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Abstract

Neural mechanisms of perceptual decision making have been extensively studied in experimental 

settings that mimic stable environments with repeating stimuli, fixed rules and payoffs. In contrast, 

we live in an ever-changing environment and have varying goals and behavioral demands. To 

accommodate variability, our brain flexibly adjusts decision-making processes depending on 

context. Here, we review a growing body of research that explores the neural mechanisms 

underlying this flexibility. We highlight diverse forms of context dependency in decision making 

implemented through a variety of neural computations. Context-dependent neural activity is 

observed in a distributed network of brain structures, including posterior parietal, sensory, 

motor, and subcortical regions, as well as the prefrontal areas classically implicated in cognitive 

control. We propose that investigating the distributed network underlying flexible decisions is 

key to advancing our understanding and discuss a path forward for experimental and theoretical 

investigations.
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1. Introduction

A hallmark of our intelligence is the ability to make appropriate decisions under different 

circumstances. We gather information from the external world, combine it with internal 

knowledge, and commit to mental propositions and plans of action — decisions that 

shape our lives. Among the experimental paradigms developed to uncover the neural 

mechanisms of decision making, sensory psychophysics has played a key role in shaping our 

current understanding (1). A common finding has been that many sensory discriminations 
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(e.g., judging the direction of moving dots) are based on the accumulation of sensory 

evidence toward a decision bound (1, 2, 3). Models built on this key computation have 

been remarkably successful, offering a unified explanation for various aspects of behavior, 

including choice, response time, and confidence (4).

However, in the experiments that gave rise to these models, subjects often repeated the 

same decision-making process in a stationary task environment with stable stimulus-action 

associations and rules. This stationarity removed the need to determine appropriate stimulus 

features, actions, and rules for each decision, substantially reducing the complexity of the 

decision-making process. However, such stationarity rarely happens in our daily lives, where 

consecutive decisions often differ from each other. Even for the same sensory inputs, our 

actions can greatly vary depending on context. For example, when we run into a colleague 

in a hallway, we may stop to chat, but not during a fire drill. Decision making in a 

non-stationary environment often has a hierarchical structure, where we must first infer 

the relevant inputs, actions, payoffs, task solutions, and decision policies before acting 

on the inputs. We can implement these context-dependent hierarchical decisions rapidly 

and effortlessly, and thus there should be neural mechanisms that flexibly alter behavior 

without “re-wiring” the decision-making neural circuits. How can decision-making models 

be extended to account for such context dependency?

A growing body of research has now begun to explore flexible decision-making, but 

empirical and theoretical results are diverse and often hard to connect. Many studies have 

examined how decision-making processes unfold under different task rules. Task rules could 

be modified in a number of ways. For example, one can change relevant sensory features, 

the association between stimuli and actions, the reward associated with different choices, 

and so on. Adjustments of behavior to any of these manipulations are attributed to “context-

dependent” computations, but the computations could be vastly different and they may not 

share the same neural underpinnings.

The first section of this review introduces perceptual decisions, where the rich history of 

past studies and the maturity of existing empirical and theoretical frameworks provide an 

ideal testbed for investigating context-dependent decisions. After introducing the neural 

mechanisms of perceptual decisions, we explain the diversity of flexible behavior associated 

with these decisions. We suggest that past studies tapped into different forms of flexibility, 

shedding light on the diverse brain regions and neural responses observed in those studies. 

The next section of the paper focuses on a key observation that, even for a single task, a 

network of brain regions is engaged during decision making. We contrast these observations 

to a currently dominant doctrine that the prefrontal cortex operates as a central hub that 

controls flexible behavior (5, 6). In the last section, we briefly discuss how network models 

have been designed to implement flexibility.

We end this introduction with two notes to clarify the scope of this review. First, although 

our review focuses on perceptual decision making, the line is blurred between perceptual 

decisions and other kinds. For example, experiments on value-based decision making or 

reinforcement learning typically involve sensory components (e.g., options with different 

values are presented as visual cues) and use similar task structures (e.g., binary decisions). 
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Furthermore, much of the existing literature on cognitive control uses perceptual tasks 

such as the Wisconsin Card Sorting Test to examine subjects’ capacity to flexibly switch 

behavior. We believe our core takeaways apply to those tasks, too, although we do not 

deeply explore them here. Second, our main interest is in flexible mechanisms that allow 

rapid behavioral adjustment, but context-dependent behavior can also be studied across 

blocks, sessions, subjects, or different training levels. By summarizing these broad studies, 

we will demonstrate the diversity of flexible computations and the distributedness of the 

neural activity associated with them.

2. Perceptual decision making in a stationary context

Substantial progress has been made in understanding the computational and neural 

mechanisms of perceptual decision making. For thorough reviews of this progress, see 

refs. 2, 3, 4. Here we summarize the key findings, focusing on those most relevant to 

context-dependent decision making.

In typical perceptual decision-making tasks, subjects discriminate sensory stimuli (e.g., 

motion toward right or left), reporting their choice with specific motor actions (e.g., reaching 

right or left). The stimuli vary across trials, usually along a parametrically controlled 

dimension, which enables precise manipulation of task difficulty. For example, in the motion 

direction discrimination task with random dots (Figure 1a), the percentage of dots moving 

coherently together (motion coherence) determines the difficulty of the trial (7, 8). Motion 

direction and coherence vary randomly across trials, but subjects typically perform hundreds 

of similar discriminations consecutively, applying the same computations and task rules on 

every trial.

This stationary setting provides ample data to address a key question: how are decisions 

made in the face of uncertainty about stimulus difficulty and noise in sensory inputs and 

sensory neural responses? An optimal solution would be to integrate all available sensory 

information, that is, to accumulate independent pieces of evidence over time for temporally 

extended stimuli (Figure 1b) and to integrate evidence across space for spatially extended 

stimuli (e.g., for multi-feature stimuli) (9, 10). When there is cost associated with gathering 

information (e.g., maintaining fixation or sustaining attention), the reward rate is maximized 

by continuing the evidence accumulation until a time-dependent decision criterion or bound 

is reached (11, 12, 13; Figure 1b). This accumulation to bound process can be further 

adjusted to accommodate factors such as prior probabilities of the stimuli and expected 

rewards of different choices to make reward-maximizing decisions (14, 15, 16, 17, 18).

Empirical results indicate a close match between the bounded accumulation model and 

the neural computations that underlie behavior. The model accurately fits and can even 

predict the distribution of choice, reaction time, and confidence (22, 23, 24, 25). Moreover, 

dynamics of neural responses in multiple brain regions resemble the evidence accumulation 

process (8, 26, 27, 28, 29, 30, 31, 32). Shadlen and Newsome were the first to identify 

neurons in the monkey lateral intraparietal area (LIP) that gradually increase their firing 

rates when the motion stimulus supports the target in the response field of neurons (33, 34; 

Figure 1c). Critically, these neural responses reach a common level immediately before 
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the decision, offering a neural signature for committing to a choice through reaching 

the decision bound (8). Since those first studies, similar neural signatures have been 

identified in a variety of motor planning regions, including frontal eye fields (FEF) (28), 

pre-arcuate gyrus (15, 35), dorsolateral prefrontal cortex (dlPFC) (29, 36), caudate (27), 

superior colliculus (26), and motor cortex (37, 38, 39) (Figure 1c). Further support for the 

involvement of motor planning regions in bounded accumulation comes from visual search 

tasks, where subjects find a target in the midst of distractors (40), and from stop signal tasks, 

where subjects are instructed to generate a motor movement but later cued to withhold the 

movement in a random portion of trials (41).

Motivated by these empirical results, neural circuit models have been proposed for the 

implementation of the bounded accumulation process (19, 20, 21, 40, 42, 43, 44, 45). These 

models typically comprise neural pools that accumulate evidence for their preferred choice 

through a mixture of self-excitation, mutual inhibition, or feedforward inhibition (Figure 

1d). Sensory inputs bias the competition until one pool wins, signifying a commitment to a 

choice and triggering a behavioral response. Bounded accumulation and its circuit models 

have also been adopted beyond perceptual tasks, especially for value-based decisions (46, 

47) and memory-guided decisions (48, 49).

3. Diversity of flexible decisions and their neural correlates

Making perceptual decisions in realistic, non-stationary environments requires processes 

beyond those studied in stationary task settings (Figure 2a). Before gathering sensory 

evidence and using it to form action plans, decision makers must first determine the context 

and “set up” the decision making process accordingly. They should “decide” what are 

the relevant sensory information, relevant actions, expected payoffs, fruitful solutions (e.g., 

integrate or differentiate), and decision policies (e.g., how much evidence to accumulate). 

This hierarchical decision making structure —making decisions about how to make a 

decision—enables flexible adjustment of behavior in a manner appropriate for different 

task contexts. In this section, we summarize recent studies that examined these adjustment 

mechanisms through comparing behavior and neural responses across multiple tasks.

A key challenge in summarizing these studies is the numerous ways that a decision 

maker can adjust decision-making processes. Different forms of flexibility possibly engage 

different neural mechanisms, but any change in behavior or neural activity across tasks is 

labeled as “flexible” or “context-dependent” in the literature. To highlight this diversity, 

we classify flexibility into three types (Figure 2). At the highest level, a decision maker 

could be flexible in their solutions for the task. For example, they can choose to integrate, 

differentiate, or even ignore sensory inputs (“flexibility in task solution”). Second, for 

a given solution, a decision maker could flexibly adjust the decision policy for a given 

solution. This includes, for example, how much evidence to accumulate, or whether to 

favor one option over others (“flexibility in decision policy”). Finally, a decision maker can 

flexibly associate different sensory inputs to different actions (“flexibility in stimulus-action 

mapping”).
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3.1. Flexibility in decision policy

We first discuss adjustments in decision policy (Figure 2b) as successful demonstrations 

of how flexible choice behavior could be described mechanistically using the existing 

theoretical framework for perceptual decision making.

In experimental settings, changes in decision policy can be induced through a variety of task 

manipulations, including changes in prior probabilities of stimuli (16, 52), costs and rewards 

associated with each choice (18, 53, 54, 55), variability in stimulus (56), spatiotemporal 

effects of sensory signals on decisions (57), urgency to respond (58), or even parameters as 

subtle as the duration of inter-trial intervals (59) and timing of reward delivery (60). Further, 

the history of choices and feedback influences subsequent decision policies (15, 17, 50, 61). 

These manipulations—which can happen at various time scales ranging from trial-to-trial to 

session-to-session—impact different aspects of decisions, including choice biases, accuracy, 

reaction time, and decision confidence.

Consider the adjustment of decision policy upon receipt of feedback in previous trials. 

Post-error slowing (PES) is a commonly observed effect in which subjects elongate their 

reaction times following an error feedback (Figure 2c left). Purcell et al. (50) used evidence 

accumulation models to identify the neural underpinnings of these behavioral changes. PES 

in the direction discrimination task (Figure 1a) arises from reduced sensitivity (lower drift 

rate) and increased decision bound (decreased urgency). Increased bound compensates for 

reduced sensitivity to maintain the overall accuracy but at the expense of longer reaction 

times. Consistent with these modeling insights, LIP neural activity following an error shows 

reduced dependence on stimulus strength, manifested as decreased buildup rates (Figure 

2c right) as predicted by lower sensitivity. Further, urgency signals calculated from LIP 

responses are reduced, indicating an effective increase in decision bound by an amount 

matching the model predictions. Similarly successful applications of decision-making 

models can be found in studies of speed-accuracy trade-off (60, 62), prior probability effects 

(16, 52), and reward bias (53, 54). Thus, the modeling framework developed for a stationary 

setting naturally extends to certain forms of flexible computations.

