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A vision transformer for decoding surgeon 
activity from surgical videos

Dani Kiyasseh    1  , Runzhuo Ma2, Taseen F. Haque    2, Brian J. Miles3, 
Christian Wagner4, Daniel A. Donoho5, Animashree Anandkumar1 & 
Andrew J. Hung    2 

The intraoperative activity of a surgeon has substantial impact on 
postoperative outcomes. However, for most surgical procedures, the 
details of intraoperative surgical actions, which can vary widely, are not 
well understood. Here we report a machine learning system leveraging a 
vision transformer and supervised contrastive learning for the decoding 
of elements of intraoperative surgical activity from videos commonly 
collected during robotic surgeries. The system accurately identified surgical 
steps, actions performed by the surgeon, the quality of these actions and 
the relative contribution of individual video frames to the decoding of the 
actions. Through extensive testing on data from three different hospitals 
located in two different continents, we show that the system generalizes 
across videos, surgeons, hospitals and surgical procedures, and that it 
can provide information on surgical gestures and skills from unannotated 
videos. Decoding intraoperative activity via accurate machine learning 
systems could be used to provide surgeons with feedback on their operating 
skills, and may allow for the identification of optimal surgical behaviour 
and for the study of relationships between intraoperative factors and 
postoperative outcomes.

The overarching goal of surgery is to improve postoperative patient 
outcomes1,2. It was recently demonstrated that such outcomes are 
strongly influenced by intraoperative surgical activity3, that is, what 
actions are performed by a surgeon during a surgical procedure and 
how well those actions are executed. For the vast majority of surgical 
procedures, however, a detailed understanding of intraoperative surgi-
cal activity remains elusive. This scenario is all too common in other 
domains of medicine, where the drivers of certain patient outcomes 
either have yet to be discovered or manifest differently. The status quo 
within surgery is that intraoperative surgical activity is simply not meas-
ured. Such lack of measurement makes it challenging to capture the 
variability in the way surgical procedures are performed across time, 

surgeons and hospitals, to test hypotheses associating intraoperative 
activity with patient outcomes, and to provide surgeons with feedback 
on their operating technique.

Intraoperative surgical activity can be decoded from videos com-
monly collected during robot-assisted surgical procedures. Such 
decoding provides insight into what procedural steps (such as tissue 
dissection and suturing) are performed over time, how those steps 
are executed (for example, through a set of discrete actions or ges-
tures) by the operating surgeon, and the quality with which they are 
executed (that is, mastery of a skill; Fig. 1). Currently, if a video were to 
be decoded, it would be through a manual retrospective analysis by an 
expert surgeon. However, this human-driven approach is subjective, as 
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generalize to, or perform well in, new settings, such as with unseen 
videos from different surgeons, surgical procedures and hospitals. 
Such a rigorous evaluation is critical to ensuring the development of 
safe and trustworthy AI systems.

In this study, we propose a unified surgical AI system (SAIS) that 
decodes multiple elements of intraoperative surgical activity from vid-
eos collected during surgery. Through rigorous evaluation on data from 
three hospitals, we show that SAIS reliably decodes multiple elements 
of intraoperative activity, from the surgical steps performed to the 
gestures that are executed and the quality with which they are executed 
by a surgeon. This reliable decoding holds irrespective of whether vid-
eos are of different surgical procedures and from different surgeons 
across hospitals. We also show that SAIS decodes such elements more 
reliably than state-of-the-art AI systems, such as Inception3D (I3D;  
ref. 6), which have been developed to decode only a single element 

it depends on the interpretation of activity by the reviewing surgeon; 
unreliable, as it assumes that a surgeon is aware of all intraoperative 
activity; and unscalable, as it requires the presence of an expert surgeon 
and an extensive amount of time and effort. These assumptions are 
particularly unreasonable where expert surgeons are unavailable (as in 
low-resource settings) and already pressed for time. As such, there is a 
pressing need to decode intraoperative surgical activity in an objective, 
reliable and scalable manner.

Given these limitations, emerging technologies such as artificial 
intelligence (AI) have been used to identify surgical activity4, gestures5, 
surgeon skill levels6,7 and instrument movements8 exclusively from 
videos. However, these technologies are limited to decoding only a 
single element of intraoperative surgical activity at a time (such as only 
gestures), limiting their utility. These technologies are also seldom 
rigorously evaluated, where it remains an open question whether they 
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Fig. 1 | An AI system that decodes intraoperative surgical activity from 
videos. a, Surgical videos commonly collected during robotic surgeries are 
decoded via SAIS into multiple elements of intraoperative surgical activity: what 
is performed by a surgeon, such as the suturing subphases of needle handling, 
needle driving and needle withdrawal, and how that activity is executed by a 

surgeon, such as through discrete gestures and at different levels of skill. b, SAIS 
is a unified system since the same architecture can be used to independently 
decode different elements of surgical activity, from subphase recognition to 
gesture classification and skill assessment.
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(such as surgeon skill). We also show that SAIS, through deployment 
on surgical videos without any human-driven annotations, provides 
information about intraoperative surgical activity, such as its quality 
over time, that otherwise would not have been available to a surgeon. 
Through a qualitative assessment, we demonstrate that SAIS provides 
accurate reasoning behind its decoding of intraoperative activity. 
With these capabilities, we illustrate how SAIS can be used to provide 
surgeons with actionable feedback on how to modulate their intraop-
erative surgical behaviour.

Results
SAIS reliably decodes surgical subphases
We decoded the ‘what’ of surgery by tasking SAIS to distinguish between 
three surgical subphases: needle handling, needle driving and nee-
dle withdrawal (Fig. 1). For all experiments, we trained SAIS on video 
samples exclusively from the University of Southern California (USC) 
(Table 1). A description of the surgical procedures and subphases is 
provided in Methods.

Generalizing across videos. We deployed SAIS on the test set of video 
samples from USC, and present the receiver operating characteristic 
(ROC) curves stratified according to the three subphases (Fig. 2a). 
We observed that SAIS reliably decodes surgical subphases with area 
under the receiver operating characteristic curve (AUC) of 0.925, 0.945 
and 0.951, for needle driving, needle handling and needle withdrawal, 
respectively. We also found that SAIS can comfortably decode the 
high-level steps of surgery, such as suturing and dissection (Supple-
mentary Note 3 and Supplementary Fig. 2).

Generalizing across hospitals. To determine whether SAIS can gen-
eralize to unseen surgeons at distinct hospitals, we deployed it on 
video samples from St. Antonius Hospital (SAH) (Fig. 2b) and Houston 
Methodist Hospital (HMH) (Fig. 2c). We found that SAIS continued to 
excel with AUC ≥0.857 for all subphases and across hospitals.

Benchmarking against baseline models. We deployed SAIS to decode 
subphases from entire videos of the vesico-urethral anastomosis (VUA) 
suturing step (20 min long) without any human supervision (inference 
section in Methods). We present the F110 score (Fig. 2e), a commonly 
reported metric9, and contextualize its performance relative to that of 
a state-of-the-art I3D network6. We found that SAIS decodes surgical 
subphases more reliably than I3D, with these models achieving F110 of 
50 and 40, respectively.

The performance of SAIS stems from attention mechanism 
and multiple data modalities
To better appreciate the degree to which the components of SAIS con-
tributed to its overall performance, we trained variants of SAIS, after 
having removed or modified these components (ablation section in 
Methods), and report their positive predictive value (PPV) when decod-
ing the surgical subphases (Fig. 2d).

We found that the self-attention (SA) mechanism was the largest 
contributor to the performance of SAIS, where its absence resulted in 
∆PPV of approximately −20. This finding implies that capturing the 
relationship between, and temporal ordering of, frames is critical for 
the decoding of intraoperative surgical activity. We also observed that 
the dual-modality input (red–green–blue, or RGB, frames and flow) 
has a greater contribution to performance than using either modality 
of data alone. By removing RGB frames (‘without RGB’) or optical flow 
(‘without flow’), the model exhibited an average ∆PPV of approximately 
−3 relative to the baseline implementation. Such a finding suggests that 
these two modalities are complementary to one another. We therefore 
used the baseline model (SAIS) for all subsequent experiments.

SAIS reliably decodes surgical gestures
In the previous section, we showed the ability of SAIS to decode surgical 
subphases (the ‘what’ of surgery) and to generalize to video samples 
from unseen surgeons at distinct hospitals, and also quantified the mar-
ginal benefit of its components via an ablation study. In this section, we 

Table 1 | Total number of videos and video samples associated with each of the hospitals and tasks

Task Activity Details Hospital Videos Video samples Surgeons Generalization to

Subphase recognition Suturing VUA USC 78 4,774 19 Videos

SAH 60 2,115 8 Hospitals

HMH 20 1,122 5 Hospitals

USC 48 Inference on entire videos

Gesture classification Suturing VUA USC 78 1,241 19 Videos

Laboratory JIGSAWS 39 793 8 Users

DVC UCL 36 1,378 8 Videos

Dissection NS USC 86 1,542 15 Videos

SAH 60 540 8 Hospitals

USC 154 Inference on entire unlabelled videos

RAPN USC 27 339 16 Procedures

Skill assessment Suturing Needle handling USC 78 912 19 Videos

SAH 60 240 18 Hospitals

HMH 20 184 5 Hospitals

Needle driving USC 78 530 19 Videos

SAH 60 280 18 Hospitals

HMH 20 220 5 Hospitals

Note that we train our model, SAIS, exclusively on data from hospitals whose names are shown in bold following a ten-fold Monte Carlo cross-validation setup. For an exact breakdown of the 
number of video samples in each fold and training, validation and test split, please refer to Supplementary Tables 1–5. The data from the remaining hospitals are exclusively used for inference. 
We perform inference on entire videos from hospitals whose names are shown in italics. Except for the task of subphase recognition, SAIS is always trained and evaluated on a class-balanced 
set of data whereby each category (low skill and high skill) contains the same number of samples. This prevents SAIS from being negatively affected by a sampling bias during training, and 
allows for a more intuitive appreciation of the evaluation results.
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examine the ability of SAIS to decode surgical gestures (the ‘how’ of sur-
gery) performed during both tissue suturing and dissection activities 
(the description of gestures and activities is provided in Methods). For 
the suturing activity (VUA), we trained SAIS to distinguish between four 
discrete suturing gestures: right forehand under (R1), right forehand 
over (R2), left forehand under (L1) and combined forehand over (C1). 
For the dissection activity, known as nerve sparing (NS), we trained SAIS 
to distinguish between six discrete dissection gestures: cold cut (c), 
hook (h), clip (k), camera move (m), peel (p) and retraction (r). We note 
that training was performed on video samples exclusively from USC.

Generalizing across videos. We deployed SAIS on the test set of video 
samples from USC, and present the ROC curves stratified according 
to the discrete suturing gestures (Fig. 3a) and dissection gestures 
(Fig. 3b). There are two main takeaways here. First, we observed that 
SAIS can generalize well to both suturing and dissection gestures in 
unseen videos. This is exhibited by the high AUC achieved by SAIS 
across the gestures. For example, in the suturing activity, AUC was 
0.837 and 0.763 for the right forehand under (R1) and combined fore-
hand over (C1) gestures, respectively. In the dissection activity, AUC 
was 0.974 and 0.909 for the clip (k) and camera move (m) gestures, 
respectively. These findings bode well for the potential deployment 
of SAIS on unseen videos for which ground-truth gesture annotations 
are unavailable, an avenue we explore in a subsequent section. Second, 
we found that the performance of SAIS differs across the gestures. For 
example, in the dissection activity, AUC was 0.701 and 0.974 for the 
retraction (r) and clip (k) gestures, respectively. We hypothesize that 

the strong performance of SAIS for the latter stems from the clear visual 
presence of a clip in the surgical field of view. On the other hand, the 
ubiquity of retraction gestures in the surgical field of view could be a 
source of the relatively lower ability of SAIS in decoding retractions, 
as explained next. Retraction is often annotated as such when it is 
actively performed by a surgeon’s dominant hand. However, as a core 
gesture that is used to, for example, improve a surgeon’s visualization 
of the surgical field, a retraction often complements other gestures. 
As such, it can occur simultaneously with, and thus be confused for, 
other gestures by the model.

Generalizing across hospitals. To measure the degree to which SAIS 
can generalize to unseen surgeons at a distinct hospital, we deployed 
it on video samples from SAH (Fig. 3c and video sample count in  
Table 1). We found that SAIS continues to perform well in such a set-
ting. For example, AUC was 0.899 and 0.831 for the camera move (m) 
and clip (k) gestures, respectively. Importantly, such a finding sug-
gests that SAIS can be reliably deployed on data with several sources 
of variability (surgeon, hospital and so on). We expected, and indeed 
observed, a slight degradation in performance in this setting relative 
to when SAIS was deployed on video samples from USC. For example, 
AUC was 0.823 → 0.702 for the cold cut (c) gesture in the USC and SAH 
data, respectively. This was expected due to the potential shift in the 
distribution of data collected across the two hospitals, which has been 
documented to negatively affect network performance10. Potential 
sources of distribution shift include variability in how surgeons per-
form the same set of gestures (for instance, different techniques) and 
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Fig. 2 | Decoding surgical subphases from videos. a–c, SAIS is trained on 
video samples exclusively from USC and evaluated on those from USC (a), SAH 
(b) and HMH (c). Results are shown as an average (±1 standard deviation) of ten 
Monte Carlo cross-validation steps. d, We trained variants of SAIS to quantify 
the marginal benefit of its components on its PPV. We removed test-time 
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flow’) and the self-attention mechanism (‘without SA’). We found that the 
attention mechanism and the multiple modality input (RGB and flow) are the 
greatest contributors to PPV. e, We benchmarked SAIS against an I3D model 
when decoding subphases from entire VUA videos without human supervision. 
Each box reflects the quartiles of the results, and the whiskers extend to 1.5× the 
interquartile range.
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in the surgical field of view (for example, clear view with less blood). 
Furthermore, our hypothesis for why this degradation affects certain 
gestures (such as cold cuts) more than others (such as clips) is that 
the latter exhibits less variability than the former, and is thus easier to 
classify by the model.

Generalizing across surgical procedures. While videos of different 
surgical procedures (such as nephrectomy versus prostatectomy) 
may exhibit variability in, for example, anatomical landmarks (such as 

kidney versus prostate), they are still likely to reflect the same tissue 
dissection gestures. We explored the degree to which such variability 
affects the ability of SAIS to decode dissection gestures. Specifically, we 
deployed SAIS on video samples of a different surgical step: renal hilar 
dissection (HD), from a different surgical procedure: robot-assisted 
partial nephrectomy (RAPN) (Fig. 3d and Table 1 for video sample 
count). We observed that SAIS manages to adequately generalize to an 
unseen surgical procedure, albeit exhibiting degraded performance, 
as expected (0.615 < AUC < 0.858 across the gestures). Interestingly, 
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Fig. 3 | Decoding surgical gestures from videos. a, SAIS is trained and evaluated 
on the VUA data exclusively from USC. The suturing gestures are right forehand 
under (R1), right forehand over (R2), left forehand under (L1) and combined 
forehand over (C1). b–d, SAIS is trained on the NS data exclusively from USC and 
evaluated on the NS data from USC (b), NS data from SAH (c) and HD data from 
USC (d). The dissection gestures are cold cut (c), hook (h), clip (k), camera move 
(m), peel (p) and retraction (r). Note that clips (k) are not used during the HD 
step. Results are shown as an average (±1 standard deviation) of ten Monte Carlo 

cross-validation steps. e, Proportion of predicted gestures identified as correct 
(precision) stratified on the basis of the anatomical location of the neurovascular 
bundle in which the gesture is performed. f, Gesture profile where each row 
represents a distinct gesture and each vertical line represents the occurrence of 
that gesture at a particular time. SAIS identified a sequence of gestures (hook, clip 
and cold cut) that is expected in the NS step of RARP procedures, and discovered 
outlier behaviour of a longer-than-normal camera move gesture corresponding to 
the removal, inspection and re-insertion of the camera into the patient’s body.
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the hook (h) gesture experienced the largest degradation in perfor-
mance (AUC 0.768 → 0.615). We hypothesized that this was due to the 
difference in the tissue in which a hook is performed. Whereas in the 
NS dissection step, a hook is typically performed around the prostatic 
pedicles (a region of blood vessels), in the renal HD step, it is performed 
in the connective tissue around the renal artery and vein, delivering 
blood to and from the kidney, respectively.

Validating on external video datasets. To contextualize our work with 
previous methods, we also trained SAIS to distinguish between sutur-
ing gestures on two publicly available datasets: JHU-ISI gesture and 
skill assessment working set ( JIGSAWS)11 and dorsal vascular complex 
University College London (DVC UCL)12 (Methods). While the former 
contains videos of participants in a laboratory setting, the latter con-
tains videos of surgeons in a particular step (dorsal vascular complex) 
of the live robot-assisted radical prostatectomy (RARP) procedure. 
We compare the accuracy of SAIS with that of the best-performing 
methods on JIGSAWS (Supplementary Table 6) and DVC UCL (Sup-
plementary Table 7).

We found that SAIS, despite not being purposefully designed 
for the JIGSAWS dataset, performs competitively with the baseline 
methods (Supplementary Table 6). For example, the best-performing 
video-based method achieved accuracy of 90.1, whereas SAIS achieved 
accuracy of 87.5. It is conceivable that incorporating additional modali-
ties and dataset-specific modifications into SAIS could further improve 
its performance. As for the DVC UCL dataset, we followed a different 
evaluation protocol from the one originally reported12 (see Implemen-
tation details of training SAIS on external video datasets in Methods) 
since only a subset of the dataset has been made public. To fairly com-
pare the models in this setting, we quantify their improvement relative 
to a naive system that always predicts the majority gesture (Random) 
(Supplementary Table 7). We found that SAIS leads to a greater improve-
ment in performance relative to the state-of-the-art method (MA-TCN) 
on the DVC UCL dataset. This is evident by the three-fold and four-fold 
increase in accuracy achieved by MA-TCN and SAIS, respectively, rela-
tive to a naive system.

SAIS provides surgical gesture information otherwise 
unavailable to surgeons
One of the ultimate, yet ambitious, goals of SAIS is to decode surgeon 
activity from an entire surgical video without annotations and with 
minimal human oversight. Doing so would provide surgeons with infor-
mation otherwise less readily available to them. In pursuit of this goal, 
and as an exemplar, we deployed SAIS to decode the dissection gestures 
from entire NS videos from USC (20–30 min in duration) to which it has 
never been exposed (Methods).

Quantitative evaluation. To evaluate this decoding, we randomly 
selected a prediction made by SAIS for each dissection gesture category 
in each video (n = 800 gesture predictions in total). This ensured we 
retrieved predictions from a more representative and diverse set of 
videos, thus improving the generalizability of our findings. We report 
the precision of these predictions after manually confirming whether 
or not the corresponding video samples reflected the correct gesture 
(Fig. 3e). We further stratified this precision on the basis of the ana-
tomical location of the neurovascular bundle relative to the prostate 
gland. This allowed us to determine whether SAIS was (a) learning an 

unreliable shortcut to decoding gestures by associating anatomical 
landmarks with certain gestures, which is undesirable, and (b) robust 
to changes in the camera angle and direction of motion of the gesture. 
For the latter, note that operating on the left neurovascular bundle 
often involves using the right-hand instrument and moving it towards 
the left of the field of view (Fig. 3f, top row of images). The opposite is 
true when operating on the right neurovascular bundle.

We found that SAIS is unlikely to be learning an anatomy-specific 
shortcut to decoding gestures and is robust to the direction of motion of 
the gesture. This is evident by its similar performance when deployed on 
video samples of gestures performed in the left and right neurovascular 
bundles. For example, hook (h) gesture predictions exhibited precision 
of ~0.75 in both anatomical locations. We also observed that SAIS was able 
to identify an additional gesture category beyond those it was originally 
trained on. Manually inspecting the video samples in the cold cut (c) 
gesture category with a seemingly low precision, we found that SAIS was 
identifying a distinct cutting gesture, also known as a hot cut, which, in 
contrast to a cold cut, involves applying heat/energy to cut tissue.

Qualitative evaluation. To qualitatively evaluate the performance of 
SAIS, we present its gesture predictions for a single 30-min NS video 
(Fig. 3f). Each row represents a distinct gesture, and each vertical 
line represents the occurrence of this gesture at a particular time. We 
observed that, although SAIS was not explicitly informed about the 
relationship between gestures, it nonetheless correctly identified a 
pattern of gestures over time which is typical of the NS step within 
RARP surgical procedures. This pattern constitutes a (a) hook, (b) 
clip and (c) cold cut and is performed to separate the neurovascular 
bundle from the prostate while minimizing the degree of bleeding 
that the patient incurs.

We also found that SAIS can discover outlier behaviour, despite not 
being explicitly trained to do so. Specifically, SAIS identified a contigu-
ous 60-s interval during which a camera move (m) was performed, and 
which is 60× longer than the average duration (1 s) of a camera move. 
Suspecting outlier behaviour, we inspected this interval and discovered 
that it coincided with the removal of the camera from the patient’s 
body, its inspection by the operating surgeon, and its re-insertion into 
the patient’s body.

SAIS reliably decodes surgical skills
At this point, we have demonstrated that SAIS, as a unified AI system, 
can independently achieve surgical subphase recognition (the what of 
surgery) and gesture classification (the how of surgery), and generalize 
to samples from unseen videos in the process. In this section, we exam-
ine the ability of SAIS to decode skill assessments from surgical videos. 
In doing so, we also address the how of surgery, however through the 
lens of surgeon skill. We evaluated the quality with which two suturing 
subphases were executed by surgeons: needle handling and needle 
driving (Fig. 1a, right column). We trained SAIS to decode the skill level 
of these activities using video samples exclusively from USC.

Generalizing across videos. We deployed SAIS on the test set of video 
samples from USC, and present the ROC curves associated with the 
skills of needle handling (Fig. 4a) and needle driving (Fig. 4b). We 
found that SAIS can reliably decode the skill level of surgical activity, 
achieving AUC of 0.849 and 0.821 for the needle handling and driving 
activity, respectively.

Fig. 4 | Decoding surgical skills from videos and simultaneous provision of 
reasoning. a,b, We train SAIS on video samples exclusively from USC to decode 
the skill-level of needle handling (a) and needle driving (b), and deploy it on video 
samples from USC, SAH and HMH. Results are an average (±1 standard deviation) 
of ten Monte Carlo cross-validation steps. c,d, We also present the attention 
placed on frames by SAIS for a video sample of low-skill needle handling (c) 
and needle driving (d). Images with an orange bounding box indicate that SAIS 

places the highest attention on frames depicting visual states consistent with 
the respective skill assessment criteria. These criteria correspond to needle 
repositions and needle adjustments, respectively. e, Surgical skills profile 
depicting the skill assessment of needle handling and needle driving from a 
single surgical case at SAH. f,g, Ratio of low-skill needle handling (f) and needle 
driving (g) in each of the 30 surgical cases at SAH. The horizontal dashed lines 
represent the average ratio of low-skill activity at USC.
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Generalizing across hospitals. We also deployed SAIS on video sam-
ples from unseen surgeons at two hospitals: SAH and HMH (Fig. 4a,b 
and Table 1 for video sample count). This is a challenging task that 

requires SAIS to adapt to the potentially different ways in which surgi-
cal activities are executed by surgeons with different preferences. We 
found that SAIS continued to reliably decode the skill level of needle 
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handling (SAH: AUC 0.880, HMH: AUC 0.804) and needle driving (SAH: 
AUC 0.821, HMH: AUC 0.719). The ability of SAIS to detect consistent 
patterns across hospitals points to its potential utility for the objective 
assessment of surgical skills.

Benchmarking against baseline models. Variants of the 3D convolu-
tional neural network (3D-CNN) have achieved state-of-the-art results 
in decoding surgical skills on the basis of videos of either a laboratory 
trial6 or a live procedure13. As such, to contextualize the utility of SAIS, 
we fine-tuned a pre-trained I3D model (see Implementation details 
of I3D experiments in Methods) to decode the skill level of needle 
handling and needle driving (Table 2). We found that SAIS consistently 
outperforms this state-of-the-art model when decoding the skill level 
of surgical activities across hospitals. For example, when decoding the 
skill level of needle handling, SAIS and I3D achieved AUC of 0.849 and 
0.681, respectively. When decoding the skill level of needle driving, 
they achieved AUC of 0.821 and 0.630, respectively. We also found 
that I3D was more sensitive to the video samples it was trained on 
and the initialization of its parameters. This is evident by the higher 
standard deviation of its performance relative to that of SAIS across 
the folds (0.12 versus 0.05 for needle driving at USC). Such sensitivity 
is undesirable as it points to the lack of robustness and unpredictable 
behaviour of the model.

SAIS provides accurate reasoning behind decoding of  
surgical skills
The safe deployment of clinical AI systems often requires that they are 
interpetable14. We therefore wanted to explore whether or not SAIS was 
identifying relevant visual cues while decoding the skill level of surgeons. 
This would instill machine learning practitioners with confidence that 
SAIS is indeed latching onto appropriate features, and can thus be trusted 
in the event of future deployment within a clinical setting. We first 
retrieved a video sample depicting a low-skill activity (needle handling 
or needle driving) that was correctly classified by SAIS. By inspecting the 
attention placed on such frames by the attention mechanism (architec-
ture in Fig. 5), we were able to quantify the importance of each frame. 
Ideally, high attention is placed on frames of relevance, where relevance 
is defined on the basis of the skill being assessed.

We present the attention (darker is more important) placed on 
frames of a video sample of needle handling (Fig. 4c) and needle driving 
(Fig. 4d) and that was correctly classified by SAIS as depicting low skill. We 
found that SAIS places the most attention on frames that are consistent 
with the skill assessment criteria. For example, with the low-skill needle 
handling activity based on the number of times a needle is re-grasped by a 
surgeon, we see that the most important frames highlight the time when 
both robotic arms simultaneously hold onto the needle, which is charac-
teristic of a needle reposition manoeuvre (Fig. 4c). Multiple repetitions 
of this behaviour thus align well with the low-skill assessment of needle 
handling. Additionally, with needle driving assessed as low-skill based 

on the smoothness of its trajectory, we see that the needle was initially 
driven through the tissue, adjusted, and then completely withdrawn 
(opposite to direction of motion) before being re-driven through the 
tissue seconds later (Fig. 4d). SAIS placed a high level of attention on the 
withdrawal of the needle and its adjustment and was thus in alignment 
with the low-skill assessment of needle driving. More broadly, these 
explainable findings suggest that SAIS is not only capable of providing 
surgeons with a reliable, objective, and scalable assessment of skill but 
can also pinpoint the important frames in the video sample. This capa-
bility addresses why a low-skill assessment was made and bodes well for 
when SAIS is deployed to provide surgeons with targeted feedback on 
how to improve their execution of surgical skills.

SAIS provides surgical skill information otherwise unavailable 
to surgeons
We wanted to demonstrate that SAIS can also provide surgeons with 
information about surgical skills that otherwise would not have been 
available to them. To that end, we tasked SAIS with assessing the skill of 
all needle handling and needle driving video samples collected from SAH.

With needle handling (and needle driving) viewed as a subphase of 
a single stitch and knowing that a sequence of stitches over time makes 
up a suturing activity (such as VUA) in a surgical case, SAIS can generate 
a surgical skills profile for a single case (Fig. 4e) for needle handling 
and needle driving. We would like to emphasize that this profile, when 
generated for surgical cases that are not annotated with ground-truth 
skill assessments, provides surgeons with actionable information 
that otherwise would not have been available to them. For example, a 
training surgeon can now identify temporal regions of low-skill stitch 
activity, relate that to anatomical locations perhaps, and learn to focus 
on such regions in the future. By decoding profiles for different skills 
within the same surgical case, a surgeon can now identify whether 
subpar performance for one skill (such as needle handling) correlates 
with that for another skill (such as needle driving). This insight will help 
guide how a surgeon practises such skills.

SAIS can also provide actionable information beyond the indi-
vidual surgical case level. To illustrate this, we present the proportion of 
needle handling (Fig. 4f) and needle driving (Fig. 4g) actions in a surgi-
cal case that were deemed low-skill, for all 30 surgical cases from SAH. 
We also present the average low-skill ratio observed in surgical videos 
from USC. With this information, the subset of cases with the lowest 
rate of low-skill actions can be identified and presented to training 
surgeons for educational purposes. By comparing case-level ratios to 
the average ratio at different hospitals (Fig. 4g), surgeons can identify 
cases that may benefit from further surgeon training.

SAIS can provide surgeons with actionable feedback
We initially claimed that the decoding of intraoperative surgical activ-
ity can pave the way for multiple downstream applications, one of 
which is the provision of postoperative feedback to surgeons on their 
operating technique. Here we provide a template of how SAIS, based 
on the findings we have presented thus far, can deliver on this goal. In 
reliably decoding surgical subphases and surgical skills while simultane-
ously providing its reasoning for doing so, SAIS can provide feedback 
of the following form: ‘when completing stitch number three of the 
suturing step, your needle handling (what—subphase) was executed 
poorly (how—skill). This is probably due to your activity in the first 
and final quarters of the needle handling subphase (why—attention)’. 
Such granular and temporally localized feedback now allows a surgeon 
to better focus on the element of intraoperative surgical activity that 
requires improvement, a capability that was not previously available.

The skill assessments of SAIS are associated with patient 
outcomes
While useful for mastering a surgical technical skill itself, surgeon 
feedback becomes more clinically meaningful when grounded in 

Table 2 | SAIS outperforms a state-of-the-art model when 
decoding the skill level of surgical activity. SAIS is trained 
on video samples exclusively from USC. We report the 
average AUC (±1 standard deviation) on the test-set across 
all of the ten folds

Activity Hospital I3D (ref. 6) SAIS

Needle handling USC 0.681 (0.07) 0.849 (0.06)

SAH 0.730 (0.04) 0.880 (0.02)

HMH 0.680 (0.04) 0.804 (0.03)

Needle driving USC 0.630 (0.12) 0.821 (0.05)

SAH 0.656 (0.08) 0.797 (0.04)

HMH 0.571 (0.07) 0.719 (0.06)
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patient outcomes. For example, if low-skill assessments are associated 
with poor outcomes, then a surgeon can begin to modulate specific 
behaviour to improve such outcomes. To that end, we conducted a 
preliminary analysis regressing the surgeon skill assessments of SAIS 
at USC onto a patient’s binary recovery of urinary continence (ability 
to voluntarily control urination) 3 months after surgery (Methods). 
When considering all video samples (multiple per surgical case), and 
controlling for surgeon caseload and patient age, we found that urinary 
continence recovery was 1.31× (odds ratio (OR), confidence interval (CI) 
1.08–1.58, P = 0.005) more likely when needle driving was assessed as 
high skill than as low skill by SAIS. When aggregating the skill assess-
ments of video samples within a surgical case, that relationship is fur-
ther strengthened (OR 1.89, CI 0.95–3.76, P = 0.071). These preliminary 
findings are consistent with those based on manual skill assessments 
from recent studies15,16.

Discussion
Only in the past decade or so has it been empirically demonstrated that 
intraoperative surgical activity can have a direct influence on postop-
erative patient outcomes. However, discovering and acting upon this 
relationship to improve outcomes is challenging when the details of 
intraoperative surgical activity remain elusive. By combining emerging 
technologies such as AI with videos commonly collected during robotic 
surgeries, we can begin to decode multiple elements of intraoperative 
surgical activity.

We have shown that SAIS can decode surgical subphases, gestures 
and skills, on the basis of surgical video samples, in a reliable, objective 
and scalable manner. Although we have presented SAIS as decoding 
these specific elements in robotic surgeries, it can conceivably be 
applied to decode any other element of intraoperative activity from 
different surgical procedures. Decoding additional elements of sur-
gery will simply require curating a dataset annotated with the surgical 

element of interest. To facilitate this, we release our code such that 
others can extract insight from their own surgical videos with SAIS. In 
fact, SAIS and the methods that we have presented in this study apply 
to any field in which information can be decoded on the basis of visual 
and motion cues.

Compared with previous studies, our study offers both transla-
tional and methodological contributions. From a translational stand-
point, we demonstrated the ability of SAIS to generalize across videos, 
surgeons, surgical procedures and hospitals. Such a finding is likely 
to instil surgeons with greater confidence in the trustworthiness of 
SAIS, and therefore increases their likelihood of adopting it. This is 
in contrast to previous work that has evaluated AI systems on videos 
captured in either a controlled laboratory environment or a single 
hospital, thereby demonstrating limited generalization capabilities.

From a methodological standpoint, SAIS has much to offer com-
pared with AI systems previously developed for decoding surgical 
activity. First, SAIS is unified in that it is capable of decoding multiple 
elements of intraoperative surgical activity without any changes to its 
underlying architecture. By acting as a dependable core architecture 
around which future developments are made, SAIS is likely to reduce 
the amount of resources and cognitive burden associated with devel-
oping AI systems to decode additional elements of surgical activity. 
This is in contrast to the status quo in which the burdensome process 
of developing specialized AI systems must be undertaken to decode 
just a single element. Second, SAIS provides explainable findings in that 
it can highlight the relative importance of individual video frames in 
contributing to the decoding. Such explainability, which we system-
atically investigate in a concurrent study17 is critical to gaining the 
trust of surgeons and ensuring the safe deployment of AI systems for 
high-stakes decision making such as skill-based surgeon credentialing. 
This is in contrast to previous AI systems such as MA-TCN12, which is 
only capable of highlighting the relative importance of data modalities  
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Fig. 5 | A vision-and-attention-based AI system. SAIS consists of two parallel 
streams that process distinct input data modalities: RGB surgical videos and 
optical flow. Irrespective of the data modality, features are extracted from each 
frame via a ViT pre-trained in a self-supervised manner on ImageNet. Features 
of video frames are then input into a stack of transformer encoders to obtain a 

modality-specific video feature. These modality- specific features are aggregated 
and passed into a projection head to obtain a single video feature, which is either 
attracted to, or repelled from, the relevant prototype. Although we illustrate 
two prototypes to reflect binary categories (high-skill activity versus low-skill 
activity), we would have C prototypes in a setting with C categories.
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(for example, images versus kinematics), and therefore lacks the finer 
level of explainability of SAIS.

SAIS is also flexible in that it can accept video samples with an 
arbitrary number of video frames as input, primarily due to its trans-
former architecture. Such flexibility, which is absent from previous 
commonly used models such as 3D-CNNs, confers benefits to train-
ing, fine-tuning and performing inference. During training, SAIS can 
accept a mini-batch of videos each with a different number of frames. 
This can be achieved by padding videos in the mini-batch (with zeros) 
that have fewer frames, and appropriately masking the attention 
mechanism in the transformer encoder (see Implementation details 
and hyperparameters in Methods). This is in contrast to existing AI 
systems, which must often be presented with a mini-batch of equally 
sized videos. Similarly, during fine-tuning or inference, SAIS can be 
presented with an arbitrary number of video frames, thus expanding 
the spectrum of videos that it can be presented with. This is in contrast 
to existing setups that leverage a 3D-CNN that has been pre-trained 
on the Kinetics dataset18, whereby video samples must contain either 
16 frames or multiples thereof6,13. Abiding by this constraint can be 
suboptimal for achieving certain tasks, and departing from it implies 
the inability to leverage the pre-trained parameters that have proven 
critical to the success of previous methods. Furthermore, SAIS is 
architecturally different from previous models in that it learns proto-
types via supervised contrastive learning to decode surgical activity, 
an approach that has yet to be explored with surgical videos. Such 
prototypes pave the way for multiple downstream applications from 
detecting out-of-distribution video samples, to identifying clusters 
of intraoperative activity, and retrieving samples from a large surgi-
cal database19.

We also showed that SAIS can provide information that otherwise 
would not have been readily available to surgeons. This includes sur-
gical gesture and skill profiles, which reflect how surgical activity is 
executed by a surgeon over time for a single surgical case and across 
different cases. Such capabilities pave the way for multiple downstream 
applications that otherwise would have been difficult to achieve. For 
example, from a scientific perspective, we can now capture the vari-
ability of surgical activity across time, surgeons and hospitals. From a 
clinical perspective, we can now test hypotheses associating intraop-
erative surgical activity with long-term patient outcomes. This brings 
the medical community one step closer to identifying, and eventually 
modulating, causal factors responsible for poor outcomes. Finally, 
from an educational perspective, we can now monitor and provide 
surgeons with feedback on their operating technique. Such feedback 

can help surgeons master necessary skills and contribute to improved 
patient outcomes.

There are important challenges our work does not yet address. 
First, our framework, akin to others in the field, is limited to only decod-
ing the elements of surgical activity that have been previously outlined 
in some taxonomy (such as gestures). In other words, it cannot decode 
what it does not know. Although many of these taxonomies have been 
rigorously developed by teams of surgeons and through clinical experi-
ence, they may fail to shed light on other intricate aspects of surgical 
activity. This, in turn, limits the degree to which automated systems can 
discover novel activity that falls beyond the realm of existing protocol. 
Such discovery can lend insight into, for example, optimal but as-of-yet 
undiscovered surgical behaviour. In a similar vein, SAIS is currently 
incapable of decoding new elements of surgical activity beyond those 
initially presented to it. Such continual learning capabilities10 are criti-
cal to adapting to an evolving taxonomy of surgical activity over time.

The goal of surgery is to improve patient outcomes. However, it 
remains an open question whether or not the decoded elements of 
intraoperative surgical activity: subphases, gestures and skills, are the 
factors most predictive of postoperative patient outcomes. Although 
we have presented preliminary evidence in this direction for the case of 
surgical skills, large-scale studies are required to unearth these relation-
ships. To further explore these relationships and more reliably inform 
future surgical practice, we encourage the public release of large-scale 
surgical video datasets from different hospitals and surgical specialties. 
Equipped with such videos and SAIS, researchers can begin to decode 
the various elements of surgery at scale.

Moving forward, we look to investigate whether SAIS has the 
intended effect on clinical stakeholders. For example, we aim to deploy 
SAIS in a controlled laboratory environment to assess the skill level 
of activity performed by medical students and provide them with 
feedback based on such assessments. This will lend practical insight 
into the utility of AI-based skill assessments and its perception by sur-
gical trainees. We also intend to explore the interdependency of the 
elements of intraoperative surgical activity (subphase recognition, 
gesture classification and skill assessment). This can be achieved, for 
example, by training a multi-task variant of SAIS in which all elements 
are simultaneously decoded from a video. In such a setting, positive 
interference between the tasks could result in an even more reliable 
decoding. Alternatively, SAIS can be trained to first perform subphase 
recognition (a relatively easy task) before transferring its parameters 
to perform skill assessment (a relatively harder task). This is akin to cur-
riculum learning20, whereby an AI system is presented with increasingly 
difficult tasks during the learning process in order to improve its overall 
performance. In a concurrent study21, we also investigate whether 
SAIS exhibits algorithmic bias against various surgeon subcohorts22. 
Such a bias analysis is particularly critical if SAIS is to be used for the 
provision of feedback to surgeons. For example, it may disadvantage 
certain surgeon subcohorts (such as novices with minimal experience) 
and thus affect their ability to develop professionally.

Methods
Ethics approval
All datasets (data from USC, SAH, and HMH) were collected under 
institutional review board approval in which informed consent was 
obtained (HS-17-00113). These datasets were de-identified before 
model development.

Previous work
Computational methods. Previous work has used computational 
methods, such as AI, to decode surgery23,24. One line of research has 
focused on exploiting robot-derived sensor data, such as the displace-
ment and velocity of the robotic arms (kinematics), to predict clinical 
outcomes25–28. For example, researchers have used automated per-
formance metrics to predict a patient’s postoperative length of stay 

a

b

Fig. 6 | ViT feature extractor places the highest importance on instrument 
tips, needles and anatomical edges. We present two sample RGB video frames 
of the needle handling activity and the corresponding spatial attention placed by 
ViT on patches of these frames.
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within a hospital26. Another line of research has instead focused on 
exclusively exploiting live surgical videos from endoscopic cameras 
to classify surgical activity4,29, gestures5,30–33 and skills6,7,13,34,35, among 
other tasks36,37. For information on additional studies, we refer readers 
to a recent review9. Most recently, attention-based neural networks 
such as transformers38 have been used to distinguish between distinct 
surgical steps within a procedure39–42.

Evaluation setups. Previous work often splits their data in a way 
that has the potential for information ‘leakage’ across training and 
test sets. For example, it is believed that the commonly adopted 
leave-one-user-out evaluation setup on the JIGSAWS dataset11 is rigor-
ous. Although it lends insight into the generalizability of a model to 
a video from an unseen participant, this setup involves reporting a 
cross-validation score, which is often directly optimized by previous 
methods (for example, through hyperparameter tuning), therefore 
producing an overly optimistic estimate of performance. As another 
example, consider the data split used for the CholecT50 dataset43. Here 
there is minimal information about whether videos in the training and 
test sets belong to the same surgeon. Lastly, the most recent DVC UCL 
dataset12 consists of 36 publicly available videos for training and 9 pri-
vate videos for testing. After manual inspection, we found that these 
nine videos come from six surgeons whose data are also in the training 
set. This is a concrete example of surgeon data leakage, and as such, 
we caution the use of such datasets for benchmarking purposes. It is 
therefore critical to more rigorously evaluate the performance of SAIS, 
and in accordance with how it is likely to be deployed in a clinical setting.

Description of surgical procedures and activities
We focused on surgical videos depicting two types of surgical activity 
commonly performed within almost any surgery: tissue dissection and 
suturing, which we next outline in detail.

Tissue dissection. Tissue dissection is a fundamental activity in almost 
any surgical procedure and involves separating pieces of tissue from 
one another. For example, the RARP surgical procedure, where a can-
cerous prostate gland is removed from a patient’s body, entails several 
tissue dissection steps, one of which is referred to as nerve-sparing, or 
NS. NS involves preserving the neurovascular bundle, a mesh of vascu-
lature and nerves to the left and right of the prostate, and is essential 
for a patient’s postoperative recovery of erectile function for sexual 
intercourse. Moreover, an RAPN surgical procedure, where a part of 
a cancerous kidney is removed from a patient’s body, entails a dissec-
tion step referred to as hilar dissection, or HD. HD involves removing 
the connective tissue around the renal artery and vein to control any 
potential bleeding from these blood vessels.

These dissection steps (NS and HD), although procedure specific 
(RARP and RAPN), are performed by a surgeon through a common 
vocabulary of discrete dissection gestures. In our previous work, we 
developed a taxonomy44 enabling us to annotate any tissue dissection 
step with a sequence of discrete dissection gestures over time.

