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Abstract

Purpose of review—We seek to determine recent advances in kidney pathophysiology that have 

been enabled or enhanced by artificial intelligence. We describe some of the challenges in the field 

as well as future directions.

Recent findings—We first provide an overview of artificial intelligence terminologies and 

methodologies. We then describe the use of artificial intelligence in kidney diseases to discover 

risk factors from clinical data for disease progression, annotate whole slide imaging and decipher 

multiomics data. We delineate key examples of risk stratification and prognostication in acute 

kidney injury (AKI) and chronic kidney disease (CKD). We contextualize these applications in 

kidney disease oncology, one of the subfields to benefit demonstrably from artificial intelligence 

using all if these approaches. We conclude by elucidating technical challenges and ethical 

considerations and briefly considering future directions.

Summary—The integration of clinical data, patient derived data, histology and proteomics and 

genomics can enhance the work of clinicians in providing more accurate diagnoses and elevating 

understanding of disease progression. Implementation research needs to be performed to translate 

these algorithms to the clinical setting.
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INTRODUCTION

Precision medicine is an emerging focus in kidney disease that seeks to integrate large 

multiscale datasets to understand and tailor the treatment of disease for individual patients. 

Artificial intelligence, the implementation of computers to solve problems with nominal 

human intervention [1], has the potential for improved risk prediction and prognostication.

Several advances in technology have allowed for the increased usage of artificial 

intelligence. The near universal usage of electronic health records (EHRs) allows for 

incorporation of longitudinal patient data into models. The deployment of whole slide 

imaging (WSI) technologies, which converts glass slides to digital images, have enabled 

the application of artificial intelligence to improve diagnostic accuracy and prognosis [2]. 

Lastly, improvements in sequencing platforms have allowed for genomic and proteomic 

analysis to further enhance prediction and classification of kidney disease and progression 

risk. We summarize sources of data and their clinical uses in Fig. 1.

In this review, we will briefly provide an overview of artificial intelligence and potential 

sources of data. We then discuss examples of machine learning using various data 

sources and end with discussions of challenges, ethical considerations and potential future 

directions.

DEFINITIONS IN ARTIFICIAL INTELLIGENCE

Machine learning is a subset of artificial intelligence that seeks to analyse data by using 

algorithms that can adapt and improve with repeated data exposure [3]. There are two major 

subtypes of machine learning: supervised and unsupervised learning. In supervised learning, 

algorithms are trained on labelled datasets to create models relating input with the outcome 

and then tasked to predict or classify outcomes in new unlabelled data. In unsupervised 

learning, algorithms are tasked to identify structures, such as clusters, in unlabelled data 

[4]. Deep learning is a subset of machine learning that relies on neural networks to identify 

patterns in large-scale datasets. The artificial neuron serves as the functional unit that 

receives an input, transforms the information and outputs a result, often to the subsequent 

neuron [5]. These neurons are organized into layers, and the collation of these layers is 

termed ‘deep’, leading to the eponymous term deep learning [6].

DATA SOURCES FOR ARTIFICIAL INTELLIGENCE

We provide an overview of potential sources of data, including clinical as well as imaging 

and -omics data, for machine learning studies.

Patient EHRs amass clinical and laboratory data over a longitudinal time course, providing a 

source of natural history about disease and its response to treatment for prediction modelling 

[7]. As each institution’s EHR is unique, care must be used when combining data from 

several institutions [8]. The Observational Medical Outcomes Partnership (OMOP) common 

data model provides one potential method for combining data from disparate sources [9]. 

Several rich databases are available for research (Table 1) [10-21].
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An additional potential source of data is the kidney biopsy [22]. Manual annotation 

and assessment of whole slide images (WSI) require time and specialist expertise. 

Automating data extraction and evaluation can reduce variability, facilitate clinical workflow 

and augment histologic accuracy [23]. Several national and international databases have 

compiled biopsy samples, alongside clinical, genetic and biomarker data [24].

APPLICATION OF MACHINE LEARNING TO NEPHROLOGY

Advancements in high-throughput technologies have enabled massive collection of 

biological data, providing more comprehensive information about molecular mechanisms 

of disease development [5,25]. Parsing meaningful insights necessitates the use of machine 

learning methods to process these immense datasets, and we review notable examples in the 

following section.

Acute kidney injury

Acute kidney injury (AKI) is common in hospitalized patients. Artificial intelligence in AKI 

research has focused on risk prediction, identification and automated notifications. Most 

models are developed in single centres or a single healthcare system and do not have an 

external validation cohort, which is necessary to assess the performance and generalizability 

of models. One study that performed external validation tested a gradient boosted machine 

model for prediction of AKI stage 2 AKI within 48 h of an observation [26]. Their model 

had similar discrimination across the three sites used for internal validation and external 

validation.

Although a majority of studies generate predictions for a single time point, one study used 

data from the U.S. Department of Veterans Affairs to develop a machine learning model for 

continuous prediction of AKI [27]. Researchers grouped time-varying features into 6-h time 

windows to predict risk of AKI at eight-time windows. A major limitation of this study is 

that more than 90% of the cohort was male, and given differences in AKI incidence between 

men and women, it is unclear whether this model would generalize to a different population. 

In addition, urine output was not included as a feature in this model.

Chronic kidney disease progression

Given that patients with chronic kidney disease (CKD) have varying trajectories, it is of 

interest to identify patients at a high risk or progression. The most commonly used risk 

prediction tool for CKD progression is the kidney failure risk equation (KFRE) [28,29]. 

Several studies have attempted to expand on CKD prediction using machine learning. 

Most recently, Ventrella et al. [30] applied several machine learning techniques to estimate 

time to when dialysis treatment will be necessary. In their study, they used text mining, 

several machine learning algorithms, and built models for classification (within 1 year or 

not) and regression (predict actual number of months to need for dialysis). Overall, the 

best performing model was the ensemble approach for classification inclusive of features 

extracted from textual reports. Key limitations include lack of external validation, and the 

cohort was exclusively white, which limits generalizability.
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In a separate study, Chan et al. [31] used data from two biobanks to develop a random forest 

model to predict risk of a composite kidney end point in patients with CKD and type 2 

diabetes mellitus. Their study included three plasma biomarkers and the study population 

was diverse with nearly one-third African–American. The model outperformed both the 

clinical model and the KDIGO risk strata. Major limitations to this study were the large 

amount of missing data for urine results and that the cohort was derived from patients in the 

Northeastern USA. Lastly, others have unsupervised clustering to identify CKD subgroups 

with different clinical end points of CKD progression, cardiovascular disease and death [32].

Histopathology

One of the most frequent use of cases of machine learning for histopathologic analysis is 

to extract the glomeruli and ascertain key histologic findings [33,34]. Manual assessment 

of glomerular sclerosis, a primary manifestation in a spectrum of kidney diseases and an 

important component of disease staging, requires expertise that may be lacking in resource-

limited settings and introduces intrareader and inter-reader variability in interpretations. 

As such, many studies have developed machine learning approaches to segment glomeruli 

derived from biopsy samples and quantify amount of sclerosis [23,34-39]. Kolachalama et 
al. [40] trained a convolutional neural network (CNN) to correlate renal fibrosis from biopsy 

samples to clinical phenotypes at the time of biopsy. This approach outperformed a model 

based on pathologist-estimated fibrosis scores, yet the model’s accuracy would be better 

ascertained with external validation and incorporation of treatment impact in predicting 

survival.

In addition to segment identification, artificial intelligence can be implemented to enhance 

the visual resolution of WSI. Recently, de Haan et al. [41 ◾] developed a CNN model to 

transform H&E-stained kidney biopsy samples to computationally generated special stains 

such as Masson’s Trichrome, periodic acid-Schiff and Jones silver stain. As H&E-stained 

biopsies are often available well in advance of those prepared by special stains, this 

can alleviate wait time, which is especially useful for medical conditions in which rapid 

diagnosis and treatment can significantly improve outcomes, such as rapidly progressive 

glomerulonephritis. The samples included in this study were stained at a few institutions and 

imaged by microscopes from the same vendor and model, necessitating future research to 

generalize results to other facilities.

Genomics and proteomics

Machine learning studies using genetic information have enabled novel molecular 

phenotyping that increases precision of disease classification that can supplement and even 

supplant conventional histological diagnosis [42-44]. Using microarray data from 1208 

kidney transplant biopsies, Reeve et al. [44] first adopted supervised learning methods to 

detect molecular features of various types of rejection in kidney transplant, which were 

quantified in cross-validated classifier scores. They found that late-stage antibody-mediated 

rejection was associated with the lowest graft survival, which was better predicted using this 

pipeline rather than histologic diagnosis.
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Meanwhile, proteomic analysis of blood and urine samples can be used for diagnosing 

kidney disease without invasive kidney biopsies [45-47]. One study applied machine 

learning to mass spectrometry on urinary proteomics to compare four machine learning 

models for the diagnosis of IgA nephropathy (IgAN), membranous nephropathy and diabetic 

kidney disease [48]. The best performing model, XGBoost, demonstrated the highest 

accuracy of 96%, yet increasing sample size and including clinical data in their model 

could elevate diagnostic power.

Onco-nephrology

Onco-nephrology [49] converges histopathology and large-scale -omics to diagnose and 

prognosticate cancer of the kidneys.

Machine learning studies in histopathology have strived to distinguish RCC from normal 

tissue and discover biomarkers that inform diagnosis and prognosis of patients with RCC 

[50-53]. Using WSI, Tabibu et al. [54] implemented CNN models that classified RCC as 

clear cell, papillary or chromophobe; identified high probability tumour areas using nuclear 

and tumour shape; and associated these findings with patient survival. They employed 

a directed acyclic graph-support vector machine to create multiple binary classification 

tasks out of the multiclass classification task, which improved model performance and 

better handled the unequal distribution of RCC subtypes. Furthermore, the combination of 

proteomics and histology imaging datasets from clear cell RCC patients by Azuaje et al. 
[55] revealed correlations between select diagnostic proteins and predictions generated by a 

histology-based classification model, which serves as a proof of concept that demonstrates 

the possibility of elucidating molecular mechanisms through histopathological analysis.

Genomic studies have similarly sought to classify clear cell RCC and predict prognosis, 

distinguish tumour stage, classify cancer subtypes and even ascertain the methylation 

profile of RCC [56-58]. Ali et al. [59] implemented machine learning to classify five 

kidney cancer subtypes using miRNA data, identifying 35 miRNAs that distinctly contribute 

to diagnosis. Neighbourhood component analysis was used to distinguish features from 

miRNAs, and Long Short-Term Memory, a Recurrