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Abstract
Background  Machine Learning has been increasingly used in the medical field, including managing patients 
undergoing hemodialysis. The random forest classifier is a Machine Learning method that can generate high accuracy 
and interpretability in the data analysis of various diseases. We attempted to apply Machine Learning to adjust dry 
weight, the appropriate volume status of patients undergoing hemodialysis, which requires a complex decision-
making process considering multiple indicators and the patient’s physical conditions.

Methods  All medical data and 69,375 dialysis records of 314 Asian patients undergoing hemodialysis at a single 
dialysis center in Japan between July 2018 and April 2020 were collected from the electronic medical record system. 
Using the random forest classifier, we developed models to predict the probabilities of adjusting the dry weight at 
each dialysis session.

Results  The areas under the receiver-operating-characteristic curves of the models for adjusting the dry weight 
upward and downward were 0.70 and 0.74, respectively. The average probability of upward adjustment of the dry 
weight had sharp a peak around the actual change over time, while the average probability of downward adjustment 
of the dry weight formed a gradual peak. Feature importance analysis revealed that median blood pressure decline 
was a strong predictor for adjusting the dry weight upward. In contrast, elevated serum levels of C-reactive protein 
and hypoalbuminemia were important indicators for adjusting the dry weight downward.

Conclusions  The random forest classifier should provide a helpful guide to predict the optimal changes to the dry 
weight with relative accuracy and may be useful in clinical practice.
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Background
Machine learning (ML) has been increasingly used in 
the medical field for diagnosing and predicting illnesses 
based on multiple parameters and background character-
istics of patients [1]. ML has demonstrated a pivotal role 
in estimating the onset of acute kidney injury [2–5] and 
the therapeutic responses of diabetic nephropathy [6] 
and IgA nephropathy [7]. In dialysis treatment, ML has 
also shown to be useful in the adjustment of the erythro-
poiesis-stimulating agent dosage for renal anemia [8–11], 
prediction of the occurrence of hypotension [12–14], and 
evaluation of fluid volume for patients undergoing dialy-
sis [15]. In healthcare systems, ML has the potential to 
improve the selection of appropriate investigation and 
therapeutic processes, possibly resulting in improved 
prognosis in hemodialysis patients.

Heart failure is a major cause of mortality among 
patients undergoing hemodialysis [16]. Many laboratory 
and clinical parameters are associated with the incidence 
and progression of heart failure, including hypertension, 
anemia, serum calcium levels, and excess extracellular 
volume [17]. Among these, dry weight (DW) is pivotal 
in controlling the volume status in hemodialysis patients 
[17]. DW is defined as “body weight with adequate fluid 
volume without excessive hypotension during dialysis 
and with minimal cardiovascular burden in the long term 
[18].” Therefore, maintaining an appropriate DW is cru-
cial for the prevention of heart failure and results in the 
reduction of mortality in hemodialysis patients [19].

Clinically, physicians determine DW by considering 
multiple indicators, such as blood pressure, increased 
body weight between dialysis sessions, cardiothoracic 
ratio, pleural effusion, edema, brain natriuretic peptide 
(BNP), and other blood tests [20]. Revising and chang-
ing a patient’s DW according to their condition, includ-
ing infectious diseases, diet, and physical activity at the 
time, is necessary. That is, DW cannot be determined by 
simple calculation, without specific indicators, and the 
weight of each parameter varies per patient. Trends in 
fluid volume changes may exist with changes in appetite, 
physical activity, and acute illness but are challenging to 
predict accurately. Therefore, automating information 
collection and processing, supporting diagnosis, and 
treatment using ML is urgently needed.

The random forest (RF) classifier is a ML method that 
generates high accuracy in the data analysis of vari-
ous diseases, such as cardiovascular disease [21], stroke 
[22], cataracts [23], and ovarian cancer [24], because it 
can consider interactions between variables and is not 
affected by possible outliers. The RF classifier is one of the 
class identification methods in which data and explana-
tory variables are randomly divided to create multiple 
decision trees, and the final classification is achieved by 
the majority vote [25]. Because the correlations between 

each decision tree are weakened, overfitting is sup-
pressed, which improves prediction performance. In 
addition, the RF classifier has high interpretability, such 
as the ability to calculate the relative importance of input 
variables, and is considered helpful for cases with many 
explanatory variables.

