表 1. Performance comparison of different pre-training methods on the MVI dataset.
不同预训练方法在MVI数据集上的性能比较
算法 | ACC | AUC | REC | PRE | F1 |
random | (66.03 ± 3.39)% | (68.56 ± 0.88)% | (66.97 ± 6.24% | (64.21 ± 4.66)% | (65.15 ± 2.99)% |
transfer | (70.51 ± 1.11)% | (72.42 ± 1.02)% | (63.22 ± 3.87)% | (76.27 ± 1.94)% | (68.81 ± 1.99)% |
SimCLR | (73.40 ± 1.36)% | (77.28 ± 2.26)% | (81.91 ± 0.15)% | (72.04 ± 1.51)% | (76.61 ± 0.91)% |
BYOL | (72.44 ± 0.65)% | (74.24 ± 2.91)% | (79.95 ± 7.61)% | (72.45 ± 2.45)% | (75.77 ± 4.27)% |
SimSiam | (70.94 ± 2.43)% | (70.43 ± 2.42)% | (81.68 ± 4.48)% | (69.27 ± 4.78)% | (74.72 ± 2.93)% |
MICLe | (73.50 ± 2.25)% | (81.13 ± 0.31)% | (81.67 ± 5.88)% | (64.57 ± 2.82)% | (71.97 ± 1.09)% |
Self-Trans | (71.36 ± 0.74)% | (81.04 ± 2.31)% | (86.91 ± 1.68)% | (66.31 ± 0.79)% | (74.87 ± 0.84)% |
SMR | (72.86 ± 1.62)% | (82.87 ± 1.83)% | (86.98 ± 1.32)% | (63.97 ± 2.12)% | (73.70 ± 1.08)% |
本文算法 | (74.79 ± 0.74)% | (83.60 ± 1.83)% | (87.03 ± 4.25)% | (71.48 ± 1.10)% | (78.37 ± 1.94)% |