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This study examined heterogeneity in the association between disaster-related home loss and functional
limitations of older adults, and identified characteristics of vulnerable subpopulations. Data were from a
prospective cohort study of Japanese older survivors of the 2011 Japan Earthquake. Complete home loss
was objectively assessed. Outcomes in 2013 (n = 3,350) and 2016 (n = 2,664) included certified physical
disability levels, self-reported activities of daily living, and instrumental activities of daily living. We estimated
population average associations between home loss and functional limitations via targeted maximum likelihood
estimation with SuperLearning and its heterogeneity via the generalized random forest algorithm. We adjusted
for 55 characteristics of survivors from the baseline survey conducted 7 months before the disaster. While home
loss was consistently associated with increased functional limitations on average, there was evidence of effect
heterogeneity for all outcomes. Comparing the most and least vulnerable groups, the most vulnerable group
tended to be older, not married, living alone, and not working, with preexisting health problems before the
disaster. Individuals who were less educated but had higher income also appeared vulnerable for some outcomes.
Our inductive approach for effect heterogeneity using machine learning algorithm uncovered large and complex
heterogeneity in postdisaster functional limitations among Japanese older survivors.

causal inference; effect heterogeneity; functional limitation; instrumental activities of daily living; machine
learning; natural disaster

Abbreviations: ADL, activities of daily living; ATE, average treatment effect; BLP, best linear predictor; CATE, conditional average
treatment effect; GRF, generalized random forest; IADL, instrumental activities of daily living; JAGES, Japan Gerontological
Evaluation Study.

Older populations are disproportionally affected both
during and after disasters (1–3). Studies have documented
adverse impacts of disaster-related traumatic experiences
(e.g., property damage) on older survivors’ mental and cog-
nitive health (4–7). Emerging evidence suggests that older
adults may also be susceptible to postdisaster functional
limitations (8, 9). Key mechanisms that aggravate functional
limitations include the onset of postdisaster psychopathol-
ogy (e.g., posttraumatic stress disorder and depression)
(10) and displacement to unfamiliar surroundings (e.g.,
temporary accommodations) with the attendant disruption of
social communities (11, 12). These processes may contribute
to social isolation and homebound status, which in turn lead
to functional decline among older adults (13, 14).

At the same time, the health impacts of disaster-related
traumatic experiences are likely heterogeneous. For exam-
ple, only a fraction of individuals develop mental health
problems after traumatic experiences, while the majority
stays “resilient” and maintains their mental health or
quickly returns to normal functioning (15). Individuals from
higher socioeconomic backgrounds or stronger networks of
social support appear to be resilient against postdisaster
psychopathology; thus, these individuals may also be
resilient against functional decline following disasters (16,
17). Moreover, living in a community with strong social ties
(social capital) mitigates the impact of postdisaster social
isolation on functional decline (18, 19). Investigating the
sources of this effect heterogeneity may provide insights into
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the mechanisms underlying the disaster-health relationships
and better guide resource allocation throughout the different
stages of disaster mitigation, preparedness, response, and
recovery (20). Moreover, evidence on effect heterogeneity
will provide insights on the implications of a disaster
for health disparities since disasters are likely to have
greater impact among socially disadvantaged individuals
(21). However, to our knowledge, no study has rigorously
examined heterogeneity in functional health outcomes
among disaster survivors.

In the present study, we applied a machine-learning algo-
rithm—the generalized random forest (GRF) (22, 23)—
to flexibly and inductively assesses heterogeneity in the
association between disaster-related trauma and functional
limitations in a cohort of older survivors of the 2011 Great
East Japan Earthquake and Tsunami.

METHODS

Data

We used panel data from the Iwanuma Study, which is
part of a nationwide cohort study of Japanese older adults,
called the Japan Gerontological Evaluation Study (JAGES)
(24). Iwanuma city was one of the field sites of the JAGES
located in Miyagi Prefecture (population 44,187 in 2010),
approximately 80 km (128 miles) from the epicenter of the
2011 Great East Japan Earthquake. Importantly, the baseline
survey of the Iwanuma Study was conducted in August
2010, 7 months before the disaster onset, which enabled
us to collect rich information on characteristics of disaster
survivors predating the disaster itself. JAGES conducted a
census of all residents aged ≥65 years in Iwanuma city (n =
8,576) and obtained valid responses from 4,957 residents
(response rate = 57.8%).

The Great East Japan Earthquake (Richter scale: 9.0)
occurred on March 11, 2011. The earthquake and the sub-
sequent tsunami caused devastating damage to the city of
Iwanuma. In Iwanuma, the tsunami killed 180 residents,
damaged 5,542 houses, and inundated 48% of the land
area (Web Figure 1, available at https://doi.org/10.1093/aje/
kwac187) (25).

Baseline respondents who survived the disaster were sur-
veyed twice over the subsequent 5.5 years. The first follow-
up survey was conducted in October 2013, approximately
2.5 years after the disaster. Of the eligible survivors who
were healthy enough to participate and still lived in Iwanuma
at the time of follow-up (n = 4,380), we obtained valid
responses from 3,567 subjects. In November 2016, approx-
imately 5.5 years after the disaster, JAGES conducted the
second follow-up survey (valid responses: n = 2,781). We
excluded those who had physical or cognitive disability at
baseline, resulting in final analytical samples of n = 3,350
for the outcomes in 2013 and n = 2,664 for the outcomes
in 2016. Figure 1 summarizes the flow of study participant
selection.

Measurement

Outcome. We measured functional limitations in 2013 and
2016 using 3 different indicators: certified level of physical

disability, activities of daily living (ADL), and instrumental
activities of daily living (IADL).

Level of physical disability was assessed by a standard-
ized in-home assessment under the Japanese Long-Term
Care Insurance (LTCI) scheme established in 2000 (26).
All study participants were registered for the national LTCI.
Every applicant who requested long-term care services was
assessed for eligibility by a trained investigator. Following
the assessment, the applicant’s level of physical disability
was classified into one of 9 levels with increasing sever-
ity. To facilitate comparison of results across outcomes,
we reverse-coded the disability levels so that lower values
indicate more severe levels of physical disability (8: “Can
go outside using public transportations, etc.” to 1: “Cannot
turn over in a bed independently”; see Web Table 1 for the
detailed outcome definitions). Those who were assessed as
having no disability and those who did not request the care
services (i.e., people not needing long-term care services)
received a score of 9. We obtained physical disability infor-
mation in 2013 and 2016 from their initial assessment or
subsequent annual reassessments.

ADL—degree to which one is able to accomplish basic
daily activities—was assessed by asking: “Do you do things
like walking, bathing, and toileting by yourself?” and par-
ticipants chose their response from the following 3 options:
1 = support needed completely, 2 = support needed partially,
and 3 = no help needed.

IADL, which evaluates higher-level functional capaci-
ties (e.g., going out alone using public transportation), was
assessed using the 13 items from the Tokyo Metropolitan
Institute of Gerontology Index of Competence (27). Total
IADL Scores ranged from 0 to 13 points. Smaller scale
scores indicate greater functional limitation.

Exposure. In the 2013 wave, participants retrospectively
reported degree of property damage by the tsunami. Property
damage in Iwanuma was independently assessed by property
inspectors and classified into 5 levels: no damage, partial,
minor, major, and complete destruction (28). Criteria for
each level of property damage are summarized in Web Table
2. We created a binary variable representing complete home
loss (1 = “complete destruction” and 0 = “no damage/
less severe damage”) because home loss has been shown
to uniquely predict health deterioration after the disaster
(29, 30).

Covariates. We selected 55 pre-disaster variables from the
baseline (2010) survey wave, including 4 demographic char-
acteristics, 3 measures of socioeconomic status, 28 health
conditions, 14 psychosocial factors, and 6 behavioral factors
(see Web Table 3 for the complete list of the selected vari-
ables). We selected these factors because they were likely to
operate as confounders, effect modifiers, or both.

Statistical analysis

First, we estimated the population average treatment
effects (ATEs) of home loss on functional limitations
in 2013 and 2016. ATEs quantify the difference in the
mean level of functional limitation had everyone in the
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Baseline Survey Enrollment 
(n = 8,576) 

Respondents to the Baseline Survey  
(n = 4,957; Response Rate = 57.8%) 

Excluded (n = 3,619) 
No Response (n = 3,518) 
Invalid Response (n = 101) 

Excluded (n = 577) 
Died before the disaster (n = 66) 
Killed by the disaster (n = 34) 
Died before the second wave (n = 334) 
Lost to follow-up (n = 143) 

Moved out of the city (n = 92) 
Address unknown (n = 17) 
Too sick to participate (n = 34) 

Respondents to the Second Wave 
Survey (n = 3,567) 

First Wave: 
August 2010 

Great East Japan Earthquake and Tsunami: 
March 11, 2011 

Second Wave: 
October 2013 

Eligible for the Second Wave Survey 
(n = 4,380) 

Excluded (n = 813) 
No response  (n = 786) 
Invalid response (n = 27) 

Respondents to the Third Wave Survey 
(n = 2,781) 

Eligible for the Third Wave Survey 
(n = 3,323) 

Excluded (n = 244) 
Died before the third wave (n = 243) 
Moved out (n = 1) 

Excluded (n = 542) 
No response (n = 513) 
Invalid response (n = 29) 

Third Wave: 
November 2016 

Analytical Sample for the Outcomes in 
2013 (n = 3,350) 

Analytical Sample for the Outcomes in 
2016 (n = 2,664) 

Physical and/or Cognitive Disability at 
Baseline (n = 217) 

Physical and/or Cognitive 
Disability at Baseline (n = 117) 

Figure 1. Sample f low chart, Iwanuma, Miyagi, Japan, 2010–2016.

population been exposed to home loss vs. nobody being
exposed, E[Ya=1 − Ya=0]. We estimated ATEs using the
doubly robust targeted maximum likelihood estimation
(TMLE). This approach estimates both the exposure model
and outcome model and yields unbiased estimates for the
ATEs if either of the models is consistently estimated. Both

exposure and outcome models were fitted data-adaptively
via the SuperLearner, an ensemble method that uses
weighted combinations of multiple candidate estimators,
which included generalized linear models, gradient-boosting
machine, and neural net (31–33). Targeted maximum
likelihood estimation and Super Learning were performed
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using the ltmle and SuperLearner R (R Foundation for
Statistical Computing, Vienna, Austria) packages (34, 35).

Second, to examine heterogeneous effects, we estimated
conditional average treatment effects (CATEs) of home loss
on functional limitations. Formally, CATE is the effect of
an exposure conditional on the values of a set of covariates
(L = l);

E[Ya=1 − Ya=0|L = l]

where Ya is the potential outcome Y under the binary treat-
ment A = a.

We estimated CATEs and identified potential sources of
effect heterogeneity by using the causal forest approach
from the GRF algorithm (22). Causal forest extends the
random forest algorithm, a common nonparametric algo-
rithm designed to predict conditional expectations (36). Ran-
dom forest grows many regression trees, which is a type
of decision tree, by partitioning bootstrapped subsamples
based on the values of random subsets of covariates and
computes a weighted average of outcome in each leaf (i.e.,
subsamples defined by the same combinations of covariate
values) of a tree. Causal forest targets and assesses the
contrast in the average outcome between the exposed versus
unexposed individuals in each leaf (i.e., CATEs), rather than
predicting the average outcome itself. Although each tree
was grown using a random subset of covariates, the final
CATE estimates were calculated as weighted averages of
predictions from all trees and can be interpreted as being
conditional on all the 55 covariates. In growing trees, causal
forest randomly splits a subsample in half and uses only the
first half to construct partitioning and the other half to fill
in CATE estimates in each leaf—this process is often called
“honesty” and reduces bias in tree predictions. Partitioning
was determined such that it maximizes heterogeneity in
treatment effect estimates across leaves.

We implemented GRF using the R (R Foundation for
Statistical Computing) package grf (37). We used cross-
fitting with 20 folds so that predictions for each fold were
made based on trees trained without using observations from
the fold. Before growing 2,000 regression trees to construct a
causal forest for each outcome, we used out-of-bag samples
and tuned the following parameters via cross-validation:
fraction of the data used to build each tree, number of vari-
ables tried for each split, a target for the minimum number of
observations in each tree leaf, the fraction of data to be used
for determining splits, whether the estimation sample tree
should be pruned such that no leaves are empty, maximum
imbalance of a split, and penalty for imbalanced splits. We
provide R code in Web Appendix 1 to facilitate reproducing
our analysis.

To evaluate the model performance and formally test for
the presence of effect heterogeneity, we conducted the fol-
lowing analyses. First, we performed “best linear predictor”
(BLP) analysis (38). The BLP analysis fits the following
model:

Yi − Ŷi = α(Ai − p (Li)) ∗ τ + β(Ai − p (Li))
(
τ̂i − τ

) + ε,

where τ̂i is the predicted CATE for individual i, τ is the
mean of the CATE estimates, Ŷi is the predicted outcome,

and p(L) = Pr[A = 1|L] is the probability of home loss con-
ditional on the covariates. If the coefficient α (the mean
forest) is close to 1, then it indicates that the average for-
est prediction is well calibrated. If the coefficient β (the
differential forest) is close to 1, then it indicates the forest
prediction adequately captures the underlying heterogeneity.
The single-sided test of β > 0 is used as an omnibus test
for effect heterogeneity. Second, we ranked each individual
in each fold based on their CATE, grouped these ranks into
quintiles (because the ranks were specific to each of the 20
folds, there were 20 ties for each rank), and re-estimated the
ATE via targeted maximum likelihood estimation, stratify-
ing by the quintile of the CATE. We expect the ATE estimate
to monotonically increase across quintiles defined by the
CATE ranks. Third, as an alternative way of testing presence
of effect heterogeneity, we followed the recommendation by
Athey and Wager (2019) (23). Specifically, we grouped the
analytical sample into 2 groups according to whether their
estimated CATEs were above or below the median CATE
estimate. We then estimated group-specific ATE in each of
the 2 groups and compared the 2 ATE estimates. The differ-
ence in the 2 ATE estimates was tested via bootstrapping.

Last, we investigated sources of effect heterogeneity. To
identify the most salient sources of effect heterogeneity, we
compared characteristics of the top 10% and the bottom
10% of the CATE distributions. Because lower values for
our continuous outcomes suggest greater functional limita-
tions, negative CATE values indicate functional impairment
following home loss. The top 10% (i.e., those who were pre-
dicted to experience the smallest functional impairment fol-
lowing home loss) was labeled as the “resilient” group, while
the bottom 10% (i.e., those who were predicted to experience
the largest functional impairment following home loss) was
labeled as the “vulnerable” group. Moreover, we used the
“variable importance” feature of GRF and, for each out-
come, identified the top 3 pre-disaster characteristics that
were most often used in growing the trees. We then created
heatmaps showing how estimated CATEs were distributed
according to the levels of the 3 pre-disaster characteristics.

As a sensitivity analysis, we examined whether results
were robust to using different cutoffs to create binary hous-
ing damage variables. We performed imputation of missing
data using random forest via the R (R Foundation for Statisti-
cal Computing) package “missforest” (39) (more details are
available in Web Appendix 2). All analyses were performed
using R, version 3.6.0.

RESULTS

Table 1 summarizes the pre-disaster demographic charac-
teristics of the analytical sample (n = 3,350 for the 2013
outcomes and n = 2,664 for the 2016 outcomes) according
to home loss status. Individuals who experienced home
loss (vs. no home loss) tended to be from lower socioe-
conomic status backgrounds (fewer years of schooling and
lower household income) and to report depressive symptoms
before the disaster (e.g., 37% vs. 29% among those without
home loss exposure for the 2013 sample). In both 2013 and
2016, those who experienced home loss (vs. no home loss)
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Outcome Estimated ATE (95% CI)

−0.32
−0.50

−0.06
−0.05

−0.12
−0.09

(−0.39, −0.24)
(−0.56, −0.44)

(−0.08, −0.04)
(−0.07, −0.04)

(−0.16, −0.08)
(−0.13, −0.06)

IADL

ADL

Physical Disability

−0.6 −0.4 −0.2 0.0
Estimated Population Average Effect of Home Loss

Year

2013 2016

Figure 2. Estimated population average treatment effect (ATE) of home loss on functional limitation indicators in 2013 (2.5 years after the
disaster) and 2016 (5.5 years after), Iwanuma, Miyagi, Japan, 2010–2016. Population average effects (i.e., ATEs and confidence intervals (CIs))
of the exposures were estimated via the doubly robust targeted maximum likelihood estimation. Models were estimated data-adaptively via
the SuperLearner using generalized linear models, gradient-boosting machine, and neural net as candidate estimators. All models adjusted
for the 55 pre-disaster demographic and socioeconomic factors, health conditions, psychosocial variables, and behaviors from the 2010 wave.
Instrumental activities of daily living (IADL) status was measured by the 13-item Tokyo Metropolitan Institute of Gerontology Index of Competence.
Instrumental activities of daily living scores ranged from 0 to 13 points, where smaller scores indicate lower functional independence. Activities
of daily living (ADL) had 3 levels (1 = support needed completely, 2 = support needed partially, and 3 = no help needed). Levels of certified
physical disability ranged from 1 (“Cannot roll over in a bed independently”) to 9 (“no physical disability/not requesting care services”), where
smaller values indicate greater levels of disability. Thus, decrease in these outcomes indicate increased functional limitation.

had greater functional limitations across all indicators (Web
Table 4).

Figure 2 depicts the estimated ATEs of home loss on
the functional limitation outcomes. In 2013, home loss was
consistently associated with increased functional limitations
across indicators (e.g., estimate for certified physical
disability = −0.09; 95% confidence interval: −0.13, −0.06).
The population-average associations between home loss
and increased functional limitations persisted when we
examined the outcomes in 2016. Sensitivity analysis using
different cutoffs for property damage (Web Figure 2) showed
robust associations.

The distributions of the CATEs estimated via GRF
are shown in Figure 3. Web Table 5 shows the summary
statistics for the estimated CATEs: The CATE estimates
were below zero for most individuals (e.g., CATEs for
certified physical disability level in 2013: minimum =
−1.95, maximum = 0.06) and showed consistent trends
with the ATE estimates (i.e., home loss was associated
with functional impairment). However, the variation in
the estimated CATEs indicates effect heterogeneity (e.g.,
standard deviation = 0.27 for certified physical disability
level in 2013). As shown in Web Table 6, there was
evidence of effect heterogeneity for all functional limitation
outcomes across the 2 approaches for testing the presence of
heterogeneity although the evidence was more modest for

ADL in 2016 when using the omnibus test of heterogeneity
based on the BLP analysis (P = 0.10). The estimated
coefficients from the BLP analyses ranged from 1.04 to
1.28 for the mean forest prediction and 0.91 to 2.01 for
the differential forest prediction and tended to be larger
(away from 1) for the outcomes assessed in 2016 (Web
Table 6). In the calibration plot (Web Figure 3), we observed
monotonic increase in the rank-specific ATE estimate with
increasing CATE ranking. When assessing outcomes in
2016, the calibration plot showed some deviations from
the perfect monotonically increasing trend (e.g., for IADL
in 2016, the ATE estimate for the CATE quintile 3 was
greater than the ATE estimates for quintiles 4 and 5).
Sensitivity analysis using different cutoffs for property
damage similarly indicated effect heterogeneity (Web
Figure 4).

Table 2 compares the key pre-disaster characteristics of
the resilient group (top decile of the CATE distribution)
with those of the vulnerable group (bottom decile) for the
certified physical disability outcome in 2013 and 2016.
Comparisons of all 55 covariates are available in Web Table
7. We identified common pre-disaster characteristics of the
vulnerable group (i.e., individuals for whom home loss was
more strongly associated with greater levels of physical
disability). When assessing the outcome in 2013, the people
in the vulnerable group (vs. the resilient group) were more
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Figure 3. Distributions of estimated conditional average treatment effect (ATE) of home loss on functional limitation indicators 2.5 years after
the disaster (year 2013) (A) and 5.5 years after the disaster (year 2016) (B), Iwanuma, Miyagi, Japan, 2010–2016. Heterogeneous effects
(i.e., conditional ATEs) were estimated using generalized random forest algorithm, using the 55 pre-disaster demographic and socioeconomic
factors, health conditions, psychosocial variables, and behaviors from the 2010 wave. Activity of daily living (ADL) had 3 levels (1 = support
needed completely, 2 = support needed partially, and 3 = no help needed). Instrumental activities of daily living (IADL) status was measured by
the 13-item Tokyo Metropolitan Institute of Gerontology Index of Competence. Instrumental activities of daily living scores ranged from 0 to 13
points, where smaller scores indicate lower functional independence. Levels of certified physical disability ranged from 1 (“Cannot roll over in a
bed independently”) to 9 (“no physical disability/not requesting care services”), where smaller values indicate greater levels of disability. Thus,
decrease in these outcomes indicate increased functional limitation.

likely to be older (mean age = 83.1 vs. 68.6 in the resilient
group), men (67% vs. 36%), not married (56% vs. 2%),
living alone (10% vs. 0.9%), less educated (e.g., ≥13 years
schooling: 8.5% vs. 25%), and not working (95% vs. 71%)
before the earthquake. Members of the vulnerable group
also tended to have baseline health problems, such as more
mild/severe depressive symptoms (38% vs. 18%), poor self-
rated health (e.g., “Very good”: 6.8% vs. 19%), lower total
IADL scores (mean = 9.60 vs. 12.5), and more major dis-
eases (mean count of treatments for major conditions = 2.07
vs. 1.02). This pattern generally persisted when assessing
the physical disability level in 2016 and the other outcome
indicators—total IADL scores (Web Table 8) and ADL (Web
Table 9)—with some exceptions (e.g., living alone: 8.2% vs.
5.0%, P = 0.20 for the physical disability outcome in 2016).

