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ABSTRACT: In this study, an effective type-II heterojunction CdS/AgI
binary composite was constructed by an in situ precipitation approach.
To validate the successful formation of heterojunction between AgI and
CdS photocatalysts, the synthesized binary composites were charac-
terized by various analytical techniques. UV−vis diffuse-reflectance
spectroscopy (UV−vis DRS) revealed that heterojunction formation led
to a red shift in the absorbance spectra of the CdS/AgI binary composite.
The optimized 20AgI/CdS binary composite showed a least intense
photoluminescence (PL) peak indicating highly improved charge carrier
(e−/h+ pairs) separation efficiency. The photocatalytic efficiency of the
synthesized materials was assessed based on the degradation of methyl
orange (MO) and tetracycline hydrochloride (TCH) in the presence of
visible light. Compared to bare photocatalysts and other binary
composites, the 20AgI/CdS binary composite showed the highest photocatalytic degradation performances. Additionally, the
trapping studies showed that superoxide radical anion (O2

•−) was the most dominant active species involved in photodegradation
processes. Based on the results of active species trapping studies, a mechanism was proposed to describe the formation of type-II
heterojunctions for CdS/AgI binary composite. Overall, the synthesized binary composite has tremendous promise for
environmental remediation due to its straightforward synthesis approach and excellent photocatalytic efficacy.

1. INTRODUCTION
Owing to its advantages in the degradation of wastewater
contaminants, the semiconductor-based photocatalysis ap-
proach that utilizes visible light has recently gained a lot of
interest.1−4 The construction of potent photocatalysts with
exceptional stability and reusability is therefore crucial for the
photodegradation processes. Several studies have shown that
photocatalytic activity depends on the absorption of light and
the separation of charge carriers.5 However, charge carrier
separation in a semiconductor is extremely difficult in its
unmodified state. TiO2, for instance, has drawn a lot of interest
because of its ability to tackle environmental issues.6,7

Unfortunately, the large energy bandgap of TiO2 (3.2 eV)
restricts its optical absorption in the ultraviolet portion of the
solar spectrum, which is only about 4% of the total solar
energy.8−10 Visible light regions of the solar spectrum
accounted for almost 43%, and therefore making visible light
active photocatalysts with small bandgap could be very
effective for photodegradation processes.11 However, synthe-
sizing visible light active semiconductor materials is not
sufficient as the recombination rate of charge carriers is very
high due to the small band gap energy.12 This problem was
addressed using various strategies, such as doping metals and
nonmetals,13,14 co-depositing metals on semiconductor

surfaces,15−17 and coupling of two or more semiconductors
to create binary18,19 and ternary20,21 heterojunctions. A key
strategy in photocatalytic processes for pollutant degradation is
the construction of type-II heterostructure composite photo-
catalysts by coupling appropriate semiconductors.22,23

One of the most active photocatalysts with the broader
visible light response is thought to be the significant
semiconductor metal chalcogenide known as CdS.24 The
active sites of CdS in photocatalytic reactions include surface
defects, facet edges and corners, and interfacial sites with other
photocatalysts.25 The unsatisfactory photocatalytic perform-
ances of pristine CdS is caused by the fast recombination of
photoinduced charge carriers.26 Additionally, the photo-
corrosion of CdS during irradiation processes reduced its
usefulness as a photocatalyst. To overcome these drawbacks,
intensive research has been conducted to improve the
photocatalytic capability of CdS. Constructing heterostructures
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through coupling with other semiconductors is one of the
major techniques for addressing the recombination of charge
carriers and photocorrosion in CdS.27 The heterojunction
formation between the photocatalysts with suitable band edge
potentials significantly improves the performances for photo-
catalytic degradation. Shao et al. showed that g-C3N4/CdS
nanocomposite possessed superior photocatalytic activity
toward cloxacillin antibiotic degradation compared to pristine
g-C3N4 and CdS.28 El-Katori et al. synthesized CdS/SnO2
binary composites, which demonstrated good photocatalytic
capabilities for the degradation of methylene blue.29 Tong et al.
showed that p-nitrophenol degraded using Si−α-Fe2O3/CdS
composite more efficiently than α-Fe2O3 and CdS.30 In the
current study, the in situ precipitation method was used to
synthesize a binary composite CdS/AgI for photodegradation
applications. AgI photocatalyst was chosen to couple with CdS
to establish a type-II heterojunction because the band locations
of both semiconductors were compatible. To the best of our
knowledge, no scientific literature has yet reported the
synthesis of CdS/AgI binary composite. The synthesized
photocatalysts were characterized using different analytical
techniques to determine the chemical compositions and
structural features. The CdS/AgI binary composite is an
innovative and promising photocatalyst for the degradation of
organic pollutants such as methyl orange and tetracycline
hydrochloride. Its unique properties and synergistic effects
make it a potential candidate for environmental remediation
applications. The binary composite can be easily separated
from the reaction mixture and reused multiple times, leading to
a reduction in the cost and environmental impact. The
photocatalytic mechanism of the CdS/AgI binary composite
was also explained, and it was based on the findings of
quenching studies, band edge potential calculations, and
valence band XPS observations.

2. RESULTS AND DISCUSSION
2.1. XRD Analysis. The X-ray diffraction (XRD) technique

was used to assess the purity of the prepared samples as well as
their crystallographic structures. The XRD patterns of CdS,
AgI, 10AgI/CdS, 20AgI/CdS, and 30AgI/CdS are shown in
Figure 1. The XRD pattern of CdS shows distinct hexagonal
wurtzite diffraction peaks located at 2θ = 24.9° (100), 26.5°
(002), 28.2° (101), 36.64° (102), 43.8° (110), 47.9° (103),
51.9° (112), and 52.91° (201) (JCPDS 41-1049).31,32 The
diffraction peaks at 2θ = 22.31, 23.68, 25.35, 32.80, 39.28,
42.59, and 46.38° resembled well the (100), (002), (101),
(102) (110), (103), and (112) planes of AgI, respectively
(JCPDS 09-0374).33,34 The composites also showed distinct
XRD peaks for CdS and AgI, which may indicate that AgI was
well dispersed in the synthesized materials. The inherent
structures of the raw materials are therefore thought to be
unaffected by the precipitation procedure. Additionally, the
diffraction peaks of AgI and CdS in the composite materials are
in the same place and closely match those of the standard card,
indicating that the crystal phase was unaltered during the AgI/
CdS synthesis. An increase of AgI content from 10 to 30% was
also observed as the peaks related to the AgI were more
prominent in the case of 30AgI/CdS.
2.2. Fourier Transform Infrared Spectroscopy. FT-IR

spectroscopy was employed to investigate the functional
groups and distinct chemical bonding in the synthesized
materials. Figure 2 shows the FT-IR spectra of the as-prepared
pure AgI, CdS, and 20AgI/CdS binary composite. FTIR

spectra of CdS and 20AgI/CdS binary composite showed
distinct peaks for adsorbed water because of the stretching
(3437.74 cm−1) and bending (1618.45 cm−1) vibration
modes.35 The bands at 1387.97, 1118.19, and 618.46 cm−1

correspond to the anticipated IR absorption of the Cd−S
bond, confirming the formation of CdS.36,37 A strong band at
3429 cm−1 and a relatively weaker band at 1634 cm−1 in the
FTIR spectra of AgI were identified to be the stretching and
bending modes of vibration of the hydroxyl groups of water
molecules adsorbed at the surface of the nanoparticles.38 The
distinctive bands of AgI emerged between 400 and 600 cm−1.39

Due to the low content, AgI bands were not visible in the
20AgI/CdS binary composite, but further analysis using XPS
and EDS mapping proved the presence of AgI in the composite
material.
2.3. Optical Properties. The optical features of the

composite materials were examined by UV−vis DRS spectral
analysis, as shown in Figure 3a. Pure AgI showed significant

Figure 1. XRD patterns of pure CdS, AgI, and 10AgI/CdS, 20AgI/
CdS, and 30AgI/CdS binary nanocomposites.

Figure 2. FTIR spectra of pure CdS, AgI, and 20AgI/CdS binary
composite.
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absorption in the visible region at a wavelength of about 460
nm, consistent with the earlier result.40 The remarkable visible
light nature of pure CdS is demonstrated by its absorption
edge at around 521 nm.41 The incorporation of AgI shifted the
absorption spectra of the binary composites toward the longer-
wavelength region. As a result, the binary composites may
respond to visible light more readily, demonstrating an
important interaction between AgI and CdS catalysts.

