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ABSTRACT

Artificial intelligence (AI) and machine learning (ML) are becoming criti-
cal in developing anddeploying personalizedmedicine and targeted clinical
trials. Recent advances in ML have enabled the integration of wider ranges
of data including both medical records and imaging (radiomics). However,
the development of prognostic models is complex as no modeling strat-
egy is universally superior to others and validation of developed models
requires large and diverse datasets to demonstrate that prognostic mod-
els developed (regardless of method) from one dataset are applicable to
other datasets both internally and externally. Using a retrospective dataset
of 2,552 patients from a single institution and a strict evaluation frame-
work that included external validation on three external patient cohorts
(873 patients), we crowdsourced the development of ML models to predict
overall survival in head and neck cancer (HNC) using electronic medical
records (EMR) and pretreatment radiological images. To assess the rela-
tive contributions of radiomics in predictingHNCprognosis, we compared
12 different models using imaging and/or EMR data. The model with the
highest accuracy used multitask learning on clinical data and tumor vol-
ume, achieving high prognostic accuracy for 2-year and lifetime survival
prediction, outperforming models relying on clinical data only, engineered
radiomics, or complex deep neural network architecture. However, when

we attempted to extend the best performing models from this large train-
ing dataset to other institutions, we observed significant reductions in the
performance of the model in those datasets, highlighting the importance of
detailed population-based reporting for AI/ML model utility and stronger
validation frameworks.

1. We have developed highly prognostic models for overall survival in
HNC using EMRs and pretreatment radiological images based on a
large, retrospective dataset of 2,552 patients from our institution.

2. Diverse ML approaches were used by independent investigators. The
model with the highest accuracy used multitask learning on clinical
data and tumor volume.

3. External validation of the top three performing models on three
datasets (873 patients) with significant differences in the distribu-
tions of clinical and demographic variables demonstrated significant
decreases in model performance.

Significance: ML combined with simple prognostic factors outperformed
multiple advanced CT radiomics and deep learning methods. ML mod-
els provided diverse solutions for prognosis of patients with HNC but
their prognostic value is affected by differences in patient populations and
require extensive validation.
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Generalizability of Radiomics in Predictive Models of HNC

Introduction
The use of computer algorithms including artificial intelligence (AI) and ma-
chine learning (ML) to assist in clinical oncology tasks such as predicting
patient prognosis (1). AI/ML has been increasingly employed when attempting
to process clinical data frommultiple sources and aid in diagnosis (2), progno-
sis (3), and course of treatment decisions (4), enabling a more precise approach
to clinical management taking individual patient characteristics into account
(5). The need for more personalized care is particularly evident in head and
neck cancer (HNC), which exhibits significant heterogeneity in clinical pre-
sentation, tumor biology, and outcomes (6, 7), making it difficult to select the
optimal management strategy for each patient. Hence, there is a current need
for better prognostic tools to guide clinical decision making (8, 9).

One potential source of novel prognostic information is the imaging data col-
lected as part of standard care. Imaging data have the potential to increase the
scope of relevant prognostic factors in a noninvasive manner as compared with
genomics or pathology, while high volume and intrinsic complexity render it an
excellent use case for ML. Radiomics is an umbrella term for the emerging field
of research aiming to develop new noninvasive quantitative prognostic and pre-
dictive imaging biomarkers using both hand-engineered (10) and deep learning
techniques (11). In HNC, radiomics has been used to predict patient outcomes
(12–14), treatment response (15, 16), toxicity (17, 18), and discover associations
between imaging and genomic markers (19–21).

Despite the large number of promising retrospective studies, the adoption of
prognostic models utilizing radiomics in clinical workflows is limited (22, 23).
Multiple factors have affected adoption including lack of a clear superior predic-
tive modeling strategy (24), relatively small, single-institution datasets lacking
sufficient validation and generalizability, and insufficient transparency and re-
producibility of ML research (25, 26). Although significant progress has been
made in certain areas [e.g., ensuring consistency between different engineered
feature toolkits (27)], many studies do not provide sufficient details or un-
derlying materials (e.g., code, data) to be reproduced by other groups (22,
28). In addition, the lack of benchmark datasets makes comparing different
approaches challenging. Current image quantification methods based on engi-
neered features are also limited because of high rates of correlates and potential
redundancy with accepted clinical variables and biomarkers (13, 29, 30).

To overcome these limitations, we implemented a collaborative challenge
focused on reproducibility, transparency, and generalizability of radiomic
modeling for HNC prognosis. Furthermore, we performed extensive external
validation ofmodels to explore howmodels derived from one dataset might ex-
tend to other datasets and to determine whether state-of-the-art models would
be extensible. To achieve this, we used a large internal dataset of 2,552 patients
with HNC and three external independent HNC patient cohorts (873 patients),
multiple intrainstitutional independent investigators developedHNCprognos-
tic models based on routine pretreatment CT imaging and data from electronic
medical records (EMR). We benchmarked the 12 modeling approaches against
baseline clinical and radiomics models and statistically compared their perfor-
mance. The model with the highest accuracy used multitask learning on EMR
data and tumor volume, outperforming more complex deep learning mod-
els. By crowdsourcing our model development and engaging external research
groups for validation, we were able to demonstrate how collaborative research
can be used to expedite the development of more robust radiomics models for
cancer research.

Materials and Methods
RADCURE Prognostic Modeling Challenge
The challenge was organized by the Radiomics for Radiotherapy Research ini-
tiative at the University HealthNetwork (radiomics.ca) andwas open to anyone
within the University Health Network system. The protocol describing the
training and test data as well as the evaluation metrics and ranking of partici-
pants was predefined and updated on the basis of the participants’ feedback; the
protocol is publicly available on GitHub (uhn-radcure-challenge). In brief, all
participants had access to the training data with ground-truth outcome labels,
while the test set was held out for final evaluation. The primary objective was
to predict 2-year overall survival (OS), with the secondary goals of predicting
a patient’s lifetime risk of death and full survival curve. We chose the binary
endpoint as it is commonly used in the literature and readily amenable to many
standardMLmethods. The evaluation of the models’ performance was primar-
ily based on the binary endpoint, which was used to rank the submissions. We
also used average precision (AP) as a secondary performance measure to break
any submission ties, due to its higher sensitivity to class imbalance. Optionally,
a subset of the models was also evaluated for their prognostic value, that is,
risk and survival curve predictions. Importantly, the participants were blinded
to test set outcomes and only submitted predictions to be evaluated by the or-
ganizers. We additionally created a set of benchmark models for comparison.
We did not enforce any particular model type, image processing or input data
(provided it was part of the official training set), althoughwe did encourage par-
ticipants to submit predictions based on EMR features, images, and combined
data separately (if they chose to use all of the data modalities).

Training Dataset
We collected a retrospective dataset of 2,552 patients with HNC treated with
radiotherapy or combined radiotherapy and systemic therapy at Princess Mar-
garet (PM) Cancer Centre between 2005 and 2017 (Supplementary Table S1),
which we split into training and test subsets by date of diagnosis (2005–2015
and 2016–2018 for training and independent test set, respectively). The study
was approved by the Institutional Research Ethics Board (#17-5871). The inclu-
sion criteria were: (i) availability of planning CT image and target contours; (ii)
at least 2 years follow-up (or death before that time); and (iii) no distant metas-
tases at diagnosis and no prior surgery. Primary gross tumor volumes (GTV)
were delineated by radiation oncologists as part of routine treatment planning.
For each patient, we exported the CT image and primary GTV binary mask in
NRRD format.We also extracted the follow-up information (current as of April
2020). The dataset was split into training (n = 1,802) and test (n = 750) sub-
sets according to the date of diagnosis (Supplementary Fig. S1). The dataset was
hosted on an institutional high-performance computing cluster with multicore
CPUs and general-purpose graphics processing units which were available to
all research partners for model training.

Baseline Models
To provide baselines for comparison and a reference point for our collab-
orating partners, we created three benchmark models using: (i) standard
prognostic factors used in the clinic [age, sex, T/N stage, and human
papillomavirus (HPV) status] (baseline-clinical); (ii) primary tu-
mor volume only (baseline-volume); (iii) handcrafted imaging features
(baseline-radiomics). All categorical variables were one-hot en-
coded and missing data were handled by creating additional category
representing missing value (e.g., “Not tested” for HPV status). For the
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baseline-radiomics model, we extracted all available first order, shape
and textural features from the original image and all available filters (1,316
features in total) using the PyRadiomics package (version 2.2.0; ref. 31) and
performed feature selection using maximum relevance-minimum redundancy
method (32). The number of selected features and model hyperparameters
(l2 regularization strength) were tuned using grid search with 5-fold cross-
validation. All models were built using logistic regression for the binary
endpoint and a proportional hazards model for the survival endpoint.

Tasks and Performance Metrics
The main objective of the work was to predict binarized 2-year OS, with the
supplementary task of predicting lifetime risk of death and full survival curves
(in 1-month intervals from 0 to 23 months). To evaluate and compare model
performance on the 2-year binarized survival prediction task, we used area un-
der the ROC curve (AUROC), which is a ranking metric computed over all
possible decision thresholds (33). We additionally computed the area under
precision-recall curve, also referred to as AP, using the formula:

AP =
∑

n
(Rn − Rn−1)Pn,

where Rn and Pn are the precision and recall at a given threshold, respectively.
While AUROC is insensitive to class balance, AP considers the positive class
only, which can reveal pathologies under high class imbalance (34). In addi-
tion, both metrics consider all possible operating points, which removes the
need to choose a particular decision threshold (which can vary depending on
the downstream clinical task). Because the dataset did not include patients with
follow-up time less than 2 years, we did not correct the binary metrics for
censoring bias.

For the lifetime risk prediction task, we used concordance (C) index, defined
as:

C =
∑

i uncensored
∑

t j>ti 1{ri > r j} + 1
2 1

{
ri = r j

}
∑

i uncensored 1{t j > ti} ,

where ti is the time until death or censoring for patient i, ri is the predicted risk
score for patient i, and 1{} is the indicator function. The agreement between the
performance measures was good (Pearson r = 0.88 between AUROC and AP,
r = 0.82 between AUROC andC-index). We compared the AUROC achieved
by the best model to the other models using one-sided t test and corrected for
multiple comparisons by controlling the FDR at 5% level.

Independent Validation
We first assessed the performance of the prognostic models using an indepen-
dent internal dataset composed of all RADCUREpatients whose diagnosis took
place after December 22, 2013. To further assess the generalizability of the best
performing models, as well as the reproducibility of the challenge framework,
we evaluated the performance of the top three models and the best deep learn-
ing model on three external datasets. The HN1 dataset is a publicly available
collection1 of 137 patients with oropharynx and larynx tumors treated with
radiochemotherapy at MAASTRO Clinic in Maastricht, the Netherlands and
has been used previously in radiomics studies (35). The MDACC dataset2 con-
tains data from 627 patients with oropharynx cancer treated at MD Anderson

1 https://wiki.cancerimagingarchive.net/display/Public/Head-Neck-Radiomics-HN1
2 https://wiki.cancerimagingarchive.net/display/Public/HNSCC

Cancer Center (36). Finally, the GPCCHNdataset is a private dataset of 298 pa-
tients treated at Greater PolandCancer Centre in Poznan, Poland. TheHN1 and
MDACC datasets were obtained from the Cancer Imaging Archive (37). For
all three datasets, we used the same patient selection criteria and preprocess-
ing workflow as for the main training dataset. Validation on the HN1 dataset
was performed internally within our institution. In the case of MDACC and
GPCCHNdatasets, we provided external collaborators (at Dana-Farber Cancer
Institute andGreater Poland Cancer Centre, respectively) with code, documen-
tation and pretrained models and asked them to compute the predictions using
their own infrastructure; we were available to provide technical support if nec-
essary. We statistically compared the variables of interest between the internal
test set and each of the external test datasets using pairwiseχ2 test and corrected
for multiple comparisons by controlling the FDR at 5% level.

Research Reproducibility
The code used to prepare the data, train the baseline models, evaluate the mod-
els, and analyze the results is available on Github at https://github.com/bhklab/
uhn-radcure-challenge. We also share the model code for all the models in the
same repository. Furthermore, we are planning to make the complete dataset,
including anonymized images, contours and EMR data available on the Cancer
Imaging Archive.

Data Availability
The data used in this study are a subset of the RADCURE dataset publicly
available on The Cancer Imaging Archive (37): https://doi.org/10.7937/J47W-
NM11.

Results
To assess the performance of a diverse set of prognostic modeling strategies, we
have organized an institutional competition designed to leverage a large com-
pendium of internal and external data, as well as the expertise of independent
investigators using strict evaluation and validation framework (Fig. 1).

The Challenge
The challenge was conceived and organized by the Radiomics for Radiother-
apy Research initiative at the University Health Network (radiomics.ca). The
protocol describing the training and test data as well as the evaluation met-
rics and ranking of participants was predefined, which has been made publicly
available (uhn-radcure-challenge). The Challenge officially opened on April 14,
2020 with the registration closing on April 30, 2020. A total of four teams reg-
istered by the deadline and had access to the training data until July 25, 2020,
which was the deadline for the final submission of their best models (each team
could submit a maximum of three models). The blind evaluation of the 12 sub-
mittedmodels by the Challenge organizers on the independent test dataset took
place until July 30, 2020. The winners were announced on July 31, 2020.