The key strength of this approach is a mechanistic understanding through quantitative 

comparison between models and data in multiple task conditions. For behavioral data, these 

models explain changes in choice, reaction time, confidence, and psychophysical kernels 

(63). Remarkably, model parameters could be fit to one aspect of behavior (e.g., reaction 

time) and then used to generate accurate predictions about the other aspects (e.g., choice) 

(22, 24, 25, 44). Neural data could also be examined in the same framework. For example, 

Hanks et al. (60) used neural data to estimate changes in model parameters between two 

speed-accuracy regimes and then confirmed that the neurally-inferred parameters account 

for the observed behavioral changes.

Despite the success of this approach, there remain key unanswered questions. Most notable, 

we do not know what neural mechanisms control the necessity, type and magnitude of policy 

adjustments. Multiple brain regions have been suggested to play a role in setting the decision 

bound, most prominently the basal ganglia (58, 64, 54) and possibly the superior colliculus 

(65). When human subjects are urged to respond quickly, striatum activity is enhanced 
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compared to the condition where accuracy is prioritized (58). Deep brain stimulation of the 

subthalamic nucleus reduces decision threshold and triggers faster responses (64). Choice 

biases induced by reward imbalance are also dependent on the striatum. Doi et al. (54) found 

that the activity of caudate neurons is modulated based on the association between the target 

in the neuron RF and reward such that the microstimulation of caudate could enhance the 

monkey’s choice bias. In the cortex, the posterior parietal cortex (PPC) (61) and PFC (15) 

encode past stimuli and feedback, shaping history-dependent behavioral biases. Network 

models that consider subcortical structures may give us clues for how decision policy is 

adjusted in the evidence accumulation circuits (66).

3.2. Flexibility in stimulus-action mapping

At the core of perceptual tasks is the mapping of sensory stimuli onto actions (Figure 2d). 

However, the flexible stimulus-action mapping is rarely a focus of the existing decision 

making models, as many of them presume a fixed stimulus-action association and instead 

focus on the integration of evidence (Figure 1b, d). Is the selection of appropriate mapping 

for a particular decision independent of the decision formation itself? Empirical findings 

summarized below suggest that they are rather tightly intermingled in the brain.

3.2.1. Selection of relevant sensory features.—To perform a perceptual task, 

the decision maker must first decide what sensory information to base the decision on. 

A common experimental design to understand this process involves comparing neural 

responses when subjects generate the same set of actions in response to different sensory 

stimuli (31, 67, 68, 69). For example, Raposo et al. (70) trained rats to choose one of the 

two nose ports based on either the frequency of visual flashes or the frequency of auditory 

clicks. Another task variant uses a multi-feature stimulus space and instructs subjects to 

discriminate the same stimuli based on different features (36, 69, 71, 72, 73, 74, 75, 

76) (Figure 2d(1)). For example, Mante et al. (36) trained monkeys to report either the 

dominant color (red vs. green) or dominant motion (left vs. right) of colorful random dots 

kinematograms. Because the two sensory features could support opposing choices, subjects 

should ideally base their decisions only on the relevant stimulus feature in each task.

One important question is whether the selection of sensory features happens independently 

of the evidence accumulation process. If so, we would expect modality general integration 

signals that reflect evidence accumulation regardless of the source of information. Such 

a task-invariant implementation permits identical readouts of the decision variable across 

tasks. In support of modality-general mechanisms, human electroencephalography (EEG) 

studies have found neural signals reflecting decision formation across sensory modalities 

(31, 77, 78). For example, “centroparietal positivity” reflects accumulated sensory evidence 

for motion discrimination, contrast detection, and auditory detection tasks (31, 77). Further, 

functional magnetic resonance imaging (fMRI) studies suggest that some regions in the 

prefrontal and posterior parietal cortex may reflect the decision variable regardless of 

sensory stimuli (79).

By contrast, electrophysiological studies of spiking activity have found that the encoding of 

the decision variable is task specific. Okazawa et al. (69) report a qualitative difference in 
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the firing rates of LIP neurons during motion discrimination and face discrimination tasks. 

During face discrimination, LIP firing rates are lower for the strongest stimuli supporting 

saccade to the target in the RF, the opposite of the motion discrimination task. The LIP 

population represents the accumulation of evidence in both tasks. However, neural responses 

form a curved manifold that rotates and shifts depending on tasks (Figure 3b). The rotation 

of the manifold occurs even when monkeys switch between categorization of the identity 

or expression of the same face. An earlier study by Stoet et al. (72) also found that LIP 

neurons discharged differently for the same reach choice between color and orientation 

categorizations of the same stimuli.

Mechanistic accounts of such task-specific encoding of the decision variable remain elusive. 

These variable representations imply that optimal readout of the decision variable has to be 

task dependent. Curved manifolds appear to be ubiquitous across brain regions including the 

medial and lateral frontal cortices (69) and likely the basal ganglia (27) and the superior 

colliculus (26), but task dependence of the manifold should yet be investigated in all these 

regions. One possibility is that some of these regions, unlike LIP, include task invariant 

integrator mechanisms. Alternatively, all regions may include task-dependent representations 

and collectively coordinate decision making through task-dependent readouts. Examination 

of single-cell activity is needed because EEG and fMRI, which record aggregated activity 

of brain tissue, may lack enough resolution to separate distinct neural responses within a 

circuit.

What is the mechanism for the selection of relevant sensory information? It has been long 

considered that the prefrontal cortex (PFC) is central to flexible sensory selection. For 

example, Wisconsin Card Sorting Test (WCST) has been used to demonstrate behavioral 

inflexibility in patients with prefrontal damage (80). Lesion studies in monkeys trained on 

WCST-analog tasks suggest differential contributions of PFC subregions to the update and 

maintenance of task rules or evaluation of outcomes (80, 81).

Focusing on selective sensory routing, Mante et al. (36) attempted to provide a mechanistic 

model. During color and motion discrimination, they found that the same neural population 

in FEF encodes both color and motion information but changes their response dynamics 

such that only the task-relevant information is integrated along the choice axis. These 

response patterns resemble the activity of a recurrent neural network trained to perform 

the same task. While this is an appealing idea, the selection process may not entirely 

depend on a local circuitry within the prefrontal cortex. Using a task similar to Mante’s, 

Siegel et al. (74) showed that task context information is represented not only in PFC but 

also in LIP and then propagates to visual areas. Kamigaki et al. (82) also showed that 

neurons in the posterior parietal cortex modulate their firing rates when monkeys switch 

task rules in a similar experiment. As mentioned above, the encoding of decision variable 

in motor-planning areas depends on relevant sensory dimensions (69), implying that neural 

mechanisms for sensory selection and evidence accumulation for action are intermingled.

There is also an important, long-standing question of whether a part of the selection process 

happens in sensory circuits (75, 83, 84). Attention modulates responses of sensory neurons 

selective for different locations or features (84). However, the role of attention in gating 
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relevant features in decision making remains debated. Sasaki et al. (83) found virtually no 

change in MT neural responses when monkeys discriminated the direction or disparity of 

random dots stimuli. By contrast, Rodgers et al. (75) found large differences in A1 activity 

when rats switched between auditory localization and pitch discrimination tasks (Figure 3e). 

Furthermore, selection between visual and auditory signals could be happening at the level 

of the thalamus (68). Wimmer et al. (68) trained mice to switch between using visual or 

auditory features of a bi-modal stimulus. Neural activity of the visual thalamic reticular 

nucleus reflected task contexts, and disruption of activity affected decision making based on 

the relevant modality. To what extent differences of results across these experiments depend 

on species or tasks should be determined by future experiments.

In summary, several key questions remain unanswered or only partially answered. While 

many studies implicate the prefrontal cortex for the selection of sensory features, other 

cortical and subcortical regions also appear to engage in the process. Moreover, task-

specific encoding of the decision variable suggests that sensory selection and accumulation 

of evidence may not be independent processes. Addressing the outstanding questions 

would be aided by expanding the existing decision-making models to incorporate flexible 

sensory selection, which provides a quantitative framework for hypothesis testing in future 

experiments.

3.2.2. Selection of appropriate motor outputs.—Besides sensory selection, the 

decision maker should also choose appropriate motor actions. As in sensory selection, a 

core question is whether the brain uses the same accumulators regardless of motor actions. 

This question can be answered with tasks in which subjects report the outcome of the same 

sensory discrimination through different motor actions (78, 79, 85, 86, 87). For example, 

de Lafuente et al. (85) trained monkeys to report the direction of random dots either with a 

saccadic eye movement or by reaching to one of the two targets (Figure 2d(2) top).

Comparison of neural responses across different actions has demonstrated specificity for 

action modality. As explained earlier, the discovery of evidence accumulation signals in 

motor planning brain areas (Figure 1c) supports an “intentional framework” in which 

potential motor intentions compete to form a decision (88, 89, 90). Consistent with this 

framework, when monkeys reported their choices with reaching movements, the medial 

intraparietal (MIP) area —a reach-related region of the parietal cortex— strongly reflects 

decision formation, whereas in the saccade task, MIP neural responses attenuate (85; Figure 

3a). Overall, the neural populations reflecting decision formation and motor planning are 

not fully aligned in the neural population state space (69), but the same neural population 

encodes both the decision formation and action plans.

What if the decision maker is not informed of available action options prior to decision 

making? The intentional framework predicts that in such cases decisions are formed at 

a more abstract level beyond motor circuits (88). Multiple tasks have been developed 

to test this with monkeys, but experimental control is challenging and outcomes remain 

controversial. One task design is to obscure target locations and reveal them only after 

the stimulus offset (91). Alternatively, subjects could be instructed to select a target based 

on color (e.g., left/right motion corresponds to red/green target) but the target colors are 
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revealed only after the decision period (92, 93, 94). As expected, the inability to form an 

actionable motor plan alters neural responses in motor planning regions (92, 93). However, 

the interpretation of results is complicated by the possibility that subjects might still form 

provisional action plans (88) during the stimulus-viewing period and then adjust those plans 

in response to the appearance of the targets. Recently, Shushruth et al. (95) tackled this issue 

with a similar task but trained animals to avoid the formation of provisional action plans. 

Curiously, they found that LIP encoded decision formation only after the target positions 

were revealed, effectively representing the accumulation of sensory memory rather than 

ongoing sensory evidence.

Perhaps the best controlled task design for studying stimulus-action mapping is to simply 

reverse the associations between the stimuli and actions (96, 97, 98, 99, 100, 101). For 

example, the left and right directions in a motion discrimination task could be associated 

with left and right saccades, respectively, in one task (pro-saccade task) and with right and 

left saccade in another (anti-saccade task) (96; Figure 2d(2) bottom). Match-to-sample tasks 

have a similar task structure as subjects should switch responses to the same test stimulus 

depending on the match with the sample stimulus (102).

