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Abstract

Preferential transmission of a genetic mutation to the next generation, referred to as 

transmission ratio distortion (TRD), is well established for several dominant disorders, but 

underlying mechanisms remain undefined. Recently, TRD was reported for patients affected by 

pseudohypoparathyroidism type Ia or pseudopseudohypoparathyroidism. To determine whether 

TRD is observed also for autosomal dominant pseudohypoparathyroidism type Ib (AD-PHP1B), 

we analyzed kindreds with the frequent 3-kb STX16 deletion or other STX16/GNAS mutations. 

If inherited from a female, these genetic defects lead to loss-of-methylation at exon A/B alone 

or at all three differentially methylated regions (DMR), resulting in parathyroid hormone (PTH)-

resistant hypocalcemia and hyperphosphatemia and possibly resistance to other hormones. In total, 

we investigated 212 children born to 80 females who are unaffected carriers of a STX16/GNAS 
mutation (n = 47) or affected by PHP1B (n = 33). Of these offspring, 134 (63.2%) had inherited 

the genetic defect (p = .00012). TRD was indistinguishable for mothers with a STX16/GNAS 
mutation on their paternal (unaffected carriers) or maternal allele (affected). The mechanisms 

favoring transmission of the mutant allele remain undefined but are likely to include abnormalities 

in oocyte maturation. Search for mutations in available descendants of males revealed marginally 

significant evidence for TRD (p = .038), but these analyses are less reliable because many more 

offspring of males than females with a STX16/GNAS mutation were lost to follow-up (31 of 

98 versus 6 of 218). This difference in follow-up is probably related to the fact that inheritance 

of a mutation from a male does not have clinical implications, whereas inheritance from an 

affected or unaffected female results in PHP1B. Lastly, affected PHP1B females had fewer 

descendants than unaffected carriers, but it remains unclear whether abnormal oocyte development 
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or impaired actions of reproductive hormones are responsible. Our findings highlight previously 

not recognized aspects of AD-PHP1B that are likely to have implications for genetic testing and 

counseling.
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Introduction

The term pseudohypoparathyroidism type Ia (PHP1A) refers to a rare genetic disorder 

characterized by hypocalcemia and hyperphosphatemia due to parathyroid hormone (PTH) 

resistance restricted to the proximal renal tubules that is caused by inactivating maternal 

mutations involving GNAS exons 1–13 encoding the alpha-subunit of the stimulatory 

G protein (Gsα).(1-4) Besides elevated PTH levels, affected individuals often develop 

resistance to other hormones, such as thyroid-stimulating hormone, that mediate their 

actions through Gsα-coupled receptors. In addition to hormonal resistance, PHP1A 

patients present with developmental abnormalities, now referred to as Albright’s hereditary 

osteodystrophy (AHO), that include short metacarpals and/or -tarsals, early onset obesity, 

adult short stature, and variable neurodevelopmental deficiencies. Mutations involving 

the paternal GNAS exons encoding Gsα lead to some but not all AHO features, 

and these do not cause hormonal resistance; this disorder is therefore referred to as 

pseudopseudohypoparathyroidism (PPHP).(2-4)

Pseudohypoparathyroidism type Ib (PHP1B) can follow an autosomal dominant trait, but 

most cases are sporadic.(2-4) PHP1B, which appears to be as rare as PHP1A,(5,6) is 

characterized primarily by PTH-resistant hypocalcemia and hyperphosphatemia or less 

frequently by resistance to other hormones; shortening of metacarpals and/or -tarsals 

is typically less frequent and less pronounced.(7-10) The autosomal dominant form of 

PHP1B (AD-PHP1B) is caused in most cases by a maternal 3-kb deletion in STX16, 

which is associated with complete loss of methylation (LOM) at GNAS exon A/B.(1-3) 

Other genetic alterations on the maternal allele lead to indistinguishable epigenetic GNAS 
changes, including 4.4-kb, 24.6-kb, or 87.5-kb STX16 deletions,(11-13) a large 18.9-kb 

deletion involving GNAS exon NESP and the region centromeric thereof,(14) duplications or 

triplications involving portions of the GNAS locus,(15,16) and an inversion of approximately 

1.8 million base pairs comprising exon A/B and all 13 exons encoding Gsα.(17) Several 

different genetic alterations can thus lead to indistinguishable epigenetic GNAS changes.

Other causes of AD-PHP1B, observed only in single families, include four distinct deletions 

removing GNAS exons NESP and/or AS exons 3 and 4; these forms of the disorder are 

associated with changes at all three differentially methylated regions (DMR) on the maternal 

GNAS allele.(18-20) Furthermore, PHP1B occurs most frequently as a sporadic disorder and 

all patients affected by this latter disease variant (sporPHP1B) show either complete or in 

some cases partial LOM of the maternal GNAS methylation imprints and typically complete 

gain of methylation (GOM) at GNAS exon NESP.(9,20) No genetic mutations have yet 
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been identified as causes of sporPHP1B, with the exception of paternal uniparental disomy 

involving the long arm of chromosome 20 (patUPD20q) that accounts for approximal 10% 

of the sporadic cases.(21-25)

A recent retrospective analysis revealed evidence for transmission ratio distortion (TRD) 

for inactivating mutations involving the maternal GNAS exons 1–13.(26) In that report, 

females affected by PHP1A or PPHP, ie, patients with AHO features in the presence or 

absence of hormonal resistance, showed a significantly higher likelihood of passing the 

underlying genetic mutation to their children. In contrast, males affected by PHP1A/PPHP 

passed the mutant allele to about half of their offspring as expected for a Mendelian 

disorder. Furthermore, PHP1A patients with GNAS mutations that are predicted to reduce, 

but not abolish, Gsα function had a comparable number of affected and unaffected children, 

whereas mothers with severe Gsα mutations had considerably more affected than unaffected 

offspring.(26) Observations similar to those for PHP1A/PPHP females had been previously 

made for several other genetic disorders, including the long QT syndrome,(27,28) but the 

underlying mechanism(s) that causes TRD in these families remains unknown.

To expand the findings in PHP1A/PPHP to a disease variant in which genetic mutations lead 

to epigenetic GNAS defects, we analyzed numerous families in which the affected members 

have PHP1B due to LOM at the maternal GNAS exon A/B alone or at all three differentially 

methylated regions (DMR) within this complex locus. For the majority of these kindreds, 

a maternal 3-kb STX16 deletion was identified in genomic DNA of the affected family 

members and the unaffected carriers. Other genetic defects that occurred in only single 

families included a 4-kb STX16 deletion, a large inversion involving the region telomeric 

of GNAS exon XL, as well as four different deletions within GNAS. Our analyses showed 

that mothers who are affected or unaffected carriers of the genetic mutation had passed the 

mutant allele almost twice as frequently to their offspring as the normal allele.

Materials and Methods

AD-PHP1B kindreds

We had previously reported numerous AD-PHP1B families in which the genetic defect 

causes LOM at the maternal GNAS exon A/B alone(11,17,29-38) or at all three maternal 

DMRs.(18-20) Since discovery of the first disease-causing genetic STX16 mutation, we 

evaluated, for several of these families, additional new members for the presence or absence 

of the genetic defect (Fig. 1, Supplemental Table S1). For all previously not reported family 

members, we collected clinical information and/or laboratory results, if available, and we 

searched for the family-specific genetic defect. Importantly, we determined whether some 

children had not been captured in these families and whether children, who could not be 

investigated, were descendants of males or females with the genetic defect.

In addition to the AD-PHP1B families investigated by us, review of the literature revealed 

several publications describing families with AD-PHP1B due to the 3-kb STX16 deletion.
(39-41) If we were able to confirm by directly contacting the authors of these studies that all 

offspring had been captured for each of these families, the reported findings were included 

in our analysis (Fig. 1, Supplemental Table S1).
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Informed consent for this study, which was approved by the Institutional Review Board of 

the Massachusetts General Hospital, had been obtained from all investigated subjects or their 

parents.

Search for the genetic defects leading to AD-PHP1B and methylation-sensitive multiplex 
ligation-dependent probe amplification (MS-MLPA)

Genomic DNA for evaluation of new members in AD-PHP1B families was extracted from 

peripheral blood leukocytes or buccal swabs. The presence or absence of the 3-kb or the 

4.4-kb STX16 deletion was determined as previously described.(11,31,34) GNAS methylation 

changes were assessed by MS-MLPA using kit ME031 GNAS (MRC-Holland, Amsterdam, 

The Netherlands; https://www.mlpa.com/), as reported.(20)

Statistical analyses

The chi-square test was used to evaluate differences between two groups. All p values <.05 

were considered significant when performed two-sided.

Results

A recent study had revealed that females affected by PHP1A or PPHP are more likely to 

transmit the allele with disease-causing GNAS mutation instead of the normal allele to their 

children, particularly if the genetic defect was predicted to severely reduce or abolish Gsα 
function.(26) We now sought to determine whether a similar TRD can be observed also for 

mutations that reduce Gsα function through LOM at GNAS exon A/B alone or LOM at all 

three maternal DMRs. We therefore investigated first all available members of kindred F that 

had facilitated the initial identification of genetic locus for AD-PHP1B and the subsequent 

discovery of the 3-kb STX16 deletion on the maternal allele as the most frequent cause of 

this disorder.(29,31) The updated pedigree shows that the 10 females, who are either affected 

themselves or who are carriers of the STX16 deletion, have 19 affected children (6 males, 

13 females) and 9 unaffected offspring (67.9% versus 32.1%) (Supplemental Fig. S1). This 

suggested that TRD is observed not only for the offspring of females affected by either 

PHP1A or PPHP(26) but also for women carrying the 3-kb STX16 deletion that causes LOM 

at GNAS exon A/B when located on the maternal allele.

To expand these initial observations, we analyzed numerous additional AD-PHP1B families 

and combined the findings with those observed in kindred F (Fig. 1, Supplemental Table 

S1). In the majority of these unrelated families (n = 40), we had identified the 3-kb STX16 
deletion.(31-41) The 4.4-kb STX16 deletion,(11) the large GNAS inversion,(17) as well as four 

different deletions within the GNAS locus were found only in single families.(18-20) In total, 

80 females were studied, who are either unaffected carriers (n = 47) or affected by PHP1B 

(n = 33). These women had given birth to a total of 212 children (53.3% boys, 46.7% girls; 

p = 34). Of these offspring, 134 (55.2% boys, 44.8% girls; p = .23) had inherited the mutant 

STX16/GNAS allele, whereas 78 (50.0% boys, 50.0% girls) had inherited the wild-type 

allele; the likelihood of passing the mutant allele to the offspring was therefore strongly 

favored (p = .00012; chi-square test) (Fig. 2). Similar to the findings in PHP1A/PPHP 
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females,(26) the odds of transmitting the mutant, not the wild-type, STX16/GNAS allele to 

the next generation is therefore approximately 2:1.

We next determined whether mothers with the STX16/GNAS mutation on their paternal 

(unaffected carrier) or their maternal allele (affected by PHP1B) show differences with 

regard to the number of affected offspring (Fig. 3). The unaffected carrier females (n = 47) 

have in total 147 children (73 boys, 74 girls) and of whom 93 are affected (48 boys, 45 girls) 

and 54 are unaffected (25 boys, 29 girls). Thus, 63.3% of the children of unaffected carrier 

females had inherited the mutant STX16/GNAS allele, whereas 36.7% of the offspring 

had inherited the wild-type allele (affected versus unaffected children p = .0013). Virtually 

identical results were obtained when excluding for the analysis families with <3 affected 

individuals or when excluding the data for the four families with LOM of all maternal 

DMRs (Supplemental Table S1).

The affected PHP1B females (n = 33) have a total of 65 children (40 boys, 25 girls; p = 

.063) of whom 41 (63.1%) are affected by PHP1B (26 boys, 15 girls; p = .086). In contrast 

only 24 offspring (36.9%) are unaffected (14 boys, 10 girls; p = .41). These data indicate 

that the percentage of boys and girls born to affected and carrier females is indistinguishable 

and that the overall likelihood of passing the mutant STX16/GNAS allele to offspring is 

similar for females with the genetic defect on their maternal or paternal allele. Six of the 

known offspring of females had been lost to follow-up, but these children were included in 

the analysis of fertility. Subgroup analysis revealed that unaffected female carriers (n = 47) 

have 151 children (3.2 offspring/female), whereas females affected by PHP1B (n = 33) have 

67 children (2.0 offspring/female) (p = .00015) (Fig. 4). Thus, in comparison to unaffected 

carriers, affected females had significantly fewer children.

Fewer data were available to explore the impact of paternally inherited STX16/GNAS 
mutations. In fact, information was available for only 67 offspring of 27 males who had 

inherited the mutant allele maternally (males affected by PHP1B, n = 13) or paternally 

(unaffected male carriers, n = 14). Thus, males with a genetic defect in STX16/GNAS 
represented only 25.2% of the total investigated cohort with a defined mutation. Likewise, 

these males had only 24.0% of the total number of the investigated children. The smaller 

number of male carriers and males affected by PHP1B was surprising given the even 

distribution of boys and girls born to females with STX16/GNAS mutations, who are either 

unaffected carriers or affected by PTH1B.

We therefore determined the number of offspring of affected or unaffected males with 

a STX16/GNAS mutation and how many of these children had not been investigated 

genetically. This analysis revealed that 31 of 98 descendants of these males had received 

no follow-up, which is in contrast to only 6 of 218 known offspring of females with a 

STX16/GNAS mutation who had been lost to follow-up. The transmission frequency of the 

mutant allele by males is therefore less reliable. Nonetheless, 14 unaffected male carriers 

had passed the mutant allele to 25 of their 43 offspring (p = .29), whereas 17 of 24 offspring 

had received the genetic defect from 13 affected males (p = .041); however, the frequency 

of transmission of the mutant allele by males seems less reliable because their children are 
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more frequently lost to follow-up. The difference in the number of children of males who are 

unaffected carriers versus those affected by PHP1B was marginally significant (p = .033).

Discussion

Based on the presented findings, female carriers of STX16/GNAS mutations that cause 

LOM at GNAS exon A/B alone or at all three maternal DMRs are more likely to 

have children affected by AD-PHP1B. This TRD was equally evident for unaffected 

and affected female carriers of the disease-causing mutations, ie, for mothers who have 

the genetic mutation on their paternal allele and thus show no epigenetic defect and no 

laboratory abnormalities themselves, and for mothers who carry the defect on their maternal 

allele and thus show LOM at GNAS exon A/B resulting in PTH-resistant hypocalcemia 

and hyperphosphatemia. These findings in our AD-PHP1B cohorts are consistent with 

those recently reported for offspring of females affected by either PHP1A or PPHP.(26) 

Furthermore, analysis of AD-PHP1B kindreds with a STX16/GNAS mutation that had been 

reported previously by others appear to be similar to our findings.(12,14,42-46) However, not 

all family members had been captured for some of these publications and not all individuals 

had been tested for the genetic defect and/or for laboratory abnormalities, thus making these 

analyses less reliable.