Dataset
Given the complexity of predicting survival in patients with HNC, we col-
lected the largest dataset to date combining EMR (i.e., clinical, demographic,
and interventional data) and radiological imaging data for 2,552 patients with
HNC treated with definitive radiotherapy. All the data were collected and gen-
erated within the PM Cancer Centre. The dataset was divided into a training
set (70%) and an independent test set (30%) based on the date of diagno-
sis at a predefined timepoint (December 22, 2013). We made pretreatment
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FIGURE 1 Overview of methodology and dataset. EMR and imaging data from a large cohort of patients with HNC were made available to our
research partners. The training set, consisting of patients diagnosed before a prespecified date was released together with the ground-truth outcome
information (OS) and used for prognostic model development. The test set was kept private and only made available (without outcome data) after the
development phase was completed. We also developed a set of simple but strong baseline models to serve as benchmark for comparison as well as a
reference point for our research partners during the development of their models. To assess the generalizability of the developed prognostic models to
new patient populations, we performed external validation of all the models in three external datasets. Preprocessing and evaluation using the HN1
dataset was performed in-house, while evaluation using the MDACC and GPCCHN datasets was performed by external collaborators.
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TABLE 1 Summary of challenge submissions and performance metrics. All models achieved performance better than random (FDR < 5%)

Rank Description AUROC AP C-index

1 Deep multitask logistic regression using EMR features and tumor volume. 0.823 [0.777–0.866] 0.505 [0.420–0.602] 0.801 [0.757–0.842]
2 Fuzzy logistic regression (binary) and Cox proportional hazards model

(risk prediction) using EMR features and tumor volume.
0.816 [0.767–0.860] 0.502 [0.418–0.598] 0.746 [0.700–0.788]

3 Fuzzy logistic regression (binary) or Cox proportional hazards model
(risk prediction) using EMR features and engineered radiomic features.

0.808 [0.758–0.856] 0.490 [0.406–0.583] 0.748 [0.703–0.792]

4 Multitask logistic regression using EMR features. 0.798 [0.748–0.845] 0.429 [0.356–0.530] 0.785 [0.740–0.827]
5 3D convnet using cropped image patch around the tumor with EMR

features concatenated before binary classification layer.
0.786 [0.734–0.837] 0.420 [0.347–0.525] 0.774 [0.725–0.819]

6 2D convnet using largest GTV image and contour slices with EMR
features concatenated after additional nonlinear encoding before
binary classification layer.

0.783 [0.730–0.834] 0.438 [0.360–0.540] 0.773 [0.724–0.820]

7 3D DenseNet using cropped image patch around the tumor with EMR
features concatenated before multitask prediction layer.

0.780 [0.733–0.824] 0.353 [0.290–0.440] 0.781 [0.740–0.819]

8 Multilayer perceptron (MLP) with SELU activation and binary output
layer using EMR features.

0.779 [0.721–0.832] 0.415 [0.343–0.519] 0.768 [0.714–0.817]

9 Two-stream 3D DenseNet with multitask prediction layer using cropped
patch around the tumor and additional downsampled context patch.

0.766 [0.718–0.811] 0.311 [0.260–0.391] 0.748 [0.703–0.790]

10 2D convnet using largest GTV image and contour slices and binary
output layer.

0.735 [0.677–0.792] 0.357 [0.289–0.455] 0.722 [0.667–0.774]

11 3D convnet using cropped image patch around the tumor and binary
output layer.

0.717 [0.661–0.770] 0.268 [0.225–0.339] 0.706 [0.653–0.756]

12 Fuzzy logistic regression (binary) and Cox proportional hazards model
(risk prediction) using engineered radiomic features.

0.716 [0.655–0.772] 0.341 [0.272–0.433] 0.695 [0.638–0.749]

contrast-enhanced CT images and binary masks of primary GTV available to
our research partners. We also provided the set of available clinical variables
extracted from EMR, including demographic (age at diagnosis, sex), clinical
(T, N and overall stage, disease site, performance status, and HPV infection
status) and treatment-related (radiation dose in Gy, use of systemic therapy)
characteristics for modeling purposes (Fig. 1). In addition, outcome data (time
to death or censoring, event indicator) were available for the training data only.