As in the selection of sensory information, classical cognitive control theories attribute the 

role of such behavioral switching to the prefrontal cortex (PFC). Reversal learning tasks 

have been extensively used to study cognitive flexibility, including in clinical patients and 

lesioned animal models (103). Human patients with prefrontal lesions exhibit perseverative 

behavior and thus fail to reverse their behavior in response to rule changes (103). Similarly, 

rodents and monkeys with orbitofrontal cortex lesions show reversal learning deficits (104, 

103). Asaad et al. (98) recorded from PFC while monkeys switched associations between 

object stimuli and saccade targets, finding that PFC neurons encode flexible transformation 

from stimuli to actions.

However, responses in motor-planning areas suggest a more intricate scenario. If PFC is 

fully responsible for routing sensory evidence to appropriate motor plans, neurons in motor 

areas would merely reflect signals supporting their preferred actions. However, experimental 

observations refute this prediction. For example, Wu et al. (102) examined the premotor 

cortex of mice performing odor match-to-sample, finding that premotor neurons encode the 

sample odor before the presentation of the test stimulus, when no action plan is supposed 

to be formed (Figure 3d). Duan et al. (97) trained rats to switch the association between 

light direction and nose pokes based on task cues. Some neurons in the deep layer of the 

superior colliculus (SC) maintained task context regardless of the light direction or nose 

poke direction (Figure 3f). Muhammad et al. (105) showed that, when monkeys were cued 

to respond to either a matching or a non-matching stimulus in a match-to-sample task, the 

premotor cortex encoded the task rule even earlier than PFC does.

Overall, we see multiplex neural signals reflecting decision formation, selection of actions, 

and maintenance of rules in diverse brain regions. These findings suggest that, as for the 

sensory selection, the selection of motor outputs is a process inextricably tied to decision 

formation.
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3.2.3. Changes in readout along the same sensory dimension.—Decision 

makers could also alter stimulus-action mapping by shifting their criterion for categorizing 

stimuli into action plans (106, 107, 108, 109, 110, 111) (Figure 2d(3)). For example, Liu 

et al. (107) trained mice to report if a tone frequency exceeded a criterion level, with the 

level being 10 kHz in some blocks and 20 kHz in others. Therefore, successful performance 

depended on adjusting the decision criterion rather than gating different sensory features or 

modalities.

The behavioral outcome of this criterion shift seems similar to those when subjects adjust 

their decision policy to favor one option over others. For example, by changing the 

probability of choices (16, 52, 109) or reward magnitudes associated with each choice 

(54, 53), the subjects’ decision criterion for the same sensory judgment can shift. These 

changes can be accounted for by parameters in decision-making models such as a dynamic 

bias in drift rate (16) or starting point of the accumulation process (52). In theory, even 

when subjects are explicitly instructed to shift decision boundary through supervised or 

reinforcement feedback, a similar decision-making mechanism can operate.

However, empirical findings suggest that the effect is not limited to decision-making 

circuits. Rather, sensory neural responses also reflect criterion shifts. For example, between 

the high and low tone boundaries in auditory tone discrimination, neural selectivity of the 

mouse auditory cortex shifts toward the discriminating boundary (112, but see 111). Also, 

noise correlations in sensory areas are influenced by category boundaries. Bondy et al. 

(106) showed that, in orientation categorization with two different category boundaries, 

monkey V1 neurons whose preferred orientations match the stimuli in the same category 

have higher noise correlations (Figure 3c). These task-dependent modulations likely arise 

from interactions between sensory and decision-making brain areas (42, 106, 113, 114, 115). 

Thus, in circuit models, the interaction between sensory and decision-making processes 

should be taken into account to implement the criterion shift.

3.3. Flexible adoption of task solutions

Not only can decision makers adjust the parameters of a computation (e.g., evidence 

accumulation) for decision making (decision policy changes, section 3.1), but also they can 

change the computation itself. While evidence accumulation can be an optimal solution for 

discrimination or categorization of stable sensory information (116, 117), different solutions 

could become appropriate in other task conditions (Figure 2e top). For example, when 

the task is to compare the magnitudes of two stimuli, then an appropriate solution is to 

subtract inputs rather than integrate them (118, 119). Similarly, an optimal solution for a 

detection task against a stable background is differentiation, not integration. How can the 

brain flexibly adopt different task solutions?

Responses in higher cortical areas likely reflect the chosen solutions, but we are still 

far from understanding the principles underlying the process. One key fact is that 

the brain uses common resources to perform different computations and thus likely 

employs coding schemes that generalize over different tasks (120, 121, 122, 123). The 

population neural code of the prefrontal cortex and hippocampus has geometries suitable 

for task generalizations (120). Recurrent neural networks trained to perform multiple 
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tasks show compositional codes that reflect computations shared across tasks (121). Also, 

circuit models could be designed such that they perform different computations such as 

maintenance and comparison of sensory inputs through small changes in parameters (119). 

These could be the ingredients for implementing multiple task solutions.

At the same time, differences in task solutions can also shape how sensory neurons respond 

or contribute to behavior (124, 125, 126). For example, Koida et al. (124) trained monkeys 

to report the category of a color patch (e.g., red or green) in one task and to report the 

match of the color with a reference color in another task —two tasks with distinct solutions. 

They found color selective neurons in the IT cortex strongly modulate their activity in 

a task-dependent manner, with some neurons almost abolishing their responses in one 

task (124). In another study, Chowdhury et al. (125) showed that the involvement of MT 

neurons in coarse disparity discrimination depends on whether monkeys were trained to 

perform fine disparity discrimination beforehand. These results suggest that the brain may 

dynamically modulate or select sensory activity for a given task solution. But the nature of 

such interaction between sensory activity and task solutions remains largely unexplored.

In richer task designs, subjects may employ multiple solutions for the same task context. It 

can happen when high task complexity requires subjects to decompose the task into multiple 

sub-tasks, for example, a tree-like (hierarchical) task structure, where subjects should make 

multiple binary decisions to reach a goal (51, 127, 128, 129; Figure 2e bottom). In human 

neuroimaging literature, it has been suggested that the prefrontal cortex forms a hierarchical 

structure along the rostrocaudal axis, where more rostral regions are involved in making 

higher decisions in a decision tree (130). Relatedly, there is a gradient for plasticity in the 

lateral prefrontal cortex of monkeys, with higher plasticity in the more anterior regions 

(131).

Another scenario where subjects may employ multiple solutions is less constrained 

experimental designs with multiple task goals. For example, Yang et al. (132) trained 

monkeys to perform a complex computer game where multiple items are associated with 

reward and punishment and each requires different actions. They showed that monkeys 

flexibly switch across distinct behavioral strategies. Modeling studies suggest that rodent 

behavior could be decomposed into distinct behavioral states even during simple perceptual 

tasks (133). But models with increased complexity can be overparameterized, requiring 

careful handling (1, 134). Quantitative and yet parsimonious decision-making models —

such as those developed for stationary settings (Figure 1)— are much needed to provide a 

significant advance in these topics.

3.4. Mechanisms of deciding to switch task rules

So far we have mainly asked how perceptual decisions are formed under different task rules 

and how these rules are implemented in the brain. However, there is an equally important 

question common to any form of flexibility: how does the brain “decide” to switch task 

rules? In the real world, we are usually not instructed to follow predefined task rules but 

rather choose them ourselves based on internal knowledge or external cues, e.g., outcomes 

of past decisions (Figure 2a). As briefly mentioned earlier, tasks like WCST or reversal 

learning have been extensively used to study how subjects switch rules based on feedback 
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(80, 81, 135, 136), but they are rarely associated with the existing frameworks of perceptual 

decision making. A unique challenge for perceptual decisions is that a decision maker 

should adopt correct rules and perform correct perceptual discrimination at the same time. 

Failure in either leads to error, hence there is the ambiguity of whether errors arise from a 

wrong solution or erroneous perceptual discrimination.

Multiple recent studies have approached this question and started to form mechanistic 

models of rule switching (137, 138). Purcell et al. (137) designed two task contexts in a 

motion direction discrimination task, where subjects should select either upper or lower 

direction targets depending on the hidden context (Figure 4a). To perform the task, subjects 

correctly infer both the current context and the motion direction. Negative feedback on a 

trial with higher certainty about a perceptual decision is evidence for a context change. 

Subjects accumulate their perceptual certainty and feedback over trials and switch their 

context choice when the accumulated switch evidence reaches a bound (Figure 4b). Using a 

similar task structure, Sarafyazd et al. (138) revealed neural correlates of such an inference 

process in the anterior cingulate cortex. These findings not only reveal close interactions 

across high- and low-levels of hierarchical decision-making processes but also indicate an 

intriguing possibility that common computational motifs such as evidence accumulation 

account for multiple levels of decision making.

4. Distributed circuits for flexible decision making

In the previous section, we highlighted context-dependent signals in multiple brain regions 

(Figure 3). Here we discuss the implication of these findings. While the dominant 

perspective in the field is that a centralized module (i.e., the prefrontal cortex or a 

frontoparietal network) enables flexible behavior (Figure 5a), empirical evidence suggests an 

alternative: a distributed network as the neural substrate for flexible behavior (Figure 5b).

4.1. Centralized or distributed mechanisms?

The prefrontal cortex (PFC) has long been thought of as a central region that enables 

cognitive flexibility. PFC receives inputs from various sensory modalities and limbic 

regions and in turn projects to these regions as well as motor-planning areas. These 

connections make PFC an ideal hub for flexible stimulus-action mapping. As recent human 

neuroimaging studies have shown close coordination between PFC and posterior parietal 

cortex (PPC) (139, 140), the special status of PFC has also been extended to PPC. The 

resulting frontoparietal network, which can change its functional connectivity with other 

brain areas during the adoption of different task rules, is theorized to underlie cognitive 

flexibility and control (6).

By contrast, studies on perceptual decision making have long suggested a distributed 

architecture for implementation of neural computations (90, 4). As explained earlier, sensory 

and motor areas reflect decision formation beyond momentary sensory and motor signals 

(85, 88, 106, 90, 141, 142, 143; Figure 3a, c). While this does not deny domain-general 

mechanisms for decision making (31, 77, 78, 144), the prevalence of neural signals encoding 

the decision variable (Figure 1c) indicates that many brain structures form an interconnected 

network for decision making.
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How do we compare the centralized and distributed perspectives in the study of flexible 

perceptual decision making? Empirical findings summarized thus far indicate that a variety 

of brain regions change their activity depending on task rules. Centralized theories would 

claim that such modulations are driven by the central unit and meant to facilitate efficient 

routing of information through the central unit. However, patterns of neural responses 

observed in sensory or motor brain regions are difficult to interpret based on this idea.

First, sensory and motor areas directly encode task contexts (72, 75, 97, 101, 105, 124; 

Figure 3e, f) as opposed to mere modulation of sensory/motor responses by context. 

These contextual signals cannot be explained as attention-like enhancement of task-relevant 

information. For example, neurons encode task rules even outside the epoch where relevant 

sensory or motor events are happening (75, 97). While such contextual signals could be 

maintained through inputs from PFC, it is unclear why such inputs should be received 

when not needed. Perhaps, these signals modulate computations within sensory and motor 

areas in a context-dependent manner, counter to the core idea of a centralized module for 

implementing flexibility.