We also found mixed patterns for pre-disaster household
income. The vulnerable group and the resilient group had
comparable pre-disaster household incomes when assessing
physical disability level outcome in 2013 and ADL in 2016.

The vulnerable (vs. resilient) group was characterized by
lower pre-disaster income when assessing physical disability
level in 2016 (mean (10,000 yen) = 242.7 vs. 284.2; P
value<0.001) and ADL in 2013 (mean = 235.7 vs. 270.7;
P value = 0.003; Web Table 9). However, members of
the vulnerable group, who were less educated and had
baseline health problems (e.g., depressive symptoms) as
described above, also had higher pre-disaster income when
we assessed IADL in 2013 and 2016 (e.g., mean in 2013 =
254.9 vs. 233.9; P value<0.01; Web Table 8). We conducted
an ad-hoc sensitivity analysis examining the associations
between home loss and the outcomes in 2013 among those
who participated in both follow-up waves in 2013 and
2016 (n = 2,664) and obtained comparable ATE and CATE
estimates (Web Table 10).

Web Table 11 shows 3 variables that GRF used most
often in splitting trees for each outcome. For instance,
15% of all trees for disability level in 2013 used age
in sample splitting. The relationships between each of
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these variables and estimated CATEs are shown in Web
Figure 5 (for outcomes in 2013) and Web Figure 6 (for
outcomes in 2016). For example, CATEs for disability level
in 2013 showed monotonic decrease with increasing age
(Spearman’s correlation = −0.71 as shown in Web Table
11). Distributions of estimated CATEs across combinations
of these 3 variables are shown in Web Figure 7 (for disability
level), Web Figure 8 (for IADL), and Web Figure 9 (for
ADL). These heatmaps identified some complex high-
dimensional heterogeneity. For example, when assessing
physical disability level in 2016, higher pre-disaster income
was a source of resilience (i.e., CATEs closer to 0) among
individuals who were 65–68 years old; on the other hand,
higher income was a source of vulnerability among people
>76 years old.

DISCUSSION

In this prospective study of older survivors from the 2011
Great East Japan Earthquake, we estimated the heteroge-
neous impacts of disaster-induced home loss on subsequent
functional limitations. Our main findings are 3-fold. First,
after adjusting for a set of 55 pre-disaster characteristics,
there was strong evidence of population average effects
of home loss on increased functional limitations across all
indicators 2.5 years and 5.5 years after the disaster. Sec-
ond, we identified evidence of heterogeneity in the asso-
ciations between home loss and functional limitation as
demonstrated by the spread in the distributions of the esti-
mated CATEs as well as the results of the 2 tests for effect
heterogeneity that we implemented; however, the results
concerning effect heterogeneity need to be interpreted with
caution for the outcomes in 2016 because causal forest fit for
these outcomes appeared to be less than perfect. Third, we
inductively identified patterns in pre-disaster characteristics
of subgroups particularly vulnerable to functional impair-
ment following home loss. Vulnerable individuals tended to
have lower educational attainment and pre-disaster health
problems (e.g., depressive symptoms), but these individuals
also had higher pre-disaster income.

Our finding for the population average effects of home
loss on increased functional limitations is consistent with
what has been reported previously (8, 9). The link between
home loss and functional limitations might be explained
by postdisaster residential displacement. Hikichi et al. (12)
reported decreased IADL among people who experienced
individual relocation (i.e., individually relocating to public
temporary housing via lottery, moving to rental housing on
the open market, or building new homes) while no associa-
tion with IADL was observed for relocating to public tempo-
rary housing together with other members of a community.
Hence, home loss and subsequent individual relocation may
have caused disruption of pre-existing social relationships
and social isolation, ultimately resulting in functional limi-
tations of older survivors (12, 40).