In contrast to our findings in females with a STX16/GNAS mutation, descendants of 

affected or carrier males revealed no evidence for TRD. However, overall many fewer 

descendants of males affected by PHP1B and particularly of unaffected males with a 

STX16/GNAS mutation were captured. This is most likely related to the fact that inheritance 

of the genetic defect from an affected or an unaffected male does not lead to LOM at GNAS 
thus causing no PTH-resistant hypocalcemia; consequently, there is no immediate medical 

need for genetic testing. In fact, only daughters who inherited a mutation from an affected 

or unaffected father with a STX16/GNAS mutation can have children affected by PHP1B if 

these offspring inherited the genetic defect. This emphasizes the need for genetic counseling 

and testing of all descendants of female and male carriers of a STX16/GNAS mutation.

Several different mechanisms have been postulated for TRD in the previously reported 

disorders,(27,28,47) including abnormalities in meiotic drive with possible preferential 

segregation of the wild-type allele to the polar body, errors in resetting genetic imprints 

during oocyte development, or early embryonic defects. Furthermore, increased early 

embryo lethality could contribute to TRD, which would imply that it is disadvantageous 

for the maternal wild-type STX16/GNAS allele to be present in a zygote that had developed 

from a diploid oocyte with reduced Gαs expression (Fig. 5). Chromosome segregation 

during meiosis is generally assumed to follow Mendelian law, but non-random segregation 

can occur in oocytes due to asymmetrical meiotic division, functional asymmetry of the 

meiotic spindle poles, or functional heterozygosity at a locus that mediates attachment of a 

chromosome to the spindle.(48) It is, however, unclear how an allele with a STX16/GNAS 
mutation is more likely to remain in the cytoplasm of the secondary oocyte during the first 

meiotic division.
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There was no difference in the number of boys and girls born to mothers who are 

either affected themselves or are unaffected carriers of one of the different STX16/GNAS 
mutations. This suggested that the methylation defect at GNAS exon A/B and the resulting 

reduction in Gsα expression caused by maternally inherited STX16/GNAS mutations has no 

sex-specific impact on the offspring. Because of the even distribution of male and female 

descendants born to affected or carrier mothers, it was surprising that approximately three 

times fewer males with the genetic defect had been captured for analysis in our studies. We 

therefore determined whether fewer descendants of males with a STX16/GNAS mutation 

had been studied genetically. In fact, 31.6% (31 of 98 children) of the offspring of affected 

or carrier males had been lost to follow-up, which is probably related to the fact that all 

descendants of males with the genetic defect are unaffected, thus providing no immediate 

benefit from genetic testing. The search for the presence or absence of a STX16/GNAS 
mutation would benefit only subsequent generations and only if daughters of a male carrier 

happen to pass the mutation to their children.

Interestingly, females affected by PHP1B had approximately one-third fewer children than 

females who are carriers of a STX16/GNAS mutation (p = .00015; Fig. 4). Consistent 

with an essential role of Gsα during oocyte maturation, Xie and colleagues showed that 

Cre-mediated ablation of Gnas exon 1 under the control of the oocyte-specific Zp3 promoter 

results in complete female infertility due to premature resumption of meiosis and poor 

oocyte quality.(49) It is likely that the DMR at GNAS exon A/B (and the secondary DMRs 

at exons XL and AS) is not remethylated during oocyte maturation because of the genetic 

mutation thus allowing little or no Gsα transcription from the mutant STX16/GNAS allele, 

particularly after the first meiotic division. It is therefore plausible that the mutant oocytes 

resume meiosis too early and that oocyte quality is impaired; this should, however, be the 

case for females with a maternal or paternal STX16/GNAS mutation. Thus, PHP1B females 

may have as yet not recognized endocrine abnormalities that impair function of luteinizing 

hormone and/or follicle-stimulating hormone. Post-fertilization defects as a cause of fewer 

children seem less likely because zygotes derived from affected and unaffected females with 

a STX16/GNAS mutation are expected to show identical epigenetic GNAS modifications.