Second, these areas also reflect signals that do not directly pertain to their roles in sensory 

and motor processing (69, 70, 102; Figure 3b, d). For example, the encoding of decision 

variable in an oculomotor area is modulated by what sensory features are distinguished 

(69). Or a premotor area reflects sample stimuli during a match-to-sample task (102). These 

findings indicate that motor-planning areas do not merely receive abstract decision variables 

from an amodal central module capable of flexible decision making. Rather, they could be 

part of the network that flexibly transforms sensory signals into action plans (Figure 5b; 143, 

145, 146).

In this distributed network, there is no clear parcellation of brain regions into those 

responsible for flexible control and others (147, 145). However, there are gradients across 

brain structures, where some areas have more capacity to maintain task rules, flexibly adjust 

computations, and exert influence over other regions. Therefore, higher-order sensory and 

motor-planning cortical regions and subcortical areas that have access to both sensory and 

motor information could play significant roles in flexible behavior, and even early sensory 

areas can reflect context-dependent behavior, albeit to a lesser extent. PFC lies at the top of 

this distributed network as the most flexible circuitry but it does not play a unique role as a 

control area (147).

Multiple brain structures could be responsible for different forms of flexibility in the 

distributed network (section 3), while the extent of their involvement varies depending on 

the task. This perspective might reconcile diverse theories of perceptual decision making 

such as those advocating active inference by sensory neurons (148, 115) or the intentional 

framework that emphasizes selection at motor stages (88, 90). Distributed architecture 

is also sensible from an evolutionary perspective (145) as the development of PFC is 

phylogenetically recent (149) whereas flexibility in behavior is a common requirement for 

many organisms (150).
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4.2. How to study distributed networks?

How can we study computations distributed in a brain-wide network? To study such 

processes, it would be more fruitful to focus on common computational principles across 

the network rather than trying to pinpoint brain regions responsible for individual operations.

Studies that aim to infer the role of individual areas in the network through causal 

manipulations are strongly challenged (151, 152). If there were a central hub for flexible 

decision making, inactivating this hub region would have disrupted all forms of flexible 

behavior. But when multiple brain regions interact in a distributed network to make 

decisions, perturbing a single region may yield a wide range of results, including no 

effect, transient behavioral deficits, and lasting deficits (143, 152, 153). Indeed, recent 

studies have found that inactivating saccade-selective LIP neurons has limited effects on 

perceptual decision making (154, 155). More precisely, choice biases appear transiently 

after inactivation and disappear within a session (156). There are also mixed results on 

the inactivation effects of rodent PPC on perceptual decision making (157, 158, 159). The 

inactivation of a more peripheral structure, the superior colliculus, shows stronger effects 

(160). It is possible that more peripheral brain regions tend to be bottlenecks while higher 

areas form more robust networks. Therefore, the strength of perturbation effects alone is 

inadequate to determine the extent of involvement of the perturbed brain region in the 

studied behavior. More meaningful conclusions could be made by multi-pronged studies that 

combine subtle perturbations with electrophysiological recordings from other nodes of the 

network during an array of tasks, each carefully tailored to investigate an aspect of flexible 

behavior.

Understanding a distributed network is greatly aided by adopting population-level analyses 

within and across the network. In distributed networks, even neurons in “modalityspecific” 

areas may show mixed selectivity for sensory, motor, and contextual information (161, 

162, 163). These complex representations would be difficult to probe through conventional 

analysis methods that do not appreciate the diversity of neural responses (e.g., averaging 

activity across the population) (69, 70). Emerging analysis techniques such as targeted or 

unsupervised dimensionality reduction (164, 165) and geometric data visualization (166, 

167) may provide better insights into the representations afforded by each brain area 

(69). Furthermore, understanding the distributed network would be impossible without 

discovering the principles of communications across brain areas. Using the language of 

population neural activity and communication subspace offers a practical path forward 

(168).

Finally, we would like to emphasize the importance of recognizing the properties and 

requirements of different task designs (Figure 2). Besides identifying brain regions 

responsible for flexible behavior in a specific task design, it would become important to 

examine what forms of flexibility are related to each brain region and what forms are not. 

Furthermore, specific details of behavioral tasks —such as how animals are trained, how 

often tasks switch, how task contexts are cued— can be critical for interpreting behavioral 

and neural data. An advance in the field relies not only on novel experimental techniques but 

also on better understanding and designing of behavioral tasks (1, 169).
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5. Implementing flexibility in network models

In this last section, we briefly summarize circuit motifs used in existing computational 

models of perceptual decision making and flexible control. As mentioned in section 2, 

existing circuit models formulate decision making as competition across neural modules 

encoding different actions. These models readily account for some flexible aspects of 

decision policy (Figure 2b). For example, tweaking the strength of self-excitation of action-

selective modules alters the speed-accuracy trade-off of decisions (20, 170; Figure 6a). 

However, they do not address flexible adjustment in stimulus-action mapping.

Traditionally, flexible sensory-action mapping are addressed by models of cognitive control 

(171, 172, 173, 174, 175). These models include control modules that influence sensory and 

motor modules (Figure 6b). Often, different control modules are responsible for different 

tasks. Through external contextual signals and mutual inhibition, one control module 

becomes active, gating information flow from sensory to motor modules. The gating could 

be implemented through a range of mechanisms (171, 176, 177, 178) such as a thresholding 

operation that triggers outputs only when inputs from both the contextual and sensory 

signals are present (171). Also, models could be designed to learn novel sensory-action 

associations through rapid synaptic plasticity (174, 173). Overall, these models are powerful 

but usually operate within the narrow scope they are designed for and depend on careful 

handcrafting by model designers to properly associate task inputs with outputs.

Recent developments in artificial neural networks (ANNs) have introduced an alternative 

route to engineer circuit models for cognition (36, 121). Without handcrafting the detailed 

circuit architecture and computations, a fully connected recurrent neural network (RNN) 

could be trained to solve diverse tasks similar to those used in human or animal studies 

as long as proper objective functions and learning rules are implemented (36, 121, 179, 

180, 181; Figure 6c). For example, to switch between color and motion discrimination 

(Figure 2d(1)), an RNN that receives color, motion, and contextual signals can be trained to 

generate correct binary choices for each task (36). With a similar approach, Yang et al. (121) 

successfully trained an RNN to perform 20 perceptual tasks including context-dependent 

decisions. The computations happening within RNNs could be partly inferred through 

analyzing their neural response dynamics (182, 183). The geometry of population activity 

provides another fruitful method for understanding RNNs and their connection with neural 

responses recorded from the brain (36, 180, 181), with the caveat that similar geometric 

responses may also arise from different network architectures (184).

RNNs appear to be particularly well suited for describing centralized mechanisms (Figure 

5a). There are several architectural properties worth discussing. First, many existing RNNs 

assume a uniform network architecture composed of randomly connected units with similar 

physiological properties and thus lack the concept of neuron type diversity and hierarchical 

structures. Second, sensory inputs and motor outputs of RNNs are highly stylized. For 

example, the context-dependent RNN (Figure 6c) only has to deal with one-dimensional 

inputs of color and motion information and generate a binary output. This already 

circumvents the challenge of decoding meaningful information from high-dimensional 

sensory representations (185) and generating dynamic motor control signals inextricably 
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tied to decision formation in the real brain (186). Third, many RNNs receive contextual 

signals, but such signals presume knowledge about the number and type of contexts. 

Such knowledge is unlikely to be readily available to the real brain operating in complex 

environments. Finally, typical RNNs are unencumbered with biophysical constraints of the 

real brain that might affect population response properties. For example, one-dimensional 

signals may be better encoded on a curved manifold than on a linear manifold in a network 

if the network needs to reduce the number of spikes due to metabolic costs (187, 69).

Incorporating the distributed neural architecture of the brain in ANNs could lead to a better 

understanding of brain-like neural computations (42, 143, 188, 189). Such models would 

have a hierarchical architecture comprising multiple interconnected neural modules (Figure 

5b). For example, Pinto et al. (143) modeled RNNs composed of input and output modules 

to account for task-dependent effects of perturbation they observed experimentally (Figure 

6d). Multi-module circuits also explain immunity to the perturbation of individual circuits 

(153, 152). Further, modeling a large-scale cortical network accounts for the emergence of 

a hierarchical structure, where higher areas have longer timescales and stronger control over 

network connectivity (190). We expect that further expansion of theories that embrace the 

distributed brain architecture provides more insights into interpreting diverse experimental 

observations highlighted in this review.

6. Concluding remarks

Advances in theoretical and experimental studies of perceptual decision making have 

brought an understanding of cognitive flexibility within our grasp. In particular, existing 

behavioral and neural models can successfully account for various forms of flexible 

adjustments in decision policy (Figure 2b–c). However, it is much less understood how 

stimulus-action mapping (Figure 2d) and task solutions (Figure 2e) are implemented in 

a context-dependent manner. Empirical results suggest that the same neurons that encode 

decision formation often show activity reflecting changes in these task rules (Figure 3). This 

implies a potential link between evidence accumulation and flexible control mechanisms. 

We hope to see future efforts to integrate context-dependent computations into decision-

making models.

A notable neurophysiological observation is the distributed nature of context-dependent 

neural responses (Figure 3). Neural activity reflecting maintenance, change, or 

implementation of task rules abounds outside PFC, including PPC, sensory, motor, 

and subcortical brain areas. While mixed selectivity for diverse behavioral variables is 

particularly highlighted in recent rodent literature (161, 162, 163), past primate studies 

have also repeatedly reported context-dependent signals across brain regions as summarized 

above. These observations invite us to focus on computational principles governing the 

whole network rather than testing roles for individual brain regions. Apart from perceptual 

decision making, context-dependent computations are essential in sensory, motor, memory, 

and many other brain functions. We expect that advances on this topic would open a window 

for understanding cognition and intelligence in general (4).

Okazawa and Kiani Page 16

Annu Rev Physiol. Author manuscript; available in PMC 2023 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ACKNOWLEDGMENTS

This work was supported by the Simons Collaboration on the Global Brain (542997 and 988247), McKnight 
Scholar Award, Pew Scholarship in the Biomedical Sciences, and National Institute of Mental Health (R01 
MH109180 and R01 MH127375). G.O. was supported by post-doctoral fellowships from the Charles H. Revson 
Foundation and the Japan Society for the Promotion of Science.