The bandgap energies of AgI, CdS, and 10AgI/CdS, 20AgI/
CdS, and 30AgI/CdS binary composites were achieved by the
following formula (formula 1)42,43

=ahv A hv E( )n
g

/2
(1)

where A, h, υ, Eg, and a are constant, Planck constant, light
frequency, bandgap, and absorption coefficient, respectively.
Since n = 1 for a direct transition and n = 4 for an indirect
transition, the value of n determines the electronic transitions
in semiconductors.44,45 The reported n values for both pure
AgI and CdS were found to be 1.46,47 The bandgap of pure AgI
and CdS was calculated to be 2.80 and 2.38 eV, respectively, as
shown in Figure 3b. These results coincide with the findings
that were reported in the earlier literature.48−50 Furthermore,

Figure 3. (a) UV−vis DRS spectra of pure AgI, CdS, and 10AgI/CdS, 20AgI/CdS, and 30AgI/CdS binary composites and (b) their corresponding
Tauc’s plot.

Figure 4. SEM images of pure CdS (a), AgI (b), and 20AgI/CdS binary composite (c, d). EDX spectra of 20AgI/CdS (e) and elemental mapping
of 20AgI/CdS (f−j).
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the band gap energy for 20AgI/CdS was determined to be 2.35
eV, demonstrating the enhanced visible light absorption
capability of the binary composites.
2.4. SEM, EDX, and TEM Analyses. Scanning electron

microscopy (SEM) was used to examine the surface character-
istics of all the pure photocatalysts and the binary composite,
and the findings are displayed in Figure 4. SEM images of the
pure AgI, CdS, and optimized 20AgI/CdS binary composite at
high and low magnifications are shown in Figure 4a−d. The
morphology of the CdS has a nanorod-like structure (Figure
4a), whereas AgI appears to be an irregular spherical type
(Figure 4b). The morphology of composite materials revealed
in Figure 4c,d demonstrates that AgI nanoparticles are located
on the surfaces of CdS nanorods. The EDX spectra and weight
percentages of the elements found in the 20AgI/CdS binary
composite are shown in Figure 4e. The Ag, I, Cd, and S
elements are uniformly distributed in the 20AgI/CdS binary
composite, as proved by EDX elemental mapping (Figure 4f−
j). The transmission electron micrographs (TEM), as well as
the high-resolution TEM (HRTEM) of the binary composite
are presented in Figure 5. The TEM images show that the two
materials are in close contact, and a noticeable heterojunction
was established between AgI and CdS (Figure 5a,b). The AgI
nanoparticles are located in close proximity to the CdS
nanorod, which may facilitate electron and hole transfer
between the two materials. Measurements of the lattice fringes
of an HRTEM (Figure 5c) revealed interlayer distances of
0.345 nm for CdS (002) planes and 0.235 nm for AgI (110)
planes.
2.5. X-ray Photoelectron Spectroscopy. XPS technique

was used to evaluate the chemical states and elemental
compositions of the AgI, CdS, and optimized 20AgI/CdS
binary composite, as shown in Figure 6. The survey scan
spectrum clearly shows the existence of Ag, I, Cd, and S in the
20AgI/CdS binary composite (Figure 6a). The C 1s peak
observed in AgI, CdS, and 20AgI/CdS spectra are the result of
adventitious carbon.51 High-resolution XPS spectra were also
used to demonstrate the elements and their chemical states for
the 20AgI/CdS binary composite, and the findings are shown
in Figure 6b−e. The high-resolution XPS spectrum of Ag 3d
revealed two peaks, Ag 3d5/2 and Ag 3d3/2, with binding
energies of 368.03 and 374.03 eV, respectively (Figure 6b).52

The binding energies for I 3d5/2 and I 3d3/2 in AgI were found
at 619.46 and 630.96 eV, respectively (Figure 6c).53 The
spectrum for Cd 3d under high-resolution display two peaks at