Previous studies using ML have shown that there 
are significant errors in the predictions of DW [26, 27]. 
Therefore, in the present study, we aimed to apply an RF 
classifier to predict the adjustments of DW made by dial-
ysis specialists using many explanatory variables.

Methods
Patients and variables
We conducted a retrospective observational study at the 
Seirei Sakura Citizen Hospital in Chiba, Japan. Figure  1 
shows the subject selection process. The study included 
patients who underwent hemodialysis at the facility twice 
or thrice a week for at least three months and were aged 
20 years or older. All dialysis records were extracted from 
the dialysis system (Nikkiso Co., Ltd., Tokyo, Japan) from 
July 2018 to April 2020. A unique format was created 
to extract dialysis records from the dialysis system. The 
records were aggregated for each patient, and patients 
with more than 50 dialysis records were selected. The 
dialysis records within the first three months from the 
initiation of dialysis were excluded because of the unsta-
ble volume status in that period. CHDF and apheresis 
sessions are excluded to ensure consistency of conditions.

The clinical parameters, backgrounds, and medications 
of the eligible patients were collected from the electronic 
medical record system and anonymized. Laboratory tests 
were routinely performed twice a month at the begin-
ning of the week. Table  1 lists the variables used in the 
extracted data.

Dialysis and dry weight
Generally, patients undergo hemodialysis twice or thrice 
a week for 240 min per session. In every session, nephrol-
ogists are attending near the hemodialysis patients and 
checking the hemodialysis procedure being correctly 
done. Hemodialysis patients usually have regular labora-
tory tests twice a month, meaning they are tested every 
two or three weeks. The DW of each patient was assessed 
and adjusted by several nephrologists periodically and 
when clinically indicated, by referring to multiple indica-
tors such as blood pressure, clinical findings, chest x-ray 
findings, laboratory test results, sonographic measure-
ment of the inferior vena cava diameter, and blood vol-
ume monitor, as recommended by the Japanese Society 
for Dialysis Therapy guidelines [18] and K/DOQI clinical 
practice guidelines [28].

The default dialysate sodium concentration was 140 
mmol/L, and the dialysate calcium concentration was 
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2.75 mmol/L. The dialysate flow rate was 500 ml/min, 
and the dialysate temperature was 36.0  °C for almost all 
patients.

Data preprocessing
Table 1 shows the list of input variables used in this anal-
ysis. The pre-dialysis blood test results are used from the 

day of the test until the day before the next blood test. 
The post-dialysis laboratory test results are used as the 
data of the following dialysis date and are valid until the 
next test is performed. Each drug in the prescription 
data was divided into categories based on its efficacy, 
and the top 50 categories with the highest number of 
prescriptions were assigned an identification code. We 
manually confirmed the presence or absence of clini-
cal findings from medical record entries containing the 
following keywords: pleural effusion, edema, oxygen 
demand, and hypotension. Dialyzers were expressed as 
membrane areas. Median values were obtained from all 
vital signs (including blood pressure and heart rate) mea-
surements during each dialysis session and is only used 
on the same day. Intradialytic hypotension was defined 
as a fall in systolic blood pressure of 20 or more during 
a dialysis session. Among the above, dummy variables 
were used, except for continuous variables. The miss-
ing values were filled with the previous or average val-
ues before splitting the train and test set (Supplementary 
Table S1). 75% of the data (237 patients) were randomly 
selected for the training dataset, and the remaining 25% 
(77 patients) were used as the test dataset to evaluate the 
performance of the prediction. In the dataset, physicians 
adjusted the DW upward (downward) from the previous 
session in approximately 2.5% (3.0%) of all dialysis ses-
sions. Whether these changes were made was used as the 
objective variable in machine learning.

Table 1  Input variables used in analyses
category items
Demographic and anthropo-
metric data

Age, gender, race, height, date of in-
troduction of dialysis, name of primary 
disease

Laboratory test results Pre- and post-dialysis WBC, RBC, Hb, 
Ht, Plt, Ret, TP, Alb, ALP, ChE, BUN, Cre, 
Na, K, Cl, Ca, IP, intact PTH, Fe, UIBC, FER, 
BNP, CRP

Prescription data Drug name, dosage, number of days 
prescribed, and start date

Medical record entries that in-
clude the following keywords

Pulmonary congestion, pleural effu-
sion, oxygen administration, edema, 
hypotension

Dialysis record Membrane area of dialyzer, blood flow 
rate, injected drugs during dialysis, car-
diothoracic ratio, median values of vital 
signs (blood pressure, pulse rate, body 
temperature), intradialytic hypotension

WBC, white blood cell; RBC, red blood cell; Hb, hemoglobin; Ht, hematocrit; 
Plt, platelet; Ret, reticulocyte; TP, total protein; Alb, albumin; ALP, alkaline 
phosphatase; ChE, cholinesterase; BUN, blood urea nitrogen; Cre, creatinine; 
Na, sodium; K, potassium; Cl, chlorine; Ca, calcium; IP, inorganic phosphorus; 
PTH, parathyroid hormone; Fe, iron; UIBC, unsaturated iron binding capacity; 
FER, ferritin; BNP, brain natriuretic peptide; CRP, C-reactive protein

Fig. 1  Process of selecting the subjects
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Supervised machine learning and importance analysis
There are many machine learning algorithms that can be 
applied to this task. In our initial examination, we have 
found that RF produces better results than other algo-
rithms such as XGBoost and ANN, since the number of 
explanatory variables in our data is not very large and the 
task is a simple binary prediction of Dry Weight change. 
Our previous study also showed that RF performs repro-
ducibly better than other algorithms in a binary clas-
sification task based on the similar clinical parameters 
as in this study [24]. For these reasons, we have applied 
RF classifier to train the models to predict the change 
in DW. The RF is an ensemble learning method that 
improves performance by training multiple models. In 
the RF models, training is performed using multiple deci-
sion trees. In the training process, the dataset was ran-
domly selected for each decision tree using bootstrap 
sampling. The RF prediction is achieved by taking the 
majority vote of each decision tree. At each dialysis ses-
sion, two RF classifier models were trained separately to 
determine whether “the DW should be adjusted upward 
or not” and “the DW should be adjusted downward or 
not,” because we hypothesized that the factors involved 
in Dry Weight increase were different from those 
involved in Dry Weight decrease, and it would be impor-
tant to build separate models to account for the differ-
ent contributions of the explanatory variables. The label 
data were set as the actual DW change by the nephrolo-
gists of the hospital. The RandomForestClassifier in the 
Python package scikit-learn was used in the analysis. 
GridSearchCV was applied to automatically optimize the 
hyperparameters of the RF classifier. For hyperparam-
eter optimization, we use the following hyperparameters 
candidates for two models: max_depth: [None, 2, 3, 4, 5, 
6], max_features: [“auto”, 6, 12, 24, 48], criterion: [“gini”, 
“entropy”]. The labels of the dataset in this study were 
imbalanced (the number of sessions “without chang-
ing DW” was relatively high compared to the number 
of sessions “adjusting DW upward” or “downward”). To 
regulate this imbalance, the Synthetic Minority Over-
sampling Technique (SMOTE) algorithm was applied 
[29]. SMOTE is a method of oversampling that increases 
the minority population of imbalanced data. SMOTE in 
the Python package imbalanced learning was used in this 
study. For each dialysis session for each patient, the two 
models predicted the probabilities of “the DW should be 
adjusted upward” and “the DW should be adjusted down-
ward,” denoted as “Pup” and “Pdown” scores, respectively, 
with both scores ranging between 0 and 1. The probabili-
ties of the classified predictions were rescaled using the 
probability calibration [30–32]. The trained RF classifier 
models were calibrated using CalibratedClassifierCV 
in the scikit-learn package. The overall performance of 
each model was evaluated using an area under the curve 

