Skip to main content
. 2023 Jun 25;40(3):482–491. [Article in Chinese] doi: 10.7507/1001-5515.202302050

表 3. Results of ablation experiments using multimodal contrast learning for different encoders on the MVI dataset.

在MVI数据集上不同编码网络采用多模态对比学习的消融实验结果

编码网络 ACC AUC REC PRE F1
ResNet (73.29 ± 0.98)% (76.07 ± 2.62)% (82.11 ± 0.36)% (71.60 ± 1.30)% (76.45 ± 0.70)%
ResNet* (75.00 ± 0.64)% (82.79 ± 2.22)% (88.37 ± 2.90)% (72.25 ± 0.89)% (79.39 ± 0.72)%
ShuffleNet (71.58 ± 3.03)% (76.82 ± 5.65)% (70.75 ± 3.82)% (75.70 ± 3.50)% (72.97 ± 1.86)%
ShuffleNet* (72.65 ± 0.74)% (78.24 ± 1.71)% (83.67 ± 3.20)% (69.14 ± 4.52)% (75.43 ± 1.70)%
Swin Transformer (71.15 ± 0.64)% (75.29 ± 2.21)% (80.48 ± 1.60)% (69.15 ± 3.51)% (73.96 ± 2.48)%
Swin Transformer* (72.44 ± 1.93)% (77.63 ± 1.32)% (87.45 ± 2.27)% (69.37 ± 2.43)% (77.18 ± 2.19)%