405.32 and 412.18 eV, corresponding to the Cd 3d5/2 and Cd
3d3/2 states, respectively (Figure 6d).54 The XPS spectrum of S
2p exhibited two peaks at 162.69 and 161.53 eV, representing
S 2p1/2 and S 2p3/2 electronic states, respectively (Figure 6e).55

A comparison of the binding energies of the elements found in
pure and 20AgI/CdS binary composite is presented in Figure
S1. A small shift toward the higher binding energy was
observed in the case of 20AgI/CdS, showing strong
interactions between the AgI and CdS photocatalysts.
2.6. PL Spectral and EIS Analysis. The separation

efficiency and charge transfer resistance of the synthesized
photocatalysts were measured using PL spectral analysis and
electrochemical impedance spectroscopy (EIS), and the results
are shown in Figure 7a,b. The recombination rate of
photogenerated electron−hole pair profoundly impacts the
efficiency of semiconductor materials as photocatalysts.56,57 It
is particularly known that a rapid rate of photogenerated
charge carriers recombination results in a strong photo-
luminescence signal.58 Figure 7a shows the photoluminescence
signal for pure and binary composites at an excitation
wavelength of 330 nm. Pure CdS and AgI showed strong PL
signals due to the rapid recombination of photo-excited e−/h+

pairs. Low PL intensities in binary composites (10AgI/CdS,
20AgI/CdS, and 30AgI/CdS) demonstrated that composite
materials are significantly more efficient at separating photo-
excited e−/h+ pairs.

The charge-transfer resistance capacity of the synthesized
materials was examined using EIS. Figure 7b displays the EIS
Nyquist plots for CdS, AgI, and 20AgI/CdS. It is well known
from the literature that materials with smaller semicircle
diameters in EIS Nyquist plots exhibit the lowest charge-
transfer resistance and, as a result, show better e−/h+ pair
separation.59−61 The smallest semicircle diameter of the
20AgI/CdS binary composite indicated the successful
separation of photogenerated e−/h+ pairs via interfacial charge
transfer.
2.7. Photocatalytic Performances. The photocatalytic

efficiency of the CdS/AgI binary composites under simulated
visible light irradiation was evaluated by attempting the
degradation of MO and TCH pollutants. The results of the
photocatalytic degradation experiments are shown in Figure 8.
Prior to the photocatalytic degradation experiment, an
adsorption−desorption equilibrium was achieved by sonicating
the target pollutant with suspended photocatalyst for 15 min,
followed by 25 min of stirring in the dark at room temperature.

Figure 5. TEM (a, b) and HRTEM (c) images of the 20AgI/CdS binary composite.
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A controlled experiment was also carried out in the absence of
the photocatalyst to validate that nearly no degradation of
target molecules was seen. Figure 8a,b shows the decrease in
peak intensity at 463 and 357 nm for MO and TCH in the
presence of 20AgI/CdS binary composite as the visible light
irradiation period increases. The depletion in concentrations of
MO and TCH as a function of time in the presence of different
pure and composite materials is depicted in Figure 8c,d. It was
observed that the 20AgI/CdS binary composite exhibited the
highest photocatalytic performances for MO and TCH

degradation under the same conditions and irradiation times.
When the AgI content in the CdS/AgI binary composite
exceeded 20 weight percent, the photocatalytic performance
declined. The reason for this might be that the substance
contains an excessive amount of AgI particles, which might
interact with the light and inhibit photocatalysts from
absorbing as much of the radiation source as feasible. As
shown in Figure 8c,d, pure AgI exhibits low photocatalytic
activity for MO (43.8%) and TCH (47%) in 90 and 150 min
of continuous irradiation, respectively. In the case of CdS,

Figure 6. Survey scan XPS spectra of AgI, 20AgI/CdS, and CdS (a) and high-resolution spectra of Ag 3d (b), I 3d (c), Cd 3d (d), and S 2p (e) for
20CdS/AgI binary composite.
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photocatalytic efficiency was found to be relatively high and
about 50.3% of MO and 54.5% of TCH degraded. In contrast

to bare AgI and CdS, all of the CdS/AgI binary composites
significantly outperform them in photocatalytic abilities for

Figure 7. PL spectra of CdS, AgI, 10AgI/CdS, 20AgI/CdS, and 30AgI/CdS at an excitation wavelength of 330 nm (a) and EIS spectra of AgI, CdS,
and 20AgI/CdS binary composite (b).