Tissue suturing. Suturing is also a fundamental component of sur-
gery45 and involves bringing tissue together. For example, the RARP 
procedure entails a suturing step referred to as vesico-urethral anasto-
mosis, or VUA. VUA follows the removal of the cancerous prostate gland 
and involves connecting, via stitches, the bladder neck (a spherical 
structure) to the urethra (a cylindrical structure), and is essential for 
postoperative normal flow of urine. The VUA step typically consists 
of an average of 24 stitches where each stitch can be performed by a 
surgeon through a common vocabulary of suturing gestures. In our 
previous work, we developed a taxonomy5 enabling us to annotate 
any suturing activity with a sequence of discrete suturing gestures. 
We note that suturing gestures are different to, and more subtle than, 
dissection gestures.

Each stitch can also be deconstructed into the three recurring sub-
phases of (1) needle handling, where the needle is held in preparation 
for the stitch, (2) needle driving, where the needle is driven through 
tissue (such as the urethra), and (3) needle withdrawal, where the needle 
is withdrawn from tissue to complete a single stitch. The needle han-
dling and needle driving subphases can also be evaluated on the basis 
of the skill level with which they are executed. In our previous work, we 
developed a taxonomy46 enabling us to annotate any suturing subphase 
with a binary skill level (low skill versus high skill).

Surgical video samples and annotations
We collected videos of entire robotic surgical procedures from three 
hospitals: USC, SAH and HMH. Each video of the RARP procedure, for 
example, was on the order of 2 h. A medical fellow (R.M.) manually 
identified the NS tissue dissection step and VUA tissue suturing step 
in each RARP video. We outline the total number of videos and video 
samples from each hospital in Table 1. We next outline how these steps 
were annotated with surgical subphases, gestures and skill levels.

It is important to note that human raters underwent a training 
phase whereby they were asked to annotate the same set of surgical vid-
eos, allowing for the calculation of the inter-rater reliability (between 
0 and 1) of their annotations. Once this reliability exceeded 0.8, we 
deemed the training phase complete47.

Surgical gesture annotations. Each video of the NS dissection step 
(on the order of 20 min) was retrospectively annotated by a team of 
trained human raters (R.M., T.H. and others) with tissue dissection ges-
tures. This annotation followed the strict guidelines of our previously 
developed taxonomy of dissection gestures44. We focused on the six 
most commonly used dissection gestures: cold cut (c), hook (h), clip 
(k), camera move (m), peel (p) and retraction (r). Specifically, upon 
observing a gesture, a human rater recorded the start time and end 
time of its execution by the surgeon. Therefore, each NS step resulted 
in a sequence of n ≈ 400 video samples of gestures (from six distinct 
categories) with each video sample on the order of 0–10 s in duration. 
Moreover, each video sample mapped to one and only one gesture. The 
same strategy was followed for annotating the VUA suturing step with 
suturing gestures. This annotation followed the strict guidelines of our 
previously developed taxonomy of suturing gestures5. We focused on 
the four most commonly used suturing gestures: right forehand under 
(R1), right forehand over (R2), left forehand under (L1) and combined 
forehand over (C1).

Surgical subphase and skill annotations. Each video of the VUA 
suturing step (on the order of 20 min) was retrospectively annotated by 
a team of trained human raters (D.K., T.H. and others) with surgical sub-
phases and skills. This annotation followed the strict guidelines of our 
previously developed taxonomy referred to as the end-to-end assess-
ment of suturing expertise or EASE46. Since the VUA step is a recon-
structive one in which the bladder and urethra are joined together, it 
often requires a series of stitches (on the order of 24 stitches: 12 on the 
bladder side and another 12 on the urethral side).

With a single stitch consisting of the three subphases of needle 
handling, needle driving and needle withdrawal (always in that order), 
a human rater would first identify the start time and end time of each 
of these subphases. Therefore, each VUA step may have n = 24 video 
samples of the needle handling, needle driving and needle withdrawal 
subphases with each video sample on the order of 10–30 s. The dis-
tribution of the duration of such video samples is provided in Sup-
plementary Note 2.

Human raters were also asked to annotate the quality of the nee-
dle handling or needle driving activity (0 for low skill and 1 for high 
skill). For needle handling, a high-skill assessment is based on the 
number of times the surgeon must reposition their grip on the needle 
in preparation for driving it through the tissue (the fewer the better). 
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For needle driving, a high-skill assessment is based on the smoothness 
and number of adjustments required to drive the needle through the 
tissue (the smoother and fewer number of adjustments the better). 
Since each video sample was assigned to multiple raters, it had multi-
ple skill assessment labels. In the event of potential disagreements in 
annotations, we considered the lowest (worst) score. Our motivation 
for doing so was based on the assumption that if a human rater penal-
ized the quality of the surgeon’s activity, then it must have been due 
to one of the objective criteria outlined in the scoring system, and 
is thus suboptimal. We, in turn, wanted to capture and encode this 
suboptimal behaviour.

Motivation behind evaluating SAIS with Monte Carlo 
cross-validation
In all experiments, we trained SAIS on a training set of video samples 
and evaluated it using ten-fold Monte Carlo cross- validation where 
each fold’s test set consisted of subphases from videos unseen during 
training. Such an approach contributes to our goal of rigorous evalua-
tion by allowing us to evaluate the ability of SAIS to generalize to unseen 
videos (hereon referred to as across videos). This setup is also more 
challenging and representative of real-world deployment than one 
in which an AI system generalizes to unseen samples within the same 
video. As such, we adopted this evaluation setup for all experiments 
outlined in this study, unless otherwise noted. A detailed breakdown of 
the number of video samples used for training, validation and testing 
can be found in Supplementary Note 1.

Data splits. For all the experiments conducted, unless otherwise noted, 
we split the data at the case video level into a training (90%) and test set 
(10%). We used 10% of the videos in the training set to form a validation 
set with which we performed hyperparameter tuning. By splitting at 
the video level, whereby data from the same video do not appear across 
the sets, we are rigorously evaluating whether the model generalizes 
across unseen videos. Note that, while it is possible for data from the 
same surgeon to appear in both the training and test sets, we also 
experiment with even more rigorous setups: across hospitals—where 
videos are from entirely different hospitals and surgeons—and across 
surgical procedures—where videos are from entirely different surgi-
cal procedures (such as nephrectomy versus prostatectomy). While 
there are various ways to rigorously evaluate SAIS, we do believe that 
demonstrating its generalizability across surgeons, hospitals and 
surgical procedures, as we have done, is a step in the right direction. 
We report the performance of models as an average, with a standard 
deviation, across the folds.

Leveraging both RGB frames and optical flow
To capture both visual and motion cues in surgical videos, SAIS oper-
ated on two distinct modalities: live surgical videos in the form of RGB 
frames and the corresponding optical flow of such frames. Surgical 
videos can be recorded at various sampling rates, which have the units 
of frames per second (fps).

Knowledge of the sampling rate alongside the natural rate with 
which activity occurs in a surgical setting is essential to multiple deci-
sions. These can range from the number of frames to present to a deep 
learning network, and the appropriate rate with which to downsample 
videos, to the temporal step size used to derive optical flow maps, as 
outlined next. Including too many frames where there is very little 
change in the visual scene leads to a computational burden and may 
result in over-fitting due to the inclusion of highly similar frames (low 
visual diversity). On the other hand, including too few frames might 
result in missing visual information pertinent to the task at hand. Simi-
larly, deriving reasonable optical flow maps, which is a function of a pair 
of images which are temporally spaced, is contingent upon the time that 
has lapsed between such images. Too short of a timespan could result 
in minimal motion in the visual scene, thus resulting in uninformative 

optical flow maps. Analogously, too long of a timespan could mean 
missing out on informative intermediate motion in the visual scene. 
We refer to these decisions as hyperparameters (see Implementation 
details and hyperparameters section in Methods). Throughout this 
paper, we derived optical flow maps by deploying a RAFT model48, 
which we found to provide reasonable maps.

SAIS is a model for decoding activity from surgical videos
Our AI system—SAIS—is vision based and unified (Fig. 5). It is vision 
based as it operates exclusively on surgical videos routinely collected 
as part of robotic surgical procedures. It is unified as the same archi-
tecture, without any modifications, can be used to decode multiple 
elements of intraoperative surgical activity (Fig. 1b). We outline the 
benefits of such a system in Discussion.

Single forward pass through SAIS
Extracting spatial features. We extract a sequence of D-dimensional 
representations, {vt ∈ ℝD}Tt=1, from T temporally ordered frames via a 
(frozen) vision transformer (ViT) pre-trained on the ImageNet dataset 
in a self-supervised manner49. In short, this pre-training setup, entitled 
DINO, involved optimizing a contrastive objective function whereby 
representations of the same image, augmented in different ways (such 
as random cropping), are encouraged to be similar to one another. For 
more details, please refer to the original paper50.