Model Training and Evaluation Criteria
All research participants had access to the training data with ground-truth
outcome labels (OS), while the test set was held out for final evaluation. The
primary objective was to predict 2-year OS, with the secondary goals of predict-
ing a patient’s lifetime risk of death and full survival curve.We chose the binary
endpoint as it is commonly used in the literature and readily amenable to many
standardMLmethods. The primary evaluation metric for the binary endpoint,
which was used to rank the models, was the AUROC. We also used AP as a
secondary performance measure to break any model ties, due to its higher sen-
sitivity to class imbalance (38). Prediction of lifetime risk and survival curve
predictions was optional, and they were scored using theC-index (39). Impor-
tantly, research partners were blinded to test set outcomes and only submitted
predictions to be evaluated by the organizers. We additionally created a set of
benchmark models using only clinical, only imaging data or a combination of
both for comparison (see Materials andMethods). We did not enforce any par-
ticular model type, image processing or input data (provided it was part of the
official training set), although we did encourage participants to submit predic-
tions based on EMR features, images, and combined data separately (if they
chose to use all of the data modalities).

Overview of Models
Twelve crowd-sourced models were developed by independent investigators
during an institutional challenge over 2 months by leveraging EMR and imag-
ing data. These models can be broadly classified as using EMR factors only,
imaging only, or combining all data sources (Fig. 2A; Table 1; for detailed
descriptions, see SupplementaryMaterials andMethods). In addition to the re-
quired 2-year event probabilities, 10 models included lifetime risk predictions
and seven included the full predicted survival curves. All models performed
significantly better than random on all performance measures (p < 0.0001
by permutation test). The top model performed significantly better in terms of
AUROC than every other model (FDR < 5%), except the second-best (FDR >

5%). Most participants who used the imaging data relied on convolutional
neural networks (convnets) to automatically learn predictive representations;
only two combined and one radiomics-only model used handcrafted features
(Fig. 2A). Of the convnets models, two of three relied on three-dimensional
(3D) convolution operations (Fig. 2A).Although all EMR-only approaches used
the same input data, there was significant variation in the kind of model used
(linear and nonlinear, binary classifiers, proportional hazards and multitask
models; Fig. 2A). The combined models used EMR data together with either
tumor volume (n = 2), engineered radiomics (n = 1) or deep learning (n = 3).

Deep Learning Using Imaging Only Achieves Good
Performance and Outperforms Engineered Radiomics
Among the radiomics-only models, deep learning–based approaches per-
formed better than hand-engineered features. In particular, nearly all deep
learning models (except one) outperformed baseline-radiomics and all
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FIGURE 2 Model results. A, Overview of model characteristics. The characteristics are grouped into input data, prediction head (i.e., how were the
survival predictions made) and model type (whether the model involved any nonlinearities and/or convolutions). PH: proportional hazards, MLP:
multilayer perceptron, *: age, sex, stage, HPV status. B–D, Performance of all models, including benchmark models, in terms of 2-year AUROC, 2-year
average precision and C-index of the lifetime risk, respectively. The results are ranked by AUROC (numbers above bars indicate the overall rank of each
model). Error bars represent 95% confidence intervals computed using 10,000 stratified bootstrap replicates. Dashed gray lines indicate random
guessing performance (0.5 for AUROC and C-index, 0.14 for AP). E–G, show the Kaplan–Meier survival estimates in low- and high-risk groups identified
by the best performing model in each category (combined, EMR only and radiomics), respectively. Test set patients were stratified into two groups
based on the predicted 2-year event probability at 0.5 threshold. In each case, there were significant differences in survival between the predicted risk
groups (HR, 8.64, 5.96, and 4.50, respectively, p < 10−18 for all).
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FIGURE 3 Volume dependence of predictions. Spearman rank correlation of the predictions of each model with tumor volume against performance
in terms of AUROC (A) and C-index (B), respectively. The top models fall into an optimal region of low (but nonzero) volume correlation and high
performance. Note that while models 1 and 2 used tumor volume as one of the input variables, their predictions correlate with volume only moderately
(ρ < 0.5), indicating they are able to exploit additional information present in the EMR features. Higher correlation leads to decreased performance as
the predictions are increasingly driven by volume only. Most radiomics-only models fall in the high correlation region (ρ ≥ 0.5), although deep learning
predictions correlate at notably lower level than engineered features. Interestingly, the best radiomics submission (number 9) achieves the lowest
volume correlation, suggesting that it might be using volume-independent imaging characteristics.

other models (Model 12; Fig. 2) in the binary prediction task (the smaller dif-
ferences in C-index can be explained by the fact that most of the deep models
were designed for binary classification only, and we used their binary predic-
tions as a proxy for lifetime risk scores). Although our results indicate that deep
learning models yield better performance than models relying solely on hand-
engineered radiomic features, this observation, however, the increasing number
of radiomics toolkits keep increasing and they offer a wealth of feature types
and configuration options (27) prevent us from drawing a definitive conclu-
sion. Nevertheless, our results show that a carefully-tuned DL model can learn
features with superior discriminative power given a sufficiently large dataset.