Our study also identified subgroups for whom home
loss was associated with substantially greater functional
impairment compared with the population average. Most
studies assessing effect heterogeneity rely on a deductive

approach in which researchers select a limited set of pre-
dictors—typically just one or a few—a priori as sources of
effect heterogeneity and statistically test interactions, one
variable at a time. The inductive approach for assessing
effect heterogeneity using GRF is advantageous because it
does not require investigators to specify effect modifiers a
priori but rather finds them from numerous candidates in a
data-driven way. Vulnerable individuals tended to be older,
not married, living alone, less educated, and not working and
to have baseline health problems. These pre-disaster factors
were mostly consistent with what prior trauma research
has identified as sources of vulnerability (16, 17, 41).
These findings support our hypothesis that heterogeneity
in functional limitations following disasters arises from
individual variations in the likelihood of experiencing
postdisaster mental health problems and social isolation and
homebound status. For instance, pre-disaster depression, a
risk factor for posttraumatic stress disorder (16), was more
prevalent among the vulnerable group in this study (e.g.,
38% vs. 18% in the resilient group for physical disability
level in 2013). Factors such as old age, nonmarried status,
and living alone might have accelerated social isolation
among individuals who experienced residential relocation
into temporary housing (42).

Our inductive approach for assessing effect heterogene-
ity provided potentially new insights that could have been
missed with a deductive approach. In prior work examining
effect heterogeneity deductively, higher socioeconomic sta-
tus such as higher income alone has been linked to disaster
resilience (4). In contrast, our inductive approach captured
complex heterogeneity resulting from interactions between
multiple characteristics. We demonstrated that the most vul-
nerable individuals for the IADL outcomes tended to have
lower educational attainment and more health problems—
each of these being established risk factors for vulnerabil-
ity—but also higher household income before the disaster.
Some prior evidence suggests that individuals with status
inconsistency (e.g., discordance between educational attain-
ment versus earned income) are more likely to engage in
unhealthy behaviors, such as excess drinking, which may
contribute to morbidity and functional limitations (43, 44);
hence, higher income when coupled with low education may
produce greater vulnerability. Alternatively, it is possible
that individuals with high income were more likely to pur-
chase new homes privately (i.e., individual relocation) and
suffered from the loss of pre-existing social capital (12).
However, the mechanisms for the complex heterogeneity
remain unclear, and future research is warranted.

Seven limitations should be noted. First, our ATE and
CATE estimates are based on the assumption that the 55
observed covariates sufficed to adjust for confounding of
the exposure-outcome associations, which may not hold.
Moreover, the covariates do not necessarily suffice to adjust
for confounding between each pre-disaster characteristic
and the outcomes; hence, the results do not tell us whether
intervening in those pre-disaster characteristics can change
the impact of home loss (20). Second, our binary assessment
of home loss was relatively crude and does not capture
nuanced differences in value of the damaged properties
and duration of occupancy. Third, selective attrition due to
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loss-to-follow-up may have induced selection bias (for more
discussion on the potential selection bias, see Web Appendix
3, Web Figure 10, and Web Table 12) (45). Fourth, while
physical disability was objectively assessed in this study, we
relied on self-reporting for the other outcomes (i.e., IADL
and ADL), which may be biased. Fifth, our study design does
not allow us to distinguish between persistence of disability
that emerged soon after the disaster and delayed onset of
disability that emerged during the interval between 2.5 to
5.5 years after the disaster. Sixth, the results concerning
effect heterogeneity need to be interpreted with caution,
particularly for the outcomes in 2016, because the BLP
analysis and the calibration plot indicating causal forest fit
for these outcomes may be less than perfect. Seventh, some
of the observed patterns from our inductive approach (e.g.,
complex heterogeneity involving income) are inconclusive
and may be due to chance. Future studies should test for a
specific hypothesis with a deductive approach.

In conclusion, our study provided evidence for consider-
able heterogeneity in the adverse impacts of disaster-induced
home loss on subsequent functional limitations among older
survivors. We identified subpopulations at exceptionally
high risk of postdisaster functional impairment and sources
of the complex heterogeneity, which would have likely
been overlooked had we estimated only the population
average effects or used the conventional deductive approach
for assessing effect heterogeneity. Assessing such effect
heterogeneity can contribute to more targeted postdisaster
public health interventions to preserve survivors’ functional
health status.
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