ViTs convert each input frame into a set of square image patches 
of dimension H × H and introduce a self-attention mechanism that 
attempts to capture the relationship between image patches (that 
is, spatial information). We found that this spatial attention picks up 
on instrument tips, needles, and anatomical edges (Fig. 6). We chose 
this feature extractor on the basis of (a) recent evidence favouring 
self-supervised pre-trained models relative to their supervised counter-
parts and (b) the desire to reduce the computational burden associated 
with training a feature extractor in an end-to-end manner.

Extracting temporal features. We append a learnable D-dimensional 
classification embedding, ecls ∈ ℝD, to the beginning of the sequence 
of frame representations, {vt}

T
t=1. To capture the temporal ordering of 

the frames of the images, we add D-dimensional temporal positional 
embeddings, {et ∈ ℝD}Tt=1, to the sequence of frame representations 
before inputting the sequence into four Transformer encoder layers. 
Such an encoder has a self-attention mechanism whereby each frame 
attends to every other frame in the sequence. As such, both short- and 
long-range dependencies between frames are captured. We summarize 
the modality-specific video through a modality-specific video repre-
sentation, hcls ∈ ℝD, of the classification embedding, ecls, at the final 
layer of the Transformer encoder, as is typically done. This process is 
repeated for the optical flow modality stream.

Aggregating modality-specific features. The two modality-specific 
video representations, hRGB and hFlow, are aggregated as follows:

hagg = hRGB + hFlow (1)

The aggregated representation, hagg, is passed through two projection 
heads, in the form of linear layers with a non-linear activation function 
(ReLU), to obtain an E-dimensional video representation, hVideo ∈ ℝE.

Training protocol for SAIS. To achieve the task of interest, the 
video-specific representation, hVideo, undergoes a series of attractions 
and repulsions with learnable embeddings, which we refer to as pro-
totypes. Each prototype, p, reflects a single category of interest and is 
of the same dimensionality as hVideo. The representation, hVideo ∈ ℝE, of 
a video from a particular category, c, is attracted to the single proto-
type, pc ∈ ℝE, associated with the same category, and repelled from all 
other prototypes, {pj}

C
j=1 , j ≠ c, where C is the total number of categories. 
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We achieve this by leveraging contrastive learning and minimizing the 
InfoNCE loss, ℒNCE:

ℒNCE = −
B
∑
i=1
log es(hVideo ,pc )

∑j e
s(hVideo ,pj )

s (hVideo,pj) =
hVideo⋅pj
||hVideo ||||pj ||

(2)

During training, we share the parameters of the Transformer 
encoder across modalities to avoid over-fitting. As such, we learn, in an 
end-to-end manner, the parameters of the Transformer encoder, the clas-
sification token embedding, the temporal positional embeddings, the 
parameters of the projection head and the category-specific prototypes.

Evaluation protocol for SAIS. To classify a video sample into one of 
the categories, we calculate the similarity (that is, cosine similarity) 
between the video representation, hVideo, and each of the prototypes, 
{pj}

C
j=1. We apply the softmax function to these similarity values in order 

to obtain a probability mass function over the categories. By identifying 
the category with the highest probability mass (argmax), we can make 
a classification.

The video representation, hVideo, can be dependent on the choice 
of frames (both RGB and optical flow) which are initially input into the 
model. Therefore, to account for this dependence and avoid missing 
potentially informative frames during inference, we deploy what is 
known as test-time augmentation (TTA). This involves augmenting the 
same input multiple times during inference, which, in turn, outputs 
multiple probability mass functions. We can then average these prob-
ability mass functions, analogous to an ensemble model, to make a 
single classification. In our context, we used three test-time inputs; the 
original set of frames at a fixed sampling rate, and those perturbed by 
offsetting the start frame by K frames at the same sampling rate. Doing 
so ensures that there is minimal frame overlap across the augmented 
inputs, thus capturing different information, while continuing to span 
the most relevant aspects of the video.

Implementation details and hyperparameters
During training and inference, we use the start time and end time of 
each video sample to guide the selection of video frames from that 
sample. For gesture classification, we select ten equally spaced frames 
from the video sample. For example, for a video sample with a frame 
rate of 30 Hz and that is 3 s long, then from the original 30 × 3 = 90 
frames, we would only retrieve frames ∈ [0, 9, 18, …]. In contrast, for 
subphase recognition and skill assessment, we select every other tenth 
frame. For example, for the same video sample above, we would only 
retrieve frames ∈ [0, 10, 20,…]. We found that these strategies resulted 
in a good trade-off between computational complexity and capturing 
sufficiently informative signals in the video to complete the task. Simi-
larly, optical flow maps were based on pairs of images that were 0.5 s 
apart. Shorter timespans resulted in frames that exhibited minimal 
motion and thus uninformative flow maps. During training, to ensure 
that the RGB and optical flow maps were associated with the same 
timespan, we retrieved maps that overlapped in time with the RGB 
frames. During inference, and for TTA, we offset both RGB and optical 
flow frames by K = 3 and K = 6 frames.

We conduct our experiments in PyTorch51 using a V100 GPU on 
a DGX machine. Each RGB frame and optical flow map was resized to 
224 × 224 (from 960 × 540 at USC and SAH and 1,920 × 1,080 at SAH) 
before being input into the ViT feature extractor. The ViT feature extrac-
tor pre-processed each frame into a set of square patches of dimension 
H = 16 and generated a frame representation of dimension D = 384. 
All video representations and prototypes are of dimension E = 256. In 
practice, we froze the parameters of the ViT, extracted all such repre-
sentations offline (that is, before training), and stored them as h5py 
files. We followed the same strategy for extracting representations 

of optical flow maps. This substantially reduced the typical bottle-
neck associated with loading videos and streamlined our training and 
inference process. This also facilitates inference performed on future 
videos. Once a new video is recorded, its features can immediately be 
extracted in an offline manner, and stored for future use.

Unless otherwise stated, we trained SAIS using a mini-batch size 
of eight video samples and a learning rate of 1e−1, and optimize its 
parameters via stochastic gradient descent. Mini-batch samples are 
often required to have the same dimensionality (B × T × D) where B 
is the batch size, T is the number of frames and D is the dimension of 
the stored representation. Therefore, when we encountered video 
samples in the same mini-batch with a different number of temporal 
frames (such as T = 10 versus T = 11), we first appended placeholder 
representations (tensors filled with zeros) to the end of the shorter 
video samples. This ensured all video samples in the mini-batch had 
the same dimension. To avoid incorporating these padded representa-
tions into downstream processing, we used a masking matrix (matrix 
with binary entries) indicating which representations the attention 
mechanism should attend to. Importantly, padded representations 
are not attended to during a forward pass through SAIS.

Description of ablation study
We trained several variants of SAIS to pinpoint the contribution of each 
its components on overall performance. Specifically, the model variants 
are trained using SAIS (baseline), evaluated without test-time augmenta-
tion (‘without TTA’), and exposed to only optical flow (‘without RGB’) or 
RGB frames (‘without flow’) as inputs. We also removed the self-attention 
mechanism which captured the relationship between, and temporal 
ordering of, frames (‘without SA’). In this setting, we simply averaged 
the frame features. Although we present the PPV in Results, we arrived 
at similar findings when using other evaluation metrics.

Implementation details of inference on entire videos
After we trained and evaluated a model on video samples (on the order 
of 10–30 s), we deployed it on entire videos (on the order of 10–30 min) 
to decode an element of surgical activity without human supervision. 
We refer to this process as inference. As we outline next, a suitable 
implementation of inference is often dependent on the element of 
surgical activity being decoded.

Suturing subphase recognition. Video samples used for training 
and evaluating SAIS to decode the three suturing subphases of needle 
handling, needle driving and needle withdrawal spanned, on average, 
10–30 s (Supplementary Note 2). This guided our design choices for 
inference.

Curating video samples for inference. During inference, we adopted 
two complementary approaches, as outlined next. Approach 1: we 
presented SAIS with 10-s video samples from an entire VUA video 
with 5-s overlaps between subsequent video samples, with the latter 
ensuring we capture boundary activity. As such, each 10-s video sample 
was associated with a single probabilistic output, {sNH, sND, sNW}, reflect-
ing the probability, s, of needle handling (NH), needle driving (ND) 
and needle withdrawal (NW). Approach 2: we presented SAIS with 5-s 
non-overlapping video samples from the same video. The motivation 
for choosing a shorter video sample is to capture a brief subphase that 
otherwise would have bled into another subphase when using a longer 
video sample. As such, each 5-s video sample was associated with a 
single probabilistic output. Note that we followed the same approach 
for selecting frames from each video sample as we did during the 
original training and evaluation setup (see Implementation details 
and hyperparameters).

As an example of these approaches, the first video sample 
presented to SAIS in approach 1 spans 0–10 s whereas the first two 
video samples presented to SAIS in approach 2 span 0–5 s and 5–10 s, 
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respectively. When considering both approaches, the timespan 0–10 s 
is thus associated with three unique probabilistic outputs (as is every 
other 10-s timespan).

Using ensemble models. Recall that we trained SAIS using ten-fold 
Monte Carlo cross-validation, resulting in ten unique models. To 
increase our confidence in the inference process, we performed infer-
ence following the two aforementioned approaches with each of the 
ten models. As such, each 10-s timespan was associated with 3 proba-
bilistic outputs (P) × 10 folds (F) × 3 TTAs = 90 probabilistic outputs in 
total. As is done with ensemble models, we then averaged these proba-
bilistic outputs (a.k.a. bagging) to obtain a single probabilistic out-
put,{sNH, sND, sNW} , where the jth probability value for j ∈ [1, C]  
(C categories) is obtained as follows:

̄si =
3
∑
P=1

10
∑
F=1

3
∑

TTA=1
sTTA,F,Pj ∀j ∈ [1,C] (3)

Abstaining from prediction. In addition to ensemble models often 
outperforming their single model counterparts, they can also provide 
an estimate of the uncertainty about a classification. Such uncertainty 
quantification can be useful for identifying out-of-distribution video 
samples52 such as those the model has never seen before or for high-
lighting video samples where the classification is ambiguous and 
thus potentially inaccurate. To quantify uncertainty, we took inspira-
tion from recent work53 and calculated the entropy, S, of the resultant 
probabilistic output post bagging. With high entropy implying high 
uncertainty, we can choose to abstain from considering classifications 
whose entropy exceeds some threshold, Sthresh:

S = −
c
∑
j=1
sj log sj > Sthresh (4)

Aggregating predictions over time. Once we have filtered out the 
predictions which are uncertain (that is, exhibit high entropy), we were 
left with individual predictions for each subphase spanning at most 
10 s (because of how we earlier identified video samples). However, we 
know from observation that certain subphases can be longer than 10 s 
(Supplementary Note 2). To account for this, we aggregated subphase 
predictions that were close to one another over time. Specifically, we 
aggregated multiple predictions of the same subphase into a single 
prediction if they were less than 3 s apart, in effect chaining the predic-
tions. Although this value is likely to be dependent on other choices 
in the inference process, we found it to produce reasonable results.

NS dissection gesture classification. Video samples used for training 
and evaluating SAIS to decode the six dissection gestures spanned, 
on average, 1–5 s. This also guided our design choices for inference.

Identifying video samples for inference. During inference, we found 
it sufficient to adopt only one of the two approaches for inference 
described earlier (inference for subphase recognition). Specifically, 
we presented SAIS with 1-s non-overlapping video samples of an entire 
NS video. As such, each 1-s video sample was associated with a single 
probabilistic output, {sj}6j=1 reflecting the probability, s, of each of the 
six gestures.

Using ensemble models. As with inference for suturing subphase 
recognition, we deployed the ten SAIS models (from the ten Monte 
Carlo folds) and three TTAs on the same video samples. As such, each 
1-s video sample was associated with 10 × 3 = 30 probabilistic outputs. 
These are then averaged to obtain a single probabilistic output, { ̄sj}6j=1.

Abstaining from prediction. We also leveraged the entropy of ges-
ture classifications as a way to quantify uncertainty and thus abstain 

from making highly uncertain gesture classifications. We found that 
Sthresh = 1.74 led to reasonable results.

Aggregating predictions over time. To account for the observation 
that gestures can span multiple seconds, we aggregated individual 1-s 
predictions that were close to one another over time. Specifically, we 
aggregated multiple predictions of the same gesture into a single predic-
tion if they were less than 2 s apart. For example, if a retraction gesture 
(r) is predicted at intervals 10–11 s, 11–12 s and 15–16 s, we treated this as 
two distinct retraction gestures. The first one spans 2 s (10–12 s) while 
the second one spans 1 s (15–16 s). This avoids us tagging spurious and 
incomplete gestures (for example, the beginning or end of a gesture) 
as an entirely distinct gesture over time. Our 2-s interval introduced 
some tolerance for a potential misclassification between gestures of 
the same type and allowed for the temporal continuity of the gestures.

Implementation details of training SAIS on external video 
datasets
We trained SAIS on two publicly available datasets: JIGSAWS11 and DVC 
UCL12. In short, these datasets contain video samples of individuals 
performing suturing gestures either in a controlled laboratory set-
ting or during the dorsal vascular complex step of the RARP surgical 
procedure. For further details on these datasets, we refer readers to 
the original respective publications.

JIGSAWS dataset.  We followed the commonly adopted 
leave-one-user-out cross-validation setup11. This involves training on 
video samples from all but one user and evaluating on those from the 
remaining user. These details can be found in a recent review9.

DVC UCL dataset. This dataset, recently released as part of the Endo-
scopic Vision Challenge 2022 at MICCAI, consists of 45 videos from a 
total of eight surgeons performing suturing gestures during the dorsal 
vascular complex step of the RARP surgical procedure12. The publicly 
available dataset, at the time of writing, is composed of 36 such videos 
(Table 1). Similar to the private datasets we used, each video (on the order 
of 2–3 min) is annotated with a sequence of eight unique suturing ges-
tures alongside their start time and end time. Note that these annotations 
do not follow the taxonomy we have developed and are therefore distinct 
from those we outlined in the Surgical video samples and annotations 
section. The sole previous method to evaluate on this dataset does so 
on a private test set. As this test set is not publicly available, we adopted 
a leave-one-video-out setup and reported the ten-fold cross-validation 
performance of SAIS (Supplementary Table 3 for the number of video 
samples in each fold). Such a setup provides insight into how well SAIS 
can generalize to unseen videos. Furthermore, in light of the few samples 
from one of the gesture categories (G5), we distinguished between only 
seven of the gestures. To facilitate the reproducibility of our findings, we 
will release the exact data splits used for training and testing.

Implementation details of I3D experiments
We trained the I3D model to decode the binary skill level of needle 
handling and needle driving on the basis of video samples of the VUA 
step. For a fair comparison, we presented the I3D model with the same 
exact data otherwise presented to SAIS (our model). In training the I3D 
model, we followed the core strategy proposed in ref. 6. For example, 
we loaded the parameters pre-trained on the Kinetics dataset and froze 
all but the last three layers (referred to as Mixed5b, Mixed5c and logits).

However, having observed that the I3D model was quite sensitive 
to the choice of hyperparameters, we found it necessary to conduct 
an extensive number of experiments to identify the optimal setup 
and hyperparameters for decoding surgical skill, the details of which 
are outlined next. First, we kept the logits layer as is, resulting in a 
400-dimensional representation, and followed it with a non-linear 
classification head to output the probability of, for example, a high-skill 
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activity. We also leveraged both data modalities (RGB and flow) which 
we found to improve upon the original implementation that had used 
only a single modality. Specifically, we added the two 400-dimensional 
representations (one for each modality) to one another and passed 
the resultant representation through the aforementioned classifica-
tion head. With the pre-trained I3D expecting an input with 16 frames 
or multiples thereof, we provided it with a video sample composed 
of 16 equally spaced frames between the start time and end time of 
that sample. While we also experimented with a different number of 
frames, we found that to yield suboptimal results. To train I3D, we used 
a batch-size of 16 video samples and a learning rate of 1e−3.

Association between the skill assessments of SAIS and patient 
outcomes
To determine whether the skill assessments of SAIS are associated with 
patient outcomes, we conducted an experiment with two variants. We 
first deployed SAIS on the test set of video samples in each fold of the 
Monte Carlo cross-validation setup. This resulted in an output, Z1 ∈ 
[0, 1], for each video sample reflecting the probability of a high-skill 
assessment. In the first variant of this experiment, we assigned each 
video sample, linked to a surgical case, a urinary continence recovery 
(3 months after surgery) outcome, Y. To account for the fact that a 
single outcome, Y, is linked to an entire surgical case, in the second 
variant of this experiment, we averaged the outputs, Z, for all video 
samples within the same surgical case. This, naturally, reduced the 
total number of samples available.

In both experiments, we controlled for the total number of robotic 
surgeries performed by the surgeon (caseload, Z2) and the age of the 
patient being operated on (Z3), and regressed the probabilistic outputs 
of SAIS to the urinary continence recovery outcome using a logistic 
regression model (SPSS), as shown below (σ is the sigmoid function). 
After training this model, we extracted the coefficient, b1, and report 
the odds ratio (OR) and the 95% confidence interval (CI).

Y = σ (b0 + b1Z1 + b2Z2 + b3Z3)

OR = oddshigh−skill
oddslow−skill

= eb1
(5)

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data supporting the results in this study involve surgeon and patient 
data. As such, while the data from SAH and HMH are not publicly avail-
able, de-identified data from USC can be made available upon reason-
able request from the authors.

Code availability
Code is made available at https://github.com/danikiyasseh/SAIS.
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