The convnet-basedmodels show varying levels of performance, most likely due
to differences in architectures and prior image processing. Notably, the best 3D
architecture (Model 9) achieves superior performance to the two-dimensional
(2D) VGGNet (number 10). It incorporates several innovative features, includ-
ing dense connectivity (40, 41), two-stream architecture with a downsampled
context window around the tumor and a dedicated survival prediction head
(detailed description in Supplementary Materials and Methods).

EMR Features Show Better Prognostic Value than Deep
Learning, Even in Combination
While imaging features can lead to strong prognostic models, the small per-
formance gap between EMR and combined models using deep radiomics
(submissions 4, 6, 7) in most cases suggests the models do not learn comple-
mentary image representations and that the performance is driven primarily
by the EMR features (Fig. 2). Although one combined model using engineered
features (number 3) achieved good performance, it performed worse than the
exact same model using EMR features and volume only (number 2), indicating
that the added complexity of radiomic features reduces performance, and the
engineered features were not strong predictors on their own.Moreover, none of
the radiomics-only models performed better than any of the EMR-only models
(although one convnet did outperform baseline-clinical). A possible

explanation is suboptimal model design that fails to exploit the complementar-
ity between the data sources. All of the deep learning solutions incorporated
EMR features in an ad hoc fashion by concatenating them with the image
representation vector and passing them to the final classification layer. While
this approach is widely used, it is not clear that it is optimal in this context.
More sophisticatedmethods of incorporating additional patient-level informa-
tion, such as for example, joint latent spaces (42) should be explored in future
research.

Impact of Volume Dependence on Model Performance
Recent literature has demonstrated that many radiomic signatures show strong
dependence on tumor volume (29, 30), which is a simple image-derived feature
and a known prognostic factor in HNC (43). We evaluated the correlation of
all binary predictions with volume using Spearman rank correlation (Fig. 3).
Both the baseline radiomics model and the submission using handcrafted fea-
tures show high correlation (Spearman ρ = 0.79 and ρ = 0.85, respectively),
suggesting that their predictions are driven primarily by volume dependency.
The predictions of two out of three convnets also showmoderate to strong cor-
relation with tumor volume, albeit smaller than engineered features (ρ > 0.5).
Interestingly, predictions of the best radiomics-only model (number 9) show
only weak correlation with volume (ρ = 0.22) and are more discriminative
than volume alone (AUROC = 0.77), suggesting that it might be possible to
learn volume-independent image-based predictors.

Top Performing Model: Multitask Learning with Simple
Image Features and EMR Data
The top performing model (number 1) combined EMR data with a simple
image-derived measure, and used aMLmodel tailored to survival prediction; a
schematic overview of the submission is shown in Fig. 4. The approach is based
on multitask logistic regression (MTLR), first proposed by Yu and colleagues
(44) In contrast with other approaches, which focused on the binary endpoint
only, MTLR is able to exploit time-to-event information by fitting a sequence
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FIGURE 4 Top performing model. A, Overview of Deep MTLR. The model combines EMR features with tumor volume using a neural network and
learns to jointly predict the probability of death at all intervals on the discretized time axis, allowing it to achieve good performance in both the
binarized and lifetime risk prediction tasks. A predicted survival curve can be constructed for each individual to determine the survival probability at
any timepoint. B, Importance of combined input data for performance on the binary endpoint. Training the deep MTLR on EMR features only led to
notably worse performance. Furthermore, using a deep convolutional neural network in place of tumor volume did not improve the 2-year AUROC.

of dependent logistic regression models to each interval on a discretized time
axis, effectively learning to predict a complete survival curve for each patient
in multitask fashion. By making no restrictive assumptions about the form
of the survival function, the model is able to learn flexible relations between
covariates and event probability that are potentially time-varying and non-
proportional. We note that many prognostic models in clinical and radiomics
literature use proportional hazards (PH) models (35, 45); however, this ignores
the potential time-varying effect of features which MTLR is able to learn. No-
tably, when comparedwith the second-bestmodel (which relies on a PHmodel)
it achieves superior performance for lifetime risk prediction (C = 0.801 vs.
0.746). The added flexibility and information-sharing capacity of multitasking
also enables MTLR to outperform other models on the binary task (AUROC=
0.823, AP= 0.505), even though it is not explicitly trained to maximize predic-
tive performance at 2 years; the predicted probabilities are also better calibrated
(Supplementary Fig. S2). The top performing model relies on high-level EMR
features which are widely-used, easy to interpret and show strong univariate
association with survival (see Supplementary Materials and Methods). The
research partner incorporated nonlinear interactions by passing the features
through a single-layer neural network with exponential linear unit activation
(46, 47), which resulted in better performance in the development stage. The
only image-derived feature used is primary tumor volume, a known prognos-
tic factor in HNC. Using EMR features only, led to a decrease in performance
(AUROC= 0.798, AP= 0.429), as did replacing tumor volumewith deep image
representations learned by a 3D convnet (AUROC = 0.766; Fig. 4A).