LITERATURE CITED

1. Waskom ML, Okazawa G, Kiani R. 2019. Designing and interpreting psychophysical investigations 
of cognition. Neuron 104(1):100–112 [PubMed: 31600507] 

2. O’Connell RG, Kelly SP. 2021. Neurophysiology of human perceptual decision-making. Annu Rev 
Neurosci 44:495–516 [PubMed: 33945693] 

3. Hanks TD, Summerfield C. 2017. Perceptual decision making in rodents, monkeys, and humans. 
Neuron 93(1):15–31 [PubMed: 28056343] 

4. Shadlen MN, Kiani R. 2013. Decision making as a window on cognition. Neuron 80(3):791–806 
[PubMed: 24183028] 

5. Miller EK, Cohen JD. 2001. An integrative theory of prefrontal cortex function. Annu Rev Neurosci 
24:167–202 [PubMed: 11283309] 

6. Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS. 2013. Multi-task 
connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 16(9):1348–55 [PubMed: 
23892552] 

7. Britten KH, Shadlen MN, Newsome WT, Movshon JA. 1992. The analysis of visual motion: a 
comparison of neuronal and psychophysical performance. J Neurosci 12(12):4745–65 [PubMed: 
1464765] 

8. Roitman JD, Shadlen MN. 2002. Response of neurons in the lateral intraparietal area during 
a combined visual discrimination reaction time task. J Neurosci 22(21):9475–89 [PubMed: 
12417672] 

9. Drugowitsch J, DeAngelis GC, Klier EM, Angelaki DE, Pouget A. 2014. Optimal multisensory 
decision-making in a reaction-time task. Elife 3:e03005

10. Okazawa G, Sha L, Kiani R. 2021. Linear integration of sensory evidence over space and time 
underlies face categorization. J Neurosci 41(37):7876–7893 [PubMed: 34326145] 

11. Drugowitsch J, Moreno-Bote R, Churchland AK, Shadlen MN, Pouget A. 2012. The cost of 
accumulating evidence in perceptual decision making. J Neurosci 32(11):3612–28 [PubMed: 
22423085] 

12. Deneve S. 2012. Making decisions with unknown sensory reliability. Front Neurosci 6:75 
[PubMed: 22679418] 

13. Khalvati K, Kiani R, Rao RPN. 2021. Bayesian inference with incomplete knowledge explains 
perceptual confidence and its deviations from accuracy. Nat Commun 12(1):5704 [PubMed: 
34588440] 

14. Gold JI, Shadlen MN. 2007. The neural basis of decision making. Annu Rev Neurosci 30:535–74 
[PubMed: 17600525] 

15. Mochol G, Kiani R, Moreno-Bote R. 2021. Prefrontal cortex represents heuristics that shape choice 
bias and its integration into future behavior. Curr Biol 31(6):1234–1244 e6 [PubMed: 33639107] 

16. Hanks TD, Mazurek ME, Kiani R, Hopp E, Shadlen MN. 2011. Elapsed decision time affects the 
weighting of prior probability in a perceptual decision task. J Neurosci 31(17):6339–52 [PubMed: 
21525274] 

17. Urai AE, de Gee JW, Tsetsos K, Donner TH. 2019. Choice history biases subsequent evidence 
accumulation. Elife 8:e46331

18. Noorbaloochi S, Sharon D, McClelland JL. 2015. Payoff information biases a fast guess process 
in perceptual decision making under deadline pressure: Evidence from behavior, evoked potentials, 
and quantitative model comparison. J Neurosci 35(31):10989–1011 [PubMed: 26245962] 

19. Wang XJ. 2002. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 
36(5):955–68 [PubMed: 12467598] 

Okazawa and Kiani Page 17

Annu Rev Physiol. Author manuscript; available in PMC 2023 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20. Wong KF, Wang XJ. 2006. A recurrent network mechanism of time integration in perceptual 
decisions. J Neurosci 26(4):1314–28 [PubMed: 16436619] 

21. Beck JM, Ma WJ, Kiani R, Hanks T, Churchland AK, et al. 2008. Probabilistic population codes 
for Bayesian decision making. Neuron 60(6):1142–52 [PubMed: 19109917] 

22. Palmer J, Huk AC, Shadlen MN. 2005. The effect of stimulus strength on the speed and accuracy 
of a perceptual decision. J Vis 5(5):376–404 [PubMed: 16097871] 

23. Smith PL, Vickers D. 1988. The accumulator model of two-choice discrimination. J Mathematical 
Psychol 32(2):135–168

24. Kiani R, Shadlen MN. 2009. Representation of confidence associated with a decision by neurons in 
the parietal cortex. Science 324(5928):759–64 [PubMed: 19423820] 

25. Kiani R, Corthell L, Shadlen MN. 2014. Choice certainty is informed by both evidence and 
decision time. Neuron 84(6):1329–42 [PubMed: 25521381] 

26. Horwitz GD, Newsome WT. 1999. Separate signals for target selection and movement 
specification in the superior colliculus. Science 284(5417):1158–61 [PubMed: 10325224] 

27. Ding L, Gold JI. 2010. Caudate encodes multiple computations for perceptual decisions. J 
Neurosci 30(47):15747–59 [PubMed: 21106814] 

28. Ding L, Gold JI. 2012. Neural correlates of perceptual decision making before, during, and 
after decision commitment in monkey frontal eye field. Cereb Cortex 22(5):1052–67 [PubMed: 
21765183] 

29. Kim B, Basso MA. 2008. Saccade target selection in the superior colliculus: a signal detection 
theory approach. J Neurosci 28(12):2991–3007 [PubMed: 18354003] 

30. Donner TH, Siegel M, Fries P, Engel AK. 2009. Buildup of choice-predictive activity in human 
motor cortex during perceptual decision making. Curr Biol 19(18):1581–5 [PubMed: 19747828] 

31. O’Connell RG, Dockree PM, Kelly SP. 2012. A supramodal accumulation-to-bound signal that 
determines perceptual decisions in humans. Nat Neurosci 15(12):1729–35 [PubMed: 23103963] 

32. Philiastides MG, Heekeren HR, Sajda P. 2014. Human scalp potentials reflect a mixture 
of decision-related signals during perceptual choices. J Neurosci 34(50):16877–89 [PubMed: 
25505339] 

33. Shadlen MN, Newsome WT. 2001. Neural basis of a perceptual decision in the parietal cortex (area 
LIP) of the rhesus monkey. J Neurophysiol 86(4):1916–36 [PubMed: 11600651] 

34. Shadlen MN, Newsome WT. 1996. Motion perception: seeing and deciding. Proc Natl Acad Sci U 
S A 93(2):628–33 [PubMed: 8570606] 

35. Kiani R, Cueva CJ, Reppas JB, Newsome WT. 2014. Dynamics of neural population responses 
in prefrontal cortex indicate changes of mind on single trials. Curr Biol 24(13):1542–7 [PubMed: 
24954050] 

36. Mante V, Sussillo D, Shenoy KV, Newsome WT. 2013. Context-dependent computation by 
recurrent dynamics in prefrontal cortex. Nature 503(7474):78–84 [PubMed: 24201281] 

37. Cisek P, Kalaska JF. 2005. Neural correlates of reaching decisions in dorsal premotor cortex: 
specification of multiple direction choices and final selection of action. Neuron 45(5):801–14 
[PubMed: 15748854] 

38. Peixoto D, Verhein JR, Kiani R, Kao JC, Nuyujukian P, et al. 2021. Decoding and perturbing 
decision states in real time. Nature 591(7851):604–609 [PubMed: 33473215] 

39. Chandrasekaran C, Peixoto D, Newsome WT, Shenoy KV. 2017. Laminar differences in decision-
related neural activity in dorsal premotor cortex. Nat Commun 8(1):614 [PubMed: 28931803] 

40. Purcell BA, Heitz RP, Cohen JY, Schall JD, Logan GD, Palmeri TJ. 2010. Neurally constrained 
modeling of perceptual decision making. Psychol Rev 117(4):1113–43 [PubMed: 20822291] 

41. Hanes DP, Schall JD. 1996. Neural control of voluntary movement initiation. Science 
274(5286):427–30 [PubMed: 8832893] 

42. Wimmer K, Compte A, Roxin A, Peixoto D, Renart A, de la Rocha J. 2015. Sensory integration 
dynamics in a hierarchical network explains choice probabilities in cortical area MT. Nat Commun 
6:6177 [PubMed: 25649611] 

43. Deco G, Rolls ET, Albantakis L, Romo R. 2013. Brain mechanisms for perceptual and reward-
related decision-making. Prog Neurobiol 103:194–213 [PubMed: 22326926] 

Okazawa and Kiani Page 18

Annu Rev Physiol. Author manuscript; available in PMC 2023 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



44. Ditterich J. 2006. Stochastic models of decisions about motion direction: behavior and physiology. 
Neural Netw 19(8):981–1012 [PubMed: 16952441] 

45. Usher M, McClelland JL. 2001. The time course of perceptual choice: the leaky, competing 
accumulator model. Psychol Rev 108(3):550–92 [PubMed: 11488378] 

46. Tajima S, Drugowitsch J, Pouget A. 2016. Optimal policy for value-based decision-making. Nat 
Commun 7:12400 [PubMed: 27535638] 

47. Louie K, LoFaro T, Webb R, Glimcher PW. 2014. Dynamic divisive normalization predicts 
time-varying value coding in decision-related circuits. J Neurosci 34(48):16046–57 [PubMed: 
25429145] 

48. Ratcliff R, Starns JJ. 2013. Modeling confidence judgments, response times, and multiple choices 
in decision making: recognition memory and motion discrimination. Psychol Rev 120(3):697–719 
[PubMed: 23915088] 

49. Shadlen MN, Shohamy D. 2016. Decision making and sequential sampling from memory. Neuron 
90(5):927–39 [PubMed: 27253447] 

50. Purcell BA, Kiani R. 2016. Neural mechanisms of post-error adjustments of decision policy in 
parietal cortex. Neuron 89(3):658–71 [PubMed: 26804992] 

51. Zylberberg A. 2021. Decision prioritization and causal reasoning in decision hierarchies. PLoS 
Comput Biol 17(12):e1009688

52. Rao V, DeAngelis GC, Snyder LH. 2012. Neural correlates of prior expectations of motion in the 
lateral intraparietal and middle temporal areas. J Neurosci 32(29):10063–74 [PubMed: 22815520] 

53. Fan Y, Gold JI, Ding L. 2020. Frontal eye field and caudate neurons make different contributions to 
reward-biased perceptual decisions. Elife 9:e60535

54. Doi T, Fan Y, Gold JI, Ding L. 2020. The caudate nucleus contributes causally to decisions that 
balance reward and uncertain visual information. Elife 9:e56694

55. Hagura N, Haggard P, Diedrichsen J. 2017. Perceptual decisions are biased by the cost to act. Elife 
6:e18422

56. Zylberberg A, Fetsch CR, Shadlen MN. 2016. The influence of evidence volatility on choice, 
reaction time and confidence in a perceptual decision. Elife 5:e17688

57. Levi AJ, Yates JL, Huk AC, Katz LN. 2018. Strategic and dynamic temporal weighting for 
perceptual decisions in humans and macaques. eNeuro 5(5):ENEURO.0169–18.2018

58. Forstmann BU, Dutilh G, Brown S, Neumann J, von Cramon DY, et al. 2008. Striatum and presma 
facilitate decision-making under time pressure. Proc Natl Acad Sci U S A 105(45):17538–42 
[PubMed: 18981414] 

59. Simen P, Contreras D, Buck C, Hu P, Holmes P, Cohen JD. 2009. Reward rate optimization in 
two-alternative decision making: empirical tests of theoretical predictions. J Exp Psychol Hum 
Percept Perform 35(6):1865–97 [PubMed: 19968441] 

60. Hanks T, Kiani R, Shadlen MN. 2014. A neural mechanism of speed-accuracy tradeoff in macaque 
area LIP. Elife 3:e02260

61. Akrami A, Kopec CD, Diamond ME, Brody CD. 2018. Posterior parietal cortex represents sensory 
history and mediates its effects on behaviour. Nature 554(7692):368–372 [PubMed: 29414944] 

62. Heitz RP, Schall JD. 2012. Neural mechanisms of speed-accuracy tradeoff. Neuron 76(3):616–28 
[PubMed: 23141072] 

63. Okazawa G, Sha L, Purcell BA, Kiani R. 2018. Psychophysical reverse correlation reflects both 
sensory and decision-making processes. Nat Commun 9(1):3479 [PubMed: 30154467] 

64. Cavanagh JF, Wiecki TV, Cohen MX, Figueroa CM, Samanta J, et al. 2011. Subthalamic nucleus 
stimulation reverses mediofrontal influence over decision threshold. Nat Neurosci 14(11):1462–7 
[PubMed: 21946325] 

65. Stine GM, Trautmann EM, Jeurissen D, Shadlen MN. 2022. A neural mechanism for terminating 
decisions. bioRxiv :2022.05.02.490327

66. Lo CC, Wang XJ. 2006. Cortico-basal ganglia circuit mechanism for a decision threshold in 
reaction time tasks. Nat Neurosci 9(7):956–63 [PubMed: 16767089] 

67. Yeung N, Nystrom LE, Aronson JA, Cohen JD. 2006. Between-task competition and cognitive 
control in task switching. J Neurosci 26(5):1429–38 [PubMed: 16452666] 

Okazawa and Kiani Page 19

Annu Rev Physiol. Author manuscript; available in PMC 2023 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



68. Wimmer RD, Schmitt LI, Davidson TJ, Nakajima M, Deisseroth K, Halassa MM. 2015. Thalamic 
control of sensory selection in divided attention. Nature 526(7575):705–9 [PubMed: 26503050] 

69. Okazawa G, Hatch CE, Mancoo A, Machens CK, Kiani R. 2021. Representational geometry 
of perceptual decisions in the monkey parietal cortex. Cell 184(14):3748–3761 e18 [PubMed: 
34171308] 

70. Raposo D, Kaufman MT, Churchland AK. 2014. A category-free neural population supports 
evolving demands during decision-making. Nat Neurosci 17(12):1784–1792 [PubMed: 25383902] 

71. Kumano H, Suda Y, Uka T. 2016. Context-dependent accumulation of sensory evidence in 
the parietal cortex underlies flexible task switching. J Neurosci 36(48):12192–12202 [PubMed: 
27903728] 

72. Stoet G, Snyder LH. 2004. Single neurons in posterior parietal cortex of monkeys encode cognitive 
set. Neuron 42(6):1003–12 [PubMed: 15207244] 

73. Roy JE, Riesenhuber M, Poggio T, Miller EK. 2010. Prefrontal cortex activity during flexible 
categorization. J Neurosci 30(25):8519–28 [PubMed: 20573899] 

74. Siegel M, Buschman TJ, Miller EK. 2015. Cortical information flow during flexible sensorimotor 
decisions. Science 348(6241):1352–5 [PubMed: 26089513] 

75. Rodgers CC, DeWeese MR. 2014. Neural correlates of task switching in prefrontal cortex and 
primary auditory cortex in a novel stimulus selection task for rodents. Neuron 82(5):1157–70 
[PubMed: 24908492] 

76. Flesch T, Juechems K, Dumbalska T, Saxe A, Summerfield C. 2022. Orthogonal representations 
for robust context-dependent task performance in brains and neural networks. Neuron 
110(7):1258–1270 [PubMed: 35085492] 

77. Kelly SP, O’Connell RG. 2013. Internal and external influences on the rate of sensory evidence 
accumulation in the human brain. J Neurosci 33(50):19434–41 [PubMed: 24336710] 

78. Tosoni A, Galati G, Romani GL, Corbetta M. 2008. Sensory-motor mechanisms in human parietal 
cortex underlie arbitrary visual decisions. Nat Neurosci 11(12):1446–53 [PubMed: 18997791] 

79. Heekeren HR, Marrett S, Ruff DA, Bandettini PA, Ungerleider LG. 2006. Involvement of human 
left dorsolateral prefrontal cortex in perceptual decision making is independent of response 
modality. Proc Natl Acad Sci U S A 103(26):10023–8 [PubMed: 16785427] 

80. Mansouri FA, Freedman DJ, Buckley MJ. 2020. Emergence of abstract rules in the primate brain. 
Nat Rev Neurosci 21(11):595–610 [PubMed: 32929262] 

81. Buckley MJ, Mansouri FA, Hoda H, Mahboubi M, Browning PG, et al. 2009. Dissociable 
components of rule-guided behavior depend on distinct medial and prefrontal regions. Science 
325(5936):52–8 [PubMed: 19574382] 

82. Kamigaki T, Fukushima T, Miyashita Y. 2009. Cognitive set reconfiguration signaled by macaque 
posterior parietal neurons. Neuron 61(6):941–51 [PubMed: 19324002] 

83. Sasaki R, Uka T. 2009. Dynamic readout of behaviorally relevant signals from area MT during task 
switching. Neuron 62(1):147–57 [PubMed: 19376074] 

84. Katzner S, Busse L, Treue S. 2009. Attention to the color of a moving stimulus modulates 
motion-signal processing in macaque area MT: Evidence for a unified attentional system. Front 
Syst Neurosci 3:12 [PubMed: 19893762] 

85. de Lafuente V, Jazayeri M, Shadlen MN. 2015. Representation of accumulating evidence for a 
decision in two parietal areas. J Neurosci 35(10):4306–18 [PubMed: 25762677] 

86. Ho TC, Brown S, Serences JT. 2009. Domain general mechanisms of perceptual decision making 
in human cortex. J Neurosci 29(27):8675–87 [PubMed: 19587274] 

87. Liu T, Pleskac TJ. 2011. Neural correlates of evidence accumulation in a perceptual decision task. J 
Neurophysiol 106(5):2383–98 [PubMed: 21849612] 

88. Shadlen MN, Kiani R, Hanks TD, Churchland AK. 2008. Neurobiology of decision making: An 
intentional framework, book section 4. MIT Press, 71–101

89. Snyder LH, Batista AP, Andersen RA. 2000. Intention-related activity in the posterior parietal 
cortex: a review. Vision Res 40(10–12):1433–41 [PubMed: 10788650] 

90. Cisek P. 2012. Making decisions through a distributed consensus. Curr Opin Neurobiol 22(6):927–
36 [PubMed: 22683275] 

Okazawa and Kiani Page 20

Annu Rev Physiol. Author manuscript; available in PMC 2023 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



91. Salzman CD, Newsome WT. 1994. Neural mechanisms for forming a perceptual decision. Science 
264(5156):231–7 [PubMed: 8146653] 

92. Bennur S, Gold JI. 2011. Distinct representations of a perceptual decision and the associated 
oculomotor plan in the monkey lateral intraparietal area. J Neurosci 31(3):913–21 [PubMed: 
21248116] 

93. Wang M, Montanede C, Chandrasekaran C, Peixoto D, Shenoy KV, Kalaska JF. 2019. Macaque 
dorsal premotor cortex exhibits decision-related activity only when specific stimulus-response 
associations are known. Nat Commun 10(1):1793 [PubMed: 30996222] 

94. Twomey DM, Kelly SP, O’Connell RG. 2016. Abstract and effector-selective decision signals 
exhibit qualitatively distinct dynamics before delayed perceptual reports. J Neurosci 36(28):7346–
52 [PubMed: 27413146] 

95. Shushruth S, Zylberberg A, Shadlen MN. 2022. Sequential sampling from memory underlies 
action selection during abstract decision-making. Curr Biol 32(9):1949–1960 [PubMed: 
35354066] 

96. Gold JI, Shadlen MN. 2003. The influence of behavioral context on the representation of a 
perceptual decision in developing oculomotor commands. J Neurosci 23(2):632–51 [PubMed: 
12533623] 

97. Duan CA, Pagan M, Piet AT, Kopec CD, Akrami A, et al. 2021. Collicular circuits for flexible 
sensorimotor routing. Nat Neurosci 24(8):1110–1120 [PubMed: 34083787] 

98. Asaad WF, Rainer G, Miller EK. 1998. Neural activity in the primate prefrontal cortex during 
associative learning. Neuron 21(6):1399–407 [PubMed: 9883732] 

99. Johnston K, Levin HM, Koval MJ, Everling S. 2007. Top-down control-signal dynamics in anterior 
cingulate and prefrontal cortex neurons following task switching. Neuron 53(3):453–62 [PubMed: 
17270740] 

100. Stokes MG, Kusunoki M, Sigala N, Nili H, Gaffan D, Duncan J. 2013. Dynamic coding for 
cognitive control in prefrontal cortex. Neuron 78(2):364–75 [PubMed: 23562541] 

101. van den Brink RL, Hagena K, Wilming N, Murphy PR, Buechel C, Donner TH. 2022. Largescale 
circuit configuration for flexible sensory-motor decisions. bioRxiv 2022.03.10.483758

102. Wu Z, Litwin-Kumar A, Shamash P, Taylor A, Axel R, Shadlen MN. 2020. Context-dependent 
decision making in a premotor circuit. Neuron 106(2):316–328 e6 [PubMed: 32105611] 

103. Izquierdo A, Brigman JL, Radke AK, Rudebeck PH, Holmes A. 2017. The neural basis of 
reversal learning: An updated perspective. Neuroscience 345:12–26 [PubMed: 26979052] 

104. Rudebeck PH, Murray EA. 2014. The orbitofrontal oracle: cortical mechanisms for the prediction 
and evaluation of specific behavioral outcomes. Neuron 84(6):1143–56 [PubMed: 25521376] 

105. Muhammad R, Wallis JD, Miller EK. 2006. A comparison of abstract rules in the prefrontal 
cortex, premotor cortex, inferior temporal cortex, and striatum. J Cogn Neurosci 18(6):974–89 
[PubMed: 16839304] 

106. Bondy AG, Haefner RM, Cumming BG. 2018. Feedback determines the structure of correlated 
variability in primary visual cortex. Nat Neurosci 21(4):598–606 [PubMed: 29483663] 

107. Liu Y, Xin Y, Xu NL. 2021. A cortical circuit mechanism for structural knowledge-based flexible 
sensorimotor decision-making. Neuron 109(12):2009–2024 e6 [PubMed: 33957065] 

108. Wang TY, Liu J, Yao H. 2020. Control of adaptive action selection by secondary motor cortex 
during flexible visual categorization. Elife 9:e54474

109. Crapse TB, Lau H, Basso MA. 2018. A role for the superior colliculus in decision criteria.Neuron 
97(1):181–194 e6 [PubMed: 29301100] 

110. Ferrera VP, Yanike M, Cassanello C. 2009. Frontal eye field neurons signal changes in decision 
criteria. Nat Neurosci 12(11):1458–62 [PubMed: 19855389] 

111. Jaramillo S, Borges K, Zador AM. 2014. Auditory thalamus and auditory cortex are equally 
modulated by context during flexible categorization of sounds. J Neurosci 34(15):5291–301 
[PubMed: 24719107] 

112. Xin Y, Zhong L, Zhang Y, Zhou T, Pan J, Xu NL. 2019. Sensory-to-category transformation via 
dynamic reorganization of ensemble structures in mouse auditory cortex. Neuron 103(5):909–921 
e6 [PubMed: 31296412] 

Okazawa and Kiani Page 21

Annu Rev Physiol. Author manuscript; available in PMC 2023 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



113. Quinn KR, Seillier L, Butts DA, Nienborg H. 2021. Decision-related feedback in visual cortex 
lacks spatial selectivity. Nat Commun 12(1):4473 [PubMed: 34294703] 

114. Zhao Y, Yates JL, Levi AJ, Huk AC, Park IM. 2020. Stimulus-choice (mis)alignment in primate 
area MT. PLoS Comput Biol 16(5):e1007614

115. Lange RD, Chattoraj A, Beck JM, Yates JL, Haefner RM. 2021. A confirmation bias in perceptual 
decision-making due to hierarchical approximate inference. PLoS Comput Biol 17(11):e1009517

116. Waskom ML, Kiani R. 2018. Decision making through integration of sensory evidence at 
prolonged timescales. Curr Biol 28(23):3850–3856 e9 [PubMed: 30471996] 

117. Stine GM, Zylberberg A, Ditterich J, Shadlen MN. 2020. Differentiating between integration and 
non-integration strategies in perceptual decision making. Elife 9:e55365

118. Romo R, de Lafuente V. 2013. Conversion of sensory signals into perceptual decisions. Prog 
Neurobiol 103:41–75 [PubMed: 22472964] 

119. Machens CK, Romo R, Brody CD. 2005. Flexible control of mutual inhibition: a neural model of 
two-interval discrimination. Science 307(5712):1121–4 [PubMed: 15718474] 

120. Bernardi S, Benna MK, Rigotti M, Munuera J, Fusi S, Salzman CD. 2020. The geometry 
of abstraction in the hippocampus and prefrontal cortex. Cell 183(4):954–967 e21 [PubMed: 
33058757] 

121. Yang GR, Joglekar MR, Song HF, Newsome WT, Wang XJ. 2019. Task representations in 
neural networks trained to perform many cognitive tasks. Nat Neurosci 22(2):297–306 [PubMed: 
30643294] 

122. Mohan K, Zhu O, Freedman DJ. 2021. Interaction between neuronal encoding and population 
dynamics during categorization task switching in parietal cortex. Neuron 109(4):700–712 e4 
[PubMed: 33326754] 

123. Cole MW, Etzel JA, Zacks JM, Schneider W, Braver TS. 2011. Rapid transfer of abstract rules 
to novel contexts in human lateral prefrontal cortex. Front Hum Neurosci 5:142 [PubMed: 
22125519] 

124. Koida K, Komatsu H. 2007. Effects of task demands on the responses of color-selective neurons 
in the inferior temporal cortex. Nat Neurosci 10(1):108–16 [PubMed: 17173044] 

125. Chowdhury SA, DeAngelis GC. 2008. Fine discrimination training alters the causal contribution 
of macaque area MT to depth perception. Neuron 60(2):367–77 [PubMed: 18957227] 

126. Koldaeva A, Schaefer AT, Fukunaga I. 2019. Rapid task-dependent tuning of the mouse olfactory 
bulb. Elife 8:e43558

127. Solway A, Botvinick MM. 2015. Evidence integration in model-based tree search. Proc Natl Acad 
Sci U S A 112(37):11708–13 [PubMed: 26324932] 

128. Huys QJ, Lally N, Faulkner P, Eshel N, Seifritz E, et al. 2015. Interplay of approximate planning 
strategies. Proc Natl Acad Sci U S A 112(10):3098–103 [PubMed: 25675480] 

129. Bv Opheusden, Ma WJ. 2019. Tasks for aligning human and machine planning. Current Opinion 
in Behavioral Sciences 29:127–133

130. Badre D, Nee DE. 2018. Frontal cortex and the hierarchical control of behavior. Trends Cogn Sci 
22(2):170–188 [PubMed: 29229206] 

131. Riley MR, Qi XL, Zhou X, Constantinidis C. 2018. Anterior-posterior gradient of plasticity in 
primate prefrontal cortex. Nat Commun 9(1):3790 [PubMed: 30224705] 

132. Yang Q, Lin Z, Zhang W, Li J, Chen X, et al. 2022. Monkey plays pac-man with compositional 
strategies and hierarchical decision-making. eLife 11:e74500

133. Ashwood ZC, Roy NA, Stone IR, International Brain L, Urai AE, et al. 2022. Mice alternate 
between discrete strategies during perceptual decision-making. Nat Neurosci 25(2):201–212 
[PubMed: 35132235] 

134. Churchland AK, Kiani R. 2016. Three challenges for connecting model to mechanism in 
decision-making. Curr Opin Behav Sci 11:74–80 [PubMed: 27403450] 

135. Bartolo R, Averbeck BB. 2020. Prefrontal cortex predicts state switches during reversal learning. 
Neuron 106(6):1044–1054 e4 [PubMed: 32315603] 

136. Murray EA, Rudebeck PH. 2018. Specializations for reward-guided decision-making in the 
primate ventral prefrontal cortex. Nat Rev Neurosci 19(7):404–417 [PubMed: 29795133] 

Okazawa and Kiani Page 22

Annu Rev Physiol. Author manuscript; available in PMC 2023 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



137. Purcell BA, Kiani R. 2016. Hierarchical decision processes that operate over distinct timescales 
underlie choice and changes in strategy. Proc Natl Acad Sci U S A 113(31):E4531–40 [PubMed: 
27432960] 

138. Sarafyazd M, Jazayeri M. 2019. Hierarchical reasoning by neural circuits in the frontal cortex. 
Science 364(6441):eaav8911

139. Chiu YC, Yantis S. 2009. A domain-independent source of cognitive control for task sets: 
shifting spatial attention and switching categorization rules. J Neurosci 29(12):3930–8 [PubMed: 
19321789] 

140. Xu Y. 2018. The posterior parietal cortex in adaptive visual processing. Trends Neurosci 
41(11):806–822 [PubMed: 30115412] 

141. Tajima S, Koida K, Tajima CI, Suzuki H, Aihara K, Komatsu H. 2017. Task-dependent recurrent 
dynamics in visual cortex. Elife 6:e26868

142. Akrami A, Liu Y, Treves A, Jagadeesh B. 2009. Converging neuronal activity in inferior temporal 
cortex during the classification of morphed stimuli. Cereb Cortex 19(4):760–76 [PubMed: 
18669590] 

143. Pinto L, Rajan K, DePasquale B, Thiberge SY, Tank DW, Brody CD. 2019. Task-dependent 
changes in the large-scale dynamics and necessity of cortical regions. Neuron 104(4):810–824 e9 
[PubMed: 31564591] 

144. Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG. 2004. A general mechanism for 
perceptual decision-making in the human brain. Nature 431(7010):859–62 [PubMed: 15483614] 

145. Cisek P. 2022. Evolution of behavioural control from chordates to primates. Philos Trans R Soc 
Lond B Biol Sci 377(1844):20200522

146. Hunt LT, Hayden BY. 2017. A distributed, hierarchical and recurrent framework for reward-based 
choice. Nat Rev Neurosci 18(3):172–182 [PubMed: 28209978] 

147. Fine JM, Hayden BY. 2022. The whole prefrontal cortex is premotor cortex. Philos Trans R Soc 
Lond B Biol Sci 377(1844):20200524

148. Lee TS, Mumford D. 2003. Hierarchical bayesian inference in the visual cortex. J Opt Soc Am A 
Opt Image Sci Vis 20(7):1434–48 [PubMed: 12868647] 

149. Preuss TM, Wise SP. 2022. Evolution of prefrontal cortex. Neuropsychopharmacology 47(1):3–19 
[PubMed: 34363014] 

150. Calhoun AJ, Pillow JW, Murthy M. 2019. Unsupervised identification of the internal states that 
shape natural behavior. Nat Neurosci 22(12):2040–2049 [PubMed: 31768056] 

151. Wolff SB, Olveczky BP. 2018. The promise and perils of causal circuit manipulations. Curr Opin 
Neurobiol 49:84–94 [PubMed: 29414070] 

152. Bredenberg C, Savin C, Kiani R. 2021. Recurrent neural circuits overcome partial inactivation by 
compensation and re-learning. bioRxiv 2021.11.12.468273

153. Li N, Daie K, Svoboda K, Druckmann S. 2016. Robust neuronal dynamics in premotor cortex 
during motor planning. Nature 532(7600):459–64 [PubMed: 27074502] 

154. Katz LN, Yates JL, Pillow JW, Huk AC. 2016. Dissociated functional significance of decision-
related activity in the primate dorsal stream. Nature 535(7611):285–8 [PubMed: 27376476] 

155. Zhou Y, Freedman DJ. 2019. Posterior parietal cortex plays a causal role in perceptual and 
categorical decisions. Science 365(6449):180–185 [PubMed: 31296771] 

156. Jeurissen D, Shushruth S, El-Shamayleh Y, Horwitz GD, Shadlen MN. 2022. Deficits in decision-
making induced by parietal cortex inactivation are compensated at two timescales. Neuron 
110(12):1924–1931 [PubMed: 35421328] 

157. Yao JD, Gimoto J, Constantinople CM, Sanes DH. 2020. Parietal cortex is required for the 
integration of acoustic evidence. Curr Biol 30(17):3293–3303 e4 [PubMed: 32619478] 

158. Zhong L, Zhang Y, Duan CA, Deng J, Pan J, Xu NL. 2019. Causal contributions of parietal 
cortex to perceptual decision-making during stimulus categorization. Nat Neurosci 22(6):963–
973 [PubMed: 31036942] 

159. Erlich JC, Brunton BW, Duan CA, Hanks TD, Brody CD. 2015. Distinct effects of prefrontal and 
parietal cortex inactivations on an accumulation of evidence task in the rat. Elife 4:e05457

Okazawa and Kiani Page 23

Annu Rev Physiol. Author manuscript; available in PMC 2023 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



160. Jun EJ, Bautista AR, Nunez MD, Allen DC, Tak JH, et al. 2021. Causal role for the primate 
superior colliculus in the computation of evidence for perceptual decisions. Nat Neurosci 
24(8):1121–1131 [PubMed: 34183869] 

161. Koay SA, Thiberge SY, Brody CD, Tank DW. 2019. Neural correlates of cognition in 
primary visual versus neighboring posterior cortices during visual evidence-accumulation-based 
navigation. bioRxiv 568766

162. Musall S, Kaufman MT, Juavinett AL, Gluf S, Churchland AK. 2019. Single-trial neural 
dynamics are dominated by richly varied movements. Nat Neurosci 22(10):1677–1686 [PubMed: 
31551604] 

163. Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M, Harris KD. 2019. 
Spontaneous behaviors drive multidimensional, brainwide activity. Science 364(6437):255 
[PubMed: 31000656] 

164. Kobak D, Brendel W, Constantinidis C, Feierstein CE, Kepecs A, et al. 2016. Demixed principal 
component analysis of neural population data. Elife 5:e10989

165. Williams AH, Kim TH, Wang F, Vyas S, Ryu SI, et al. 2018. Unsupervised discovery of demixed, 
low-dimensional neural dynamics across multiple timescales through tensor component analysis. 
Neuron 98(6):1099–1115 e8 [PubMed: 29887338] 

166. Kriegeskorte N, Wei XX. 2021. Neural tuning and representational geometry. Nat Rev Neurosci 
22(11):703–718 [PubMed: 34522043] 

167. Ebitz RB, Hayden BY. 2021. The population doctrine in cognitive neuroscience. Neuron 
109(19):3055–3068 [PubMed: 34416170] 

168. Kohn A, Jasper AI, Semedo JD, Gokcen E, Machens CK, Yu BM. 2020. Principles of 
corticocortical communication: Proposed schemes and design considerations. Trends Neurosci 
43(9):725–737 [PubMed: 32771224] 

169. Fetsch CR. 2016. The importance of task design and behavioral control for understanding the 
neural basis of cognitive functions. Curr Opin Neurobiol 37:16–22 [PubMed: 26774692] 

170. Roxin A, Ledberg A. 2008. Neurobiological models of two-choice decision making can be 
reduced to a one-dimensional nonlinear diffusion equation. PLoS Comput Biol 4(3):e1000046

171. Cohen JD, Dunbar K, McClelland JL. 1990. On the control of automatic processes: a parallel 
distributed processing account of the stroop effect. Psychol Rev 97(3):332–61 [PubMed: 
2200075] 

172. Salinas E. 2004. Context-dependent selection of visuomotor maps. BMC Neurosci 5:47 [PubMed: 
15563737] 

173. Loh M, Deco G. 2005. Cognitive flexibility and decision-making in a model of conditional 
visuomotor associations. Eur J Neurosci 22(11):2927–36 [PubMed: 16324127] 

174. Fusi S, Asaad WF, Miller EK, Wang XJ. 2007. A neural circuit model of flexible sensorimotor 
mapping: learning and forgetting on multiple timescales. Neuron 54(2):319–33 [PubMed: 
17442251] 

175. Zylberberg A, Fernandez Slezak D, Roelfsema PR, Dehaene S, Sigman M. 2010. The brain’s 
router: a cortical network model of serial processing in the primate brain. PLoS Comput Biol 
6(4):e1000765

176. Yang GR, Murray JD, Wang XJ. 2016. A dendritic disinhibitory circuit mechanism for pathway-
specific gating. Nat Commun 7:12815 [PubMed: 27649374] 

177. Akam T, Kullmann DM. 2010. Oscillations and filtering networks support flexible routing of 
information. Neuron 67(2):308–20 [PubMed: 20670837] 

178. Kremkow J, Aertsen A, Kumar A. 2010. Gating of signal propagation in spiking neural networks 
by balanced and correlated excitation and inhibition. J Neurosci 30(47):15760–8 [PubMed: 
21106815] 

179. Song HF, Yang GR, Wang XJ. 2017. Reward-based training of recurrent neural networks for 
cognitive and value-based tasks. Elife 6:e21492

180. Chaisangmongkon W, Swaminathan SK, Freedman DJ, Wang XJ. 2017. Computing by robust 
transience: How the fronto-parietal network performs sequential, category-based decisions. 
Neuron 93(6):1504–1517 e4 [PubMed: 28334612] 

Okazawa and Kiani Page 24

Annu Rev Physiol. Author manuscript; available in PMC 2023 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



181. Wang J, Narain D, Hosseini EA, Jazayeri M. 2018. Flexible timing by temporal scaling of cortical 
responses. Nat Neurosci 21(1):102–110 [PubMed: 29203897] 

182. Sussillo D, Barak O. 2013. Opening the black box: low-dimensional dynamics in high-
dimensional recurrent neural networks. Neural Comput 25(3):626–49 [PubMed: 23272922] 

183. Zhang X, Liu S, Chen ZS. 2021. A geometric framework for understanding dynamic information 
integration in context-dependent computation. iScience 24(8):102919

184. Maheswaranathan N, Williams AH, Golub MD, Ganguli S, Sussillo D. 2019. Universality and 
individuality in neural dynamics across large populations of recurrent networks. Adv Neural Inf 
Process Syst 2019:15629–15641 [PubMed: 32782422] 

185. Kohn A, Coen-Cagli R, Kanitscheider I, Pouget A. 2016. Correlations and neuronal population 
information. Annu Rev Neurosci 39:237–56 [PubMed: 27145916] 

186. Kaufman MT, Churchland MM, Ryu SI, Shenoy KV. 2015. Vacillation, indecision and hesitation 
in moment-by-moment decoding of monkey motor cortex. Elife 4:e04677

187. Keemink SW, Machens CK. 2019. Decoding and encoding (de)mixed population responses. Curr 
Opin Neurobiol 58:112–121 [PubMed: 31563083] 

188. Perich MG, Rajan K. 2020. Rethinking brain-wide interactions through multi-region ‘network of 
networks’ models. Curr Opin Neurobiol 65:146–151 [PubMed: 33254073] 

189. Kleinman M, Chandrasekaran C, Kao JC. 2020. Recurrent neural network models of multi-area 
computation underlying decision-making. bioRxiv 798553

190. . Chaudhuri R, Knoblauch K, Gariel MA, Kennedy H, Wang XJ. 2015. A large-scale circuit 
mechanism for hierarchical dynamical processing in the primate cortex. Neuron 88(2):419–31 
[PubMed: 26439530] 

Okazawa and Kiani Page 25

Annu Rev Physiol. Author manuscript; available in PMC 2023 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Perceptual decision making in a stationary context. (a) Design of a typical visual 

discrimination task. Subjects report the net direction of random-dots motion (left or right) 

by making a saccadic eye movement. The percentage of coherently moving dots varies 

across trials. Neural recording is typically made from neurons whose response field (RF, 

gray shading) overlaps with one of the targets. (b) A bounded accumulation model accounts 

for the behavior. The model accumulates noisy sensory evidence to form a decision variable 

(DV) and commits to a choice when the DV reaches a bound. (c) Neural activity similar to 

the DV can be found in diverse brain regions involved in oculomotor control. For example, 

neurons in LIP increase their firing rates when the stimulus supports a saccade to the target 

in their RFs. Tin, target in neuron RF; Tout, target outside RF. Right panel, adapted with 

permission from Reference 8; copyright 2002 Society for Neuroscience. (d) Circuit models. 

In bistable attractor dynamics models (left; 19, 20), two pools of neurons, each supporting 

one of the choices, compete until one pool dominates. In probabilistic population codes, 

networks that integrate neural activity can perform optimal evidence accumulation (right; 

adapted with permission from Reference 21; copyright 2008 Elsevier). dlPFC, dorsolateral 

prefrontal cortex; FEF, frontal eye field; LIP, lateral intraparietal area; MT, middle temporal 

area.
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Figure 2. 
Diverse forms of context dependency in perceptual decision making. (a) Decision making is 

hierarchical in nature. Even for the simplest decision, the brain first chooses relevant stimuli, 

actions, solutions, and policies. (b) Adjustments in decision policy are often explained 

as changes in the parameters of decision-making models. Adjustable parameters of the 

bounded accumulation model are shown in red. (c) Post-error slowing is an example 

of policy adjustment. Slower reaction times after error trials (left panel) are explained 

by reduced sensory sensitivity and lower urgency. Correspondingly, LIP buildup activity 

decreases after error trials (right panel). Adapted with permission from Reference 50; 

copyright 2016 Elsevier. (d) Common task designs that test flexibility in stimulus-action 

mapping: (1) Change in relevant sensory modality or feature. (2) Change in effectors (e.g., 

saccade and reach; top) or reversal of stimulus-action mapping (bottom). (3) Change in 

categorization boundary. (e) Flexibility to adopt different solutions. For example, the same 

stimulus could be integrated, differentiated, matched to a template, and so on (top). More 

complex tasks that involve hierarchical inference, offer a rich ground for studying flexibility 
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of strategy (bottom; adapted with permission from Reference 51; copyright 2021 Ariel 

Zylberberg).
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Figure 3. 
Diverse brain regions are implicated in context-dependent decision making. Dark red 

circles on the brain indicate the site recorded in the study highlighted in each panel. We 

depicted a monkey brain for illustrative purposes, but several results are from rodents. (a) 

Medial intraparietal (MIP) neurons encode the decision variable with different strengths 

when monkeys report their decisions through reaching or eye movements. Adapted with 

permission from Reference 85; copyright 2015 Society for Neuroscience. (b) Lateral 

intraparietal (LIP) neurons encode the decision variable for their preferred saccade targets 

along curved manifolds in population state space that are distinct for motion and face 

discrimination tasks. Adapted with permission from Reference 69; copyright 2021 Elsevier. 

(c) Monkey V1 neurons show distinct patterns of noise correlations depending on the 

category boundary in an orientation discrimination task. Adapted with permission from 

Reference 106; copyright 2018 Springer Nature. (d) When mice report if two sequentially 

presented odors (sample and test stimuli) match, premotor (PM) neurons encode sample 

odor during the delay period before any motor plan can be made. Adapted with permission 

from Reference 102; copyright 2020 Elsevier. (e) A1 neurons encode task rules before 

stimulus presentation when rats report either the location or the pitch of the same auditory 

stimulus. Adapted with permission from Reference 75; copyright 2014 Elsevier. (f) Superior 

colliculus (SC) neurons encode task rules before stimulus presentation when rats switch 

between pro (orienting toward a stimulus) and anti (orienting away) stimulus-action 

associations. Adapted with permission from Reference 97; copyright 2021 Springer Nature.
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Figure 4. 
Mechanisms of deciding to switch task rules proposed in Purcell et al. (137). (a) Subjects 

report motion direction using either the upper or lower pair of direction targets depending 

on the context. (b) The context is not cued and must be inferred from feedback. Subjects 

switch context after errors (open circles; color indicates motion coherence) depending on 

the history of feedback and motion coherence on the previous trials (top). Behavior could 

be modeled as the accumulation of switch evidence to a bound (bottom). Switch evidence 

is formed by combining feedback and the certainty of the previous trial. Adapted with 

permission from Reference 137; the authors hold the copyright.
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Figure 5. 
Schematic of network architectures proposed to explain flexible perceptual decision-making. 

(a) A prevalent theory is that the prefrontal cortex or a frontoparietal network operates 

as a central hub that gates relevant sensory information and generates appropriate motor 

plans. Its internal circuits flexibly adjust computations applied to sensory inputs, sending 

final decisions to appropriate motor regions for execution. (b) A distributed architecture 

consistent with recent experimental findings. There are no distinct central controls, but 

multiple brain regions have the capacity to maintain task contexts and flexibly modulate 

behavior. Dynamics of activity in these brain regions flexibly form decisions. There are 

gradients within the network such that regions deeper in the sensorimotor hierarchy play 

more prominent roles in creating flexible behavior.
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Figure 6. 
Example circuit motifs proposed to model decision-making and its flexible adjustments. 

S1 and S2 are inputs from sensory neurons selective to the discriminated stimuli (e.g., left 

and right motion directions). A1 and A2 are drives for the two actions (e.g., leftward and 

rightward saccade). (a) When a decision is made through competition of choice-selective 

neural modules, changes in self-excitation (red plus signs) alter speed-accuracy trade-off. 

(b) To achieve flexible stimulus-action mapping, a control module could switch the routing 

of sensory information depending on contextual signals. (c) More recent models implement 

similar computations by training recurrent neural networks. (d) Embracing the distributed 

nature of neural processing and interactions in the actual brain can yield mechanistic models 

that better explain the neural responses. Multi-module RNNs are a fruitful step in that 

direction.
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