Figure 8. Changes in the absorbance of MO (a) and TCH (b) on irradiation over 20AgI/CdS binary composite at various time intervals; decrease
in the concentrations of MO (c) and TCH (d) as a function of time in the absence and presence of various photocatalysts.
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MO and TCH degradations. The degradation efficiencies of
optimized 20AgI/CdS binary composite for MO and TCH
were found to be 94.5 and 91%, respectively. Synthesized
materials, including pure and binary composites, degraded
both organic pollutants in the following order: 20AgI/CdS >
30AgI/CdS > 10AgI/CdS > CdS > AgI.

The leaching of heavy metal (Cd) in the water from
synthesized material during irradiation is of great concern.
Therefore, the presence of Cd was checked by measuring
concentration in the degraded sample of TCH using flame
atomic absorption spectroscopy (AAS), and the result showed
negligible presence of Cd metal (0.006 μg mL−1).

To examine the intermediates generated and byproducts
formed during the degradation of TCH and MO pollutants,
high-performance liquid chromatography (HPLC) was em-
ployed. The HPLC chromatograms of irradiated samples of
TCH and MO with binary composite (20AgI/CdS) under
similar conditions are shown in Figures S3 and S4, respectively.
The chromatogram illustrates that both starting compounds
peak appearing at 03.72 and 4.03 min retention time (Rt)
gradually decreases as illumination time increases. In addition,
it is important to note here that in the case of TCH, there is a
formation of intermediate product appearing at Rt 3.1 min for
60 and 90 min of irradiated samples, which on prolonged
irradiation also decreased. The result indicates that both the
starting compound and the intermediate formed during the
photo-oxidation process are degraded. It is pertinent to
mention here that the identification of intermediate products
found during the photo-oxidation process of TCH using
HPLC-MS has been reported earlier.62,63

2.8. Degradation Kinetics. The pseudo-first-order rate
constants of the synthesized materials for MO degradation
were determined by employing the Langmuir−Hinshelwood
rate equation (eq 2).64,65

=C C k tln( / )t0 app (2)

where k is the rate constant and C0 and Ct are the starting and
final concentrations at time t, respectively. Figure 9a shows the
plot of −ln(C0/Ct) vs irradiation time with linear fits for the
degradation of MO with pure AgI, CdS, and AgI/CdS binary
composites. The rate constants (k) obtained from these plots

are presented in Figure 9b. For pure AgI, CdS, and binary
composites (10AgI/CdS, 20AgI/CdS, and 30AgI/CdS), the
obtained rate constant and associated correlation coefficients
(R2) are listed in Table 1. The apparent rate constants of the

composite materials are greater than those of the pure
materials, and optimized 20AgI/CdS displayed the highest
among all the composites after 90 min of irradiation period. A
slower reaction rate for photocatalytic degradation was
observed with 30AgI/CdS compared to 20AgI/CdS binary
composite. A further increase in AgI content may inhibit the
light absorption capacity of the 30AgI/CdS binary composite,
and as a result decreased in the photodegradation was
observed.
2.9. Reusability and Stability. Reusability and stability

are two crucial aspects that play a major role in determining
the practical application of these catalysts. Recycling experi-
ments for the degradation of MO over the 20AgI/CdS
composite under simulated solar light irradiation were carried
out for three consecutive runs, and the results are displayed in
Figure 10a. After each irradiation, the catalyst was centrifuged,
washed, dried, and used for the next irradiation experiments.
After three successive rounds of repetitive photocatalytic
activity testing, the composite material showed exceptional
stability and recyclability. The XRD patterns of the irradiated
sample were recorded and compared with those of the
unirradiated sample, as shown in Figure 10b. The diffraction
pattern of irradiated sample was found to be unaltered,

Figure 9. Plot of −ln Ct/C0 vs irradiation time for MO degradation kinetics in the absence and presence of different photocatalysts (a) and their
corresponding rate constants (b).

Table 1. Pseudo-First-Order Rate Constant and the
Corresponding R2 Values for Blank, CdS, AgI, 10AgI/CdS,
20AgI/CdS, and 30AgI/CdS Involved in the Photocatalytic
Degradation of MO

sample apparent rate constant, k (min−1) R2

blank 0.000913 0.9918
CdS 0.00586 0.98027
AgI 0.00779 0.98438
10AgI/CdS 0.01895 0.99243
20AgI/CdS 0.03124 0.9904
30AgI/CdS 0.02554 0.98882
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although it has been reported in the literature that AgI
decomposes to form Ag0 species as a result of photoreduction
during irradiation processes.66 However, in the present study,
Ag0 peaks were not clearly visible in the XRD pattern due to
the low content of AgI. A slight decrease in the peak intensity
of the used catalyst was also observed. As per our findings, the
20AgI/CdS binary composite is sufficiently stable during the
photodegradation of the MO and may be reused repeatedly
without suffering a significant performance decline.
2.10. Active Species Trapping Experiments and

Photocatalytic Mechanism. Trapping experiments were
conducted to determine the dominating active species by
studying the degradation of MO in the absence and presence
of different quenchers, and the results are shown in Figure 11a.
Generally, reactive species like superoxide radicals (O2

•−),
holes (h+), and hydroxyl radicals (•OH) radicals are involved
in photocatalytic oxidation processes to degrade the toxic
organic pollutants.67 The quenchers such as isopropyl alcohol
(IPA),68,69 ethylenediamine tetraacetic acid disodium (EDTA-
2Na),70,71 and benzoquinone (BQ)72,73 were used to trap the

•OH, h+, and O2
•−, respectively. These reactive species were

generated during the photodegradation processes in the MO
and AgI/CdS binary composite reaction mixture. The
photocatalytic degradation was almost 94.5% when no
quencher was added. The addition of IPA has no noticeable
impact, demonstrating that •OH radicals play no significant
role in photodegradation. The addition of BQ to the reaction
mixture dramatically dropped the MO degradation from 94.5
to 23%, demonstrating that O2

•− was the most significant
reactive species found in the reaction mixture. By contrast,
adding EDTA-2Na reduced MO degradation to 60%,
suggesting that h+ participated in photodegradation synergisti-
cally but to a lesser extent than the O2

•−. Besides this, an NBT
transformation experiment using 20AgI/CdS binary composite
was performed to confirm the generation of O2

• further, and
the results are shown in Figure 11b. The gradual reduction in
the absorption peak intensity at 260 nm of NBT confirms the
participation of O2

•− as a significant reactive species.
Regarding photocatalytic degradation processes, the valence

band (VB) and conduction band (CB) edge potentials of

Figure 10. Recyclability experiment of 20AgI/CdS binary composite in the photocatalytic degradation of MO for three repetitive cycles (a); XRD
patterns of 20AgI/CdS binary composite before and after irradiation (b).

Figure 11. Change in the concentrations of MO as a function of time in the absence and presence of various scavengers using the 20AgI/CdS
binary composite (a); UV−vis absorption spectral changes of NBT over 20AgI/CdS in different time intervals (b).
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semiconductor materials are of utmost importance. It is worth
noting that the driving force behind charge transfer is typically
derived from the compatible band potentials of the two
semiconductors. Therefore, the potentials at the band edges of
the synthesized materials were determined using eqs 3 and 4.74

= +E X E E
1
2VB

e
g (3)

=E E ECB VB g (4)

where different parameters are EVB and ECB (VB and CB edge
potentials), X (absolute electronegativity of the semiconduc-
tor), Ee {energy of the free electron (4.5 eV) against NHE},
and Eg (optical bandgap energy in eV). The calculated
conduction band (CB) and valence band (VB) potentials of
CdS are −0.73 and +1.65 eV, while the CB and VB potentials
of AgI are estimated to be −0.47 and 2.33 eV, respectively. In
addition, the calculated EVB values are in agreement with the
valence band (VB) XPS spectra of CdS and AgI, as shown in
Figure S2a,b. Due to the rapid recombination of the charge
carriers, these semiconductor materials in their pure form
typically result in poor photodegradation efficiency. However,
the band edge positions of CdS and AgI are so well matched in
the CdS/AgI binary composite that photoinduced charge
carriers can easily be transferred between the two semi-
conductors. A scheme for the separation and transport of
photogenerated charges at the interface of CdS/AgI binary
composite is depicted in Figure 12. Both AgI and CdS are
capable of being excited by visible light, resulting in the
generation of photogenerated electrons and holes. The
electrons excited on the CB of CdS can directly transfer to
the CB of AgI, which has a more negative redox potential
(−0.47) than the standard redox potential of O2/O2

•− (−0.33
eV vs NHE).75 As a result, the electrons present in the CB of
AgI can react with O2 to produce O2

•−. When irradiated, Ag+ is
reduced to Ag0, which can then be excited to release electrons
and react with O2 to form O2

•−.76 These generated O2
•− then

interacted with the organic pollutants and degraded them into
harmless substances. At the same time, the holes created in the
VB of AgI transferred to the VB of CdS, where it directly

reacted with the pollutants. Since the redox potential of CdS
(+1.65) is less positive than the •OH/OH− potential (+2.38
eV vs NHE) and the H2O/•OH (+2.72 eV vs NHE), the holes
are unable to convert the OH− and H2O into •OH.40,77 The
following reactions can be given as a concise summary of all of
the processes that are involved in degradation pathways (eqs
5−8)

+ + +hvCdS/AgI CdS/AgI (e h ) (5)

+ •O e O2 2 (6)

+ • +MO O , h degradation products2 (7)

+ • +TC O , h degradation products2 (8)

3. CONCLUSIONS
A novel binary composite (CdS/AgI) has been synthesized
using the in situ precipitation method and characterized by
XRD, SEM, EDX mapping, HRTEM, XPS, UV−vis DRS, and
FT-IR analyses. When exposed to visible light, the prepared
synthesized materials quickly and efficiently degraded the MO
and TCH pollutants in an aqueous suspension. The
significantly enhanced photocatalytic activity of the binary
composite was primarily attributed to the abundance of active
sites and the effective separation rate of photogenerated charge
carriers resulting from well-matched band potentials. The PL
analysis showed that the 20AgI/CdS binary composite
possessed the highest charge carrier separation efficiency.
The findings of the scavenger experiments revealed that O2

•−

was the primary active species responsible for the degradation
of MO and TCH over the CdS/AgI binary composites. Three
consecutive photocatalytic experiments utilizing the same
photocatalyst revealed that the 20AgI/CdS binary composite
exhibited remarkable stability. The findings of the study
suggest that CdS/AgI might be a feasible option for the
treatment of organic dyes and antibiotics present in wastewater
bodies.

Figure 12. Schematic illustration of a type-II mechanism for MO and TCH degradation by the CdS/AgI binary composite under visible light
illumination.
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4. EXPERIMENTAL SECTION
4.1. Synthesis of Pure CdS. The CdS photocatalyst was

synthesized using the solvothermal method.78 5 mmol of
Cd(NO3)2·4H2O was dissolved in 35 mL of ethylenediamine
(EDA), and the solution was then stirred for 1 h. Thereafter,
15 mmol of thiourea was added to the EDA solution and
thoroughly mixed until a clear solution appeared. Finally, the
entire content was heated for 56 h at 180 °C in a stainless-steel
autoclave lined with Teflon. The material was filtered and
washed with water and ethanol. The obtained yellow product
was then dried overnight at 120 °C.
4.2. Synthesis of CdS/AgI Binary Composite. A series

of CdS/AgI photocatalysts were synthesized by an in situ
precipitation method, and the steps involved are shown in
Scheme S1. The three separate solutions of 85, 170, and 255
mg of AgNO3 were prepared in 30 mL of water and the
solutions were named as A, B, and C, in which 83, 166, and
249 mg of KI was added slowly with stirring. After 30 min of
constant stirring, a light-yellow-colored precipitate was
obtained. An equal amount of CdS (1.17 g) was added to
the above solutions and sonicated for 90 min. The obtained
residue was filtered and washed with ethanol and water before
being dried at 120 °C for 12 h. The powdered material
obtained from solutions A, B, and C were marked as 10AgI/
CdS, 20AgI/CdS, and 30AgI/CdS (where 10, 20, and 30 are
the percent mass ratios of AgI to CdS/AgI), respectively. Pure
AgI was also synthesized using the same method without
adding CdS.
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