(AUC) of receiver operating characteristic (ROC) curve 
for the test data set. We also calculated accuracy, preci-
sion, recall, and F1 at the optimal probability threshold 
with the highest Youden Index. To monitor changes in 
a patient, we examined the probability changes for each 
patient. In addition, the predicted probability changes 
were evaluated in the 30 hemodialysis sessions before 
and after the DW change. The feature importance was 
obtained from the trained models, which show the con-
tribution of each feature to the prediction.

Results
Patient characteristics
We retrospectively collected 69,375 dialysis records from 
314 Asian patients during the observation period. The 
average observation period was 17.5 months. 73% of the 
patients were men. The mean age of the patients was 66.4 
years old, and the median dialysis vintage was 4.0 years. 
The most common primary disease for dialysis induction 
was diabetic nephropathy (42.4%), followed by chronic 
glomerulonephritis (19.4%), nephrosclerosis (16.6%), and 
others (17.8%) (Table 2).

Prediction of dry weight change with RF classifiers
To learn the physician’s decision on how to set the DW 
for the next dialysis session, two RF classifier models 
were trained separately with 51,935 dialysis records from 
237 patients and validated for accuracy using 17,440 
records from 77 patients.

As the result of GridsearchCV, we got (max_depth = 3, 
max_features = 12, criterion = “gini”) for DW up model, 
and (max_depth = 5, max_features = 12, criterion = 
“entropy”) for DW down model. After the calibration 
of the models, the optimal probability thresholds with 
the highest Youden were 0.204 for the DW up model, 
and 0.114 for the DW down model. The AUC, accu-
racy, precision, recall, and F1 score of the two models 
for the test data set were (AUC = 0.70, accuracy = 0.656, 
precision = 0.045, recall = 0.676, F1 score = 0.084) for 
DW up model, and (AUC = 0.74, accuracy = 0.618, preci-
sion = 0.055, recall = 0.751, F1 score = 0.102) for DW down 
model, respectively (Fig.  2). We also examined the rela-
tionship between the actual DW changes and the pre-
dicted probabilities of the ML models, Pup and Pdown, 
in two representative cases. In the first case, shown in 
Fig.  3a and b, and 3c, the machine learning prediction, 
Pup, was greater than 0.5 in the majority of instances 
when the DW actually changed upward. Pdown was often 
higher before and after the DW was changed downward, 
but the values were smaller than those of Pup and often 
did not show a clear peak. In the second case, shown in 
Fig.  3d and e, and 3f, the actual DW remained fixed at 
a constant value despite the many Pup peaks in the first 
half of the case. The Pdown was low in the first half, but 
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persistently quite high, close to 1.0, around the end of 
the recording. Interestingly, Pup was also quite high dur-
ing this period, indicating a conflict between the two 
machine learning models.

Thereafter, we examined the changes in the predic-
tion probabilities of ML in the 30 hemodialysis sessions 
before and after the actual DW change for all cases 
included in the test dataset. The average Pup had a sharp 
peak at the time of the actual upward change in DW and 
then declined immediately (Fig. 4a). However, the change 
in Pdown was slow and remained high for a while after the 
actual downward change in DW occurred (Fig. 4b).

Identification of key factors in the prediction of DW 
changes
To clarify the parameters on which the determination of 
DW changes in the ML process is based, we calculated 
the variable importance of the two ML models. Figure 5 
shows the relative importance of the input variables in 
each model, listed in order of importance values.

For the model to predict upward DW changes, vari-
ables related to blood pressure are of great importance 
(Fig.  5a). The top three most important variables were 
the median value of systolic blood pressure, mean blood 
pressure, and diastolic blood pressure measured several 
times during a single dialysis session.