External Validation of Best Performing Models
To evaluate the capacity of all the models to generalize to new patient popu-
lations, we tested their performance on three external HNC datasets (Figs. 1B
and 5). There were significant differences in the distributions of several clini-
cal and demographic variables between the challenge test set and the external
datasets, most notably disease site andHPV status, as well as the target outcome
prevalence (Supplementary Table S1). In line with the significant distribution
shift, we observed a drop in performance in two out of three datasets, although
the performance remained significantly better than random (p < 0.0001 for

all models’ performance by permutation test). However, the top performing
model maintained its rank in all datasets except GPCCHN, where it was out-
performed by the simpler linear model using EMR features and volume (model
number 2). The overall ranking was fairly consistent between datasets, with the
exception of HN1 where engineered radiomics and deep learning combined
with EMR features achieved higher performance than in the original test set
(model numbers 3 and 5); however, they did not outperform the top performing
model using EMR features and tumor volume. All validated models performed
better than tumor volume alone, with the exception of the MDACC dataset
where only the top performing model outperformed volume alone by a small
margin.

Discussion
The ability to estimate a patient’s future disease progression is a critical pre-
cursor to personalized medicine. This prediction guides treatment decisions,
as well as difficult personal decisions regarding risks and benefits of intensive
treatment; AI and ML have the potential to assist in this important clinical
decision making paradigm. However, it is not yet clear from published stud-
ies whether this potential to assist will translate to changes in clinical decision
making due to limited abilities to assess generalizability ofmodels. In this work,
the different academic backgrounds and computational approaches used by our
collaborating partners resulted in a diverse collection of models to evaluate. In
addition, our multisite external validation of the top performing models pro-
vided insights into the importance of external evaluation and understanding
differences in patient populations.

The best individual approach achieved strong performance on both 2-year and
lifetime risk prediction using a multitask survival modeling framework. This
demonstrates the benefit of using a flexible approach designed specifically for
the task of survival prediction. In addition, because the approach relies on
widely used and easy-to-interpret features (e.g., tumor stage, volume), it is at-
tractive from a clinical standpoint as a risk stratification and monitoring tool.
The model predictions are highly significant, even when adjusted for disease

AACRJournals.org Cancer Res Commun; 3(6) June 2023 1147



Kazmierski et al.

FIGURE 5 External validation performance of the top three submissions and the best deep learning submission (number 5): AUROC (A) and C-index
(B). The red line indicates the performance achieved by the winning submission in the challenge test set. The performance of tumor volume alone is
shown for comparison.

site, demonstrating the potential of learning from large cross-sectional datasets,
as opposed to highly curated patient subsets (which has been the dominant
paradigm thus far). However, it should also be mentioned that the selection of
modeling methods andmodel inputs were determined by independent investi-
gators during an institutional challenge, therefore it is feasible that more highly
performant strategies exist and were not considered in this study.

We further assessed the generalizability of the best prognostic models using in-
dependent patient cohorts from three different institutions. In this validation
phase, the top performing model retained its winning rank in two of the three
datasets. The observed differences in performance help us investigate the gen-
eralizability of our models. We hypothesize that the decrease in performance is
due to a distribution shift in clinical and demographic characteristics, as well as
in image acquisition parameters (particularly for models 3 and 5). In particular,
the GPCCHN dataset has a disproportionately high number of HPV− patients
compared to the training dataset (Supplementary Table S1). This finding of lim-
ited generalizability has significant implications for the use of clinical trial data
in the development of predictive models or in the validation of models within
the highly selected clinical trials population as these trial populations may have
significant variations from routine clinical practice (48, 49).