Collection bias may have limited our findings and resulting conclusions. However, the 

majority of the presented data were extracted from our own constantly updated database 

and the few findings previously published by others were verified by directly contacting the 

authors. This makes it unlikely that numerous family members had not been captured for 

analysis, at least for the descendants of females. It is furthermore unlikely that the birth 

of the first affected child would have led to the parental decision not to have additional 

children because PHP1B is typically not associated with readily detectable AHO stigmata 

and because symptoms from hypocalcemia usually do not occur until the second decade 

of life. This conclusion is supported by the finding that several females who are either 

unaffected carriers or affected by PHP1B had additional children even if the first child was 

diagnosed with the disorder through genetic testing early in life. Furthermore, TRD was 

readily apparent even when excluding affected or unaffected females who have fewer than 

three children.

Kiuchi et al. Page 7

J Bone Miner Res. Author manuscript; available in PMC 2023 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In summary, females with a STX16/GNAS mutation on their maternal or paternal allele 

have considerably more affected than unaffected children, and females affected by PHP1B 

have fewer children. Based on our data, TRD is unlikely for the descendants of affected 

and unaffected males who are all healthy, even if they inherit the disease-causing mutation. 

However, these children are frequently lost to follow-up, even though genetic testing could 

reveal carrier females, who should undergo counseling to allow early diagnosis, if the 

genetic defect is passed on to the next generation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Flow chart of our study material. Shown are the investigated AD-PHP1B kindreds, number 

of male and female carriers of a mutant STX16/GNAS allele, the number of affected and 

unaffected children, and the number of offspring of male and female carriers who were lost 

to follow-up.
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Fig 2. 
Female carriers of a STX16/GNAS mutation are more likely to have affected children. In 

total, 80 females with the mutant STX16/GNAS allele had given birth to a total of 212 

children. Of those, 134 children had inherited the mutant allele, whereas 78 children had 

inherited the wild-type allele (p = .00012; chi-square test). This indicated a significantly 

higher likelihood of transmitting the mutant rather than the wild-type allele to the next 

generation.
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Fig 3. 
Mothers with a STX16/GNAS mutation have more affected offspring regardless whether 

they are unaffected carriers or are affected themselves. The unaffected carrier females (n 
= 47) have a total of 147 children (73 boys, 74 girls) of whom 93 (63.3%) are affected 

(48 boys, 45 girls) and 54 (36.7%) are unaffected (25 boys, 29 girls) (p = .0013). The 

affected PHP1B females (n = 33) have a total of 65 children (40 boys, 25 girls) of whom 41 

(63.1%) are affected by PHP1B (26 boys, 15 girls). In contrast, only 24 offspring (36.9%) 

are unaffected (14 boys, 10 girls) (p = .035). These data indicate that the percentage of 

boys and girls born to affected and carrier females is indistinguishable and that the overall 

likelihood of passing the mutant STX16/GNAS allele to offspring is similar for females with 

the genetic defect on their maternal or paternal allele. Chi-square test for statistical analyses.
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Fig 4. 
Females affected by PHP1B due to a STX16/GNAS mutation have fewer children than 

unaffected carriers. These graphs include children lost to follow-up for whom genetic 

analyses could not be performed. Carrier mothers have 151 children. In contrast, affected 

mothers have 67 children (p = .00015). Affected mothers thus showed a 37% reduction in 

fertility compared with carrier mothers. On the other hand, carrier fathers have 59 children 

and affected fathers have 39 children (p = .033). Chi-square test for statistical analyses.
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Fig 5. 
GNAS methylation predicted based on findings during murine oogenesis. Hypothesis 

regarding the sequence of events leading to transmission ratio distortion (TRD). After 

demethylation in murine oogonia, the differentially methylated regions at the maternal 

GNAS exons A/B, XL, and AS are remethylated by meiosis I; remethylation at paternal 

exon NESP occurs after fertilization. Preferential segregation of the wild-type allele to the 

polar body occurs during meiosis I due to asymmetrical meiotic division. This leads to TRD 

in offspring of females with a STX16/GNAS mutation and implies that a zygote with the 

mutant allele has a developmental advantage.
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