Systolic blood pressure was also an essential factor in 
predicting downward DW changes (Fig.  5b). However, 
the two most important variables were C-reactive protein 
(CRP) and pre-dialysis albumin levels, while blood pres-
sure was relatively less important.

Next, the transition of the most important features was 
examined in 30 hemodialysis sessions before and after 
the actual DW change. Blood pressure, an important 
predictor of the upward DW change, showed a marked 
decrease at the time of the actual upward DW change, 
followed by rapid recovery (Fig. 6a and b, and 6c). How-
ever, even the systolic blood pressure, which declined the 
most, only dropped from 141 mm Hg to 133 mm Hg on 
average over 30 dialysis sessions.

CRP, an important indicator of the downward DW 
change, showed a sharp increase just before the actual 
DW change, but its peak occurred a little later than the 
actual DW change (Fig. 6d). The change in albumin was 
slower and began to increase immediately after the actual 
DW change (Fig.  6e). Systolic blood pressure, which 
showed a sharp peak around the upward DW change, 
showed a slow change before and after the downward 
DW change (Fig.  6f ). CRP levels rose from 1.2  mg/dL 
to 2.1 mg/dL, albumin levels declined from 3.18 g/dL to 
3.12  g/dL, and the median systolic blood pressure rose 

Table 2  Characteristics of patients and dialysis parameters in the training and test data
All (n = 314) Train data (n = 237) Test data (n = 77)

Demographics
Age, years 66.4 ± 12.4 66.4 ± 12.5 66.3 ± 12.3

Gender (Male/Female) 224 /90 170 /67 54 /23

Race, n (%)

Asian (Japanese) 312 (99.4) 235 (99.2) 77 (100.0)

Asian (Southeast Asian) 2 (0.6) 2 (0.8) 0 (0.0)

Dialysis vintage, years 4.0 (2.0–8.0) 4.0 (2.0-8.8) 4.0 (2.0–6.0)

Body mass index, kg/m2 22.2 ± 4.3 22.1 ± 3.8 22.6 ± 5.4

Primary disease, n (%)
Diabetic nephropathy 133 (42.4) 95 (40.1) 38 (49.4)

Chronic glomerulonephritis 61 (19.4) 51 (21.5) 10 (13.0)

Nephrosclerosis 52 (16.6) 40 (16.9) 12 (15.6)

Polycystic kidney disease 12 (3.8) 11 (4.6) 1 (1.3)

Others 56 (17.8) 40 (16.9) 16 (20.8)

Dialysis parameter
UF (L/session) 2.4 ± 0.97 2.4 ± 0.95 2.6 ± 1.03

UFR (L/hr) 0.61 ± 0.24 0.60 ± 0.24 0.64 ± 0.25

Dry Weight (kg) 59.7 ± 14.2 59.3 ± 12.8 60.8 ± 17.6

Dialysis mode, n (%)
HD 5047 (7.3) 3238 (6.2) 1809 (10.4)

HD + ECUM 306 (0.4) 146 (0.3) 160 (0.9)

OHDF 63,700 (91.8) 48,320 (93.0) 15,380 (88.2)

OHDF + ECUM 254 (0.4) 185 (0.4) 69 (0.4)

ECUM 68 (0.1) 46 (0.1) 22 (0.1)
Values are expressed as mean ± standard deviation, median (interquartile range), or percent frequency

UF, ultrafiltration; UFR, ultrafiltration rate; HD, hemodialysis; ECUM, extracorporeal ultrafiltration method; OHDF, online hemodiafiltration
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slightly from 148 mm Hg to 150 mm Hg on average over 
30 dialysis sessions.

Discussion
In this study, we developed novel methods to predict 
whether DW should be adjusted at each dialysis session 
using an RF classifier. The AUCs of the models were 0.70 
or more, indicating high reliability. By analyzing approxi-
mately 150 variables, our approach revealed the most 
important input factors for each decision-making. These 
models may enable medical staff to determine the correct 
timing for adjusting DW more efficiently.

