group at diagnosis of the
potential risk of treatment failure.

Most disappointingly, we found no clear benefit of treatment
intensification with nelarabine and HSCT, an approach that
has been adopted as standard of care internationally.28 Al-
though not a true randomization, the change in treatment
strategy over the study period provides a temporal

randomization, with no difference in outcomes across the
two trials. This is in keeping with the outcomes of IF cases
treated on the COG AALL0434 trial who were allocated
nelarabine but achieved a 5-year EFS of only 53%, compa-
rable with the outcome of our cohort.5 Although there was no
clear benefit with HSCT, there was a higher disease burden at
EOI in this group, making it possible that a subgroup of
patients did derive benefit from HSCT. Addressing this in a
randomized control trial is desirable but, in reality, unre-
alistic, given the number of patients required to power such a
study. Although EOC MRD levels were only available in a
subset of our cohort, this was a significant stratifier of
outcome in IF, as has been shown in responsive T-ALL.29

Unsurprisingly, almost no patients with persistently high
MRD after consolidation therapy survived. By contrast, in
patients with very low MRD after consolidation, there were
no relapses but two deaths due to HSCT, suggesting that
patients may benefit from a chemotherapy-only protocol,
removing the toxicity of HSCT.

In addition to EOC MRD, we identified several genetic bio-
markers of poor outcome in the context of IF. Combining
TAL1 lesions or mutations in the MYC and RAS pathways
(TMR lesions) produces a gene set that identifies patients
likely to fail conventional therapy and who should be con-
sidered for experimental agents. Although patients with RAS
pathway lesions could be considered for targeted therapy,
such as MEK inhibitors, the other lesions are not currently
amenable to targeted therapy, and the sheer genetic diversity
seen in T-ALL IF will make identification of effective agents
challenging. Instead, our findings support the current focus
on pathway-agnostic immunotherapy, such as chimeric
antigen receptor T-cell (CAR-T) therapy targeting ubiqui-
tous T-ALL antigens, such as CD7.30

The genomic analyses highlight the strength of WGS,
painting a picture of marked genetic heterogeneity, with 25
different initiating lesions converging on 10 subtype-
defining T-ALL genes, rather than a single unifying driver
of refractory disease. The lack of a clear dominant driver is
somewhat surprising. Our sequencing of samples at the EOI
dismisses the possibility that a low-level treatment-resistant
subclone exists at diagnosis and becomes dominant through
the induction period, suggesting other nongenetic
mechanisms may drive refractory disease, as described in
AML.31,32

Biological classification shows a clear dominance of the ETP
phenotype and HOXA genetic subtype, which are associated
with a more stem-cell–/myeloid-like phenotype. This is
consistent with the increased mutations in WT1 (22.9% of
cases), which is frequently mutated in AML and associated
with poor prognosis.33 Notably, we did not find enrichment
of genes and pathways previously implicated in high-risk
disease such as PTEN, RAS, PRC2, and TP53. Interestingly, we
found recurrent mutations in two novel T-ALL genes, CHD4
and KAT6A, encompassing 20% of cases. CHD4 mutations
have previously been reported in AML and are particularly
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common in endometrial cancer.34,35 Inspection of crystal
structures indicates variants are likely to interfere with DNA
binding and ATPase function resulting in loss of function.
KAT6A has essential roles in hematopoietic cells and is the
target of recurrent translocations in AML.36,37 Character-
ization of the effect of these lesions on drug response in
T-ALL is vital.

The landscape of TAL1 lesions in IF is particularly striking.
Although TAL1 is the most common subtype of T-ALL, ac-
tivation is predominantly through the STIL-TAL deletion
with a minority caused by noncoding lesions.8,18 In the IF
group, we observe a reversal of this ratio, with noncoding
lesions the dominant driver of TAL1 overexpression. Fur-
thermore, these patients have a dismal outcome, with no
long-term survivors and many failing to even achieve re-
mission. To our knowledge, this is the first time a noncoding
enhancer lesion has been found to affect prognosis, which

should provide a stimulus for further study of the noncoding
genome in other cancers. At present, we can only speculate
on why alternate lesions that should simply result in TAL1
overexpression can have such dramatically different effects
on treatment response. For instance, a previous study found
higher levels of TAL1 expression in patients with noncoding
lesions, which may reduce chemosensitivity in this group38;
further work is required to explore this fascinating finding.

The abysmal outcome in those relapsing after IF em-
phasizes that there is only one opportunity to cure these
patients and better therapies are urgently needed to
achieve this. The lack of progress made in relapsed/
refractory T-ALL over the past two decades contrasts
starkly with the influx of efficacious immunotherapies in
B-ALL.39-41 Thankfully, similar agents are now on the
horizon for T-ALL with monoclonal antibodies and CAR-
T cells entering the clinical arena.30
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