This is important to highlight because a model’s clinical utility is not defined
solely by its geographical generalizability (50). Furthermore, our external vali-
dation experiments also tested the reusability of ourmodels and code. Through
interinstitutional collaborations, our code was applied to both public and pri-
vate datasets by individuals not involved in development, demonstrating the
accessibility of our methodologies and motivating utilization of open science
for scrutiny and advancement of scientific results. Toward this end, we have also
made our large training set available for scientific scrutiny and collaboration via
The Cancer Imaging Archive (37) which allows access to both the imaging and
associated clinical variables used in this project. We would encourage all future
efforts to continue to share as much data as is feasible to ensure reproducibility
within the field.

The utility of radiomics in HNC survival prediction has been investigated in
recent studies (13, 15, 16). We have identified several strong radiomics predic-
tors; however, the best performing individual model used EMR features, with

primary tumor volume as the only image-derived feature. Our conclusions
match those of Ger and colleagues (13), who did not find significant improve-
ment in prognostic performance of handcrafted CT and PET imaging features
in HNC compared with volume alone and of Vallières and colleagues (15),
whose best performing model for overall survival also combined EMR features
and volume. We further showed that although deep learning–based imag-
ing models generally outperformed approaches based on handcrafted features,
none proved superior to the combined EMR-volume model, even when com-
bined with EMR data. Deep learning methods achieve excellent performance
in many image processing tasks (51); however, current approaches require sub-
stantial amounts of training data. The endpoint contribution of individual data
modalities can be characterized by comparing the model’s performance with
the baseline EMR, volume, and radiomics models (Fig. 2). By comparing indi-
vidual baseline models with developed models, we can see how different model
designs contribute to predictive performance. The contribution of eachmodal-
ity and their combined improvements can be seen in MTLR’s performance
across various inputs (Fig. 4B).

While our training dataset is the largest publicly-available single-institution
HCN imaging collections, it is still relatively small compared with natural im-
age datasets used inML research, which often contain millions of samples (52).
Although such large sample sizes might be infeasible in a medical context, bet-
ter data collection and sharing practices can help build more useful databases
[the UK Biobank (53) or The Cancer Genome Atlas (54) are excellent exam-
ples]. This is especially important in diseases with low event rates, where a
substantial number of patients might be needed to capture the variation in phe-
notype and outcomes. The inferior performance of radiomic models can also
be attributed to suboptimal imaging data. While the possibility to easily extract
retrospective patient cohorts makes routine clinical images attractive for ra-
diomics research, they are often acquired for clinical purposes and may not be
sufficiently standardized for new biomarker discovery. CT images in particular
might not accurately reflect the biological tumor characteristics due to insuffi-
cient resolution, sensitivity to acquisition parameters and noise (55, 56), as well
as the source of image contrast, which is essentially electron density of the tis-
sue which demonstrates little texture at current image scales. This highlights
the broader need of greater collaboration between ML researchers, clinicians,
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and physicists, also in data selection and experiment design—with reciprocal
feedback (57, 58).

Our study has several potential limitations. Participation in the model de-
velopment was restricted to researchers at one institution, which limited the
number of models that could be explored. In addition, the hand-engineered
radiomics submissions relied on one radiomics toolkit (PyRadiomics), while
other widely-used toolkitsmake use of potentially different feature sets and def-
initions; however, thanks to recent efforts in image biomarker standardization,
the features have been shown to be largely consistent between the major imple-
mentations (27). While smoking status may be considered a relevant variable
for HNC prognosis, it is not guaranteed to be included in all predictive mod-
els and does not significantly improve predictive performance (Supplementary
Fig. S3 and S4). Furthermore, because our study was structured as a Challenge,
selection of modeling methods and input variables were left to the discretion of
the participants. It is likely that more sophisticated ensembling methods [e.g.,
Bayesian model averaging (59) or stacking (60)] could achieve even better per-
formance by weighing the models according to their strengths. We leave this
exploration for future work.

In the future, we would like to further enhance the diversity of approaches and
help us validate our conclusions by expanding our crowdsourcing efforts be-
yond our institution. We are also working on collecting additional outcome
information, including recurrence, distant metastasis, and treatment toxicity,
which would provide a richer set of prediction targets and might be more rel-
evant from a clinical standpoint. The importance of ML and AI as tools of
precision medicine will continue to grow. However, it is only through trans-
parent and reproducible research that integrates diverse knowledge that we can
begin to realize the full potential of these methods and permit integration into
clinical practice. Any clinical trials that employ AI/MLmodels as a component
of either patient selection, treatment selection, or attempt to translate models
derived from clinical trials populations should be aware of intrinsic risks related
to generalizability which may impact performance of those models outside the
bounds of the dataspace in which the models were generated.
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