Several studies have used machine learning to predict 
DW in patients undergoing dialysis. Guo et al. predicted 
DW using a neural network model and compared it to 
the DW predicted by a body composition monitor; their 
model’s root mean square error was 1.316 [26]. Kim et 
al. used XGBoost machine learning to predict DW and 
compared it with DW based on bioimpedance spectros-
copy [27]. If the difference between the two groups was 
between 1 and 2 kg, the average accuracies were 72–83%. 
Both results suggest the usefulness of machine learning. 
However, challenges remain, with significant errors in 
the prediction of the DW itself. Therefore, we focused on 

Fig. 2  ROC curves of the ML models for the test data set
 The dashed line and solid line indicate the ROC curves of the models for the prediction of an upward and downward change in DW, respectively
 ROC, receiver operating characteristic; ACU, area under the curve; DW, dry weight
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adjusting the DW upward or downward, rather than esti-
mating the value of DW.

DW could be acceptable in a particular range for sta-
ble maintenance hemodialysis patients with few cardiac 
problems. Usually, DW is not immediately determined 
as a constant value but is probed and adjusted gradu-
ally based on various information gathered [20]. Thus, 
we believe our model helpful in informing us when the 
current dry weight may be out of the appropriate range 
and our approach has the advantage of immediate clini-
cal application.

We have also shown how the predicted scores varied 
over time, another point that has yet to be addressed. 
Our models can capture even small changes in the input 
variables that reflect the patient’s condition.

The average Pup score showed a quick rise, precisely 
detecting the timing at which the DW should be adjusted 
upward. However, the average Pdown score gradually 
changed. A possible reason is that the model could not 
catch up with real-time changes in medical conditions 
because the frequency of laboratory tests was only twice 
a month. Furthermore, a gradual reduction of DW is rec-
ommended in clinical settings [33], corresponding to the 
gentle, slow slope of the average Pdown score.

Importance analysis revealed that serum levels of CRP 
and albumin, rather than blood pressure, showed the 
highest importance in predicting DW reduction. In addi-
tion to the elevation of CRP, hypoalbuminemia also indi-
cates an inflammatory status [34, 35], which is related to 
a decrease in muscle mass [36] and an increase in extra-
cellular volume [37, 38] in patients. Many studies have 
reported a strong association between inflammation and 
overhydration [39–41], which can lead to heart failure. 
Additional studies have shown that inflammation is asso-
ciated with mortality [42–44]. Although these are notable 
findings, using ML clearly indicates that an inflammatory 
status is the most important in adjusting DW downward.

Importance analysis also showed that declining blood 
pressure was related to predicting upward changes in 

Fig. 4  The behavior of Pup and Pdown scores around the actual DW chang-
es in the test dataset
(a) Average Pup score and (b) average Pdown score 30 sessions before and 
after the actual DW changes, represented as session 0. Even if a patient’s 
DW was changed in successive sessions, each change was treated sepa-
rately. Shaded areas indicate 95% confidence intervals
 Horizontal axis: the number of dialysis sessions along the time
 Vertical axis: the probability value from 0 to 1

 

Fig. 3  Representative examples of prediction
(a–c) and (d–f) shows the representative examples of two patients from 
the test data set
(a) and (d) show the actual DW trend; (b) and (e) show the Pup scores; (c) 
and (f) show the Pdown scores
 Arrows and arrowheads indicate sessions where the DW was adjusted 
upward and downward
 Horizontal axis: the number of dialysis sessions along the time
 Vertical axis: weight in kilograms in (a) and (d), the probability value from 
0 to 1 in (b), (c), (e), and (f)
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DW. Several studies have shown that hypotension dur-
ing dialysis is a significant poor prognostic factor [45, 
46]. Decreased blood pressure can lead to a higher risk 
of falls, stroke, arteriovenous shunt occlusion, and so on 
[47–49]. Therefore, to prevent hypotension during dialy-
sis, the ability to notify medical staff of the appropriate 
time that the DW should be adjusted upward is useful.

In our data, there were only small changes in the aver-
age levels of CRP, albumin, and blood pressure in the 
sessions where DW was actually adjusted, compared to 
30 previous sessions. Even if these changes are gradual 
and difficult for medical staff to recognize, our ML mod-
els can detect slight changes and inform them by raising 
their scores. Using our models, DW can be adjusted to 
prevent adverse events and improve a patient’s quality of 
life and prognosis.

BNP has been used to indicate fluid volume status, car-
diac function, and cardiovascular disease. Many reports 
have shown an association between the biomarker and 
heart failure and prognosis in hemodialysis patients, but 
the threshold for this association is not consistent [50]. 
In the current analysis, the importance of BNP was not 
ranked high. This was most likely because BNP is mea-
sured too infrequently to be used to predict DW adjust-
ment at every dialysis session. Furthermore, cardiac 
function and cardiovascular disease can significantly 
change the BNP value even in the same fluid volume sta-
tus, so BNP may not be effectively used in our model.

For each patient, the predicted scores were elevated 
around the time of the actual DW changes in most cases; 
however, in some instances, both the Pup and Pdown scores 
were elevated simultaneously. Most of them were as fol-
lows: the elevation of a Pdown score caused the reduction 
of DW and was immediately followed by a drop in blood 
pressure and hence an increasing Pup score, as well as 

Fig. 6  The trend in the most important input variables around the actual 
DW changes
 The trends of the top three most important input variables in the model 
to predict an upward DW change (a–c) and predict a downward DW 
change (d–f )
(a) median systolic blood pressure, (b) median average blood pressure, 
and (c) median diastolic blood pressure declined at the time of the up-
ward DW change
(d) CRP level was elevated, (e) pre-dialysis albumin level declined, (f) me-
dian systolic blood pressure was slightly elevated at the time of the down-
ward DW change. Shaded areas indicate 95% confidence intervals
 Horizontal axis: the number of dialysis sessions along the time
 sBP, systolic blood pressure; dBP, diastolic blood pressure; CRP, C-reactive 
protein; HD, hemodialysis

 

Fig. 5  Variable importance of the two ML models
 The relative importance of input variables (a) in the model to predict an 
upward DW change and (b) in the model to predict a downward DW 
change
 Horizontal axis: relative importance
 Vertical axis: input variables listed in order of importance values
 sBP, systolic blood pressure; dBP, diastolic blood pressure; CRP, C-reactive 
protein; HD, hemodialysis
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elevated inflammatory states and low blood pressure in 
critical conditions. Our models can detect these unstable 
situations.

In a real clinical setting, based on inputs such as vital 
signs, clinical findings and blood test results of each 
patient, our model could calculate the probabilities that 
DW should be raised and lowered respectively. If the 
probability exceeds thresholds, alerts will be issued, 
prompting the doctor to consider changing the DW. The 
alerts are also helpful for non-specialist doctors, other 
medical staff, and trainees. Furthermore, our model can 
be presented to patients as a rationale for changing their 
DW.

Our study has several limitations. Due to the retro-
spective nature of this study, the description of some 
findings, such as edema and pleural effusion, seemed 
inadequate in some cases. In addition, because of the low 
frequency of laboratory tests, the models do not reflect 
real-time changes. Therefore, we plan to start collecting 
data prospectively, using templates to enter findings and 
devices to monitor blood concentration during dialysis 
to improve the accuracy of our models. Furthermore, 
the findings of this work are not immediately generaliz-
able because it was a single-center study. In the future, we 
plan to collect data from other dialysis facilities and apply 
transfer learning to them.

Conclusions
In summary, we developed novel models to predict 
whether the DW of hemodialysis patients should be 
adjusted using an RF classifier. Our analysis showed the 
importance of declining blood pressure during dialy-
sis for predicting an upward change in the DW and the 
impact of elevated CRP levels and hypoalbuminemia on 
predicting a downward change in the DW. Further stud-
ies are required to evaluate the clinical effectiveness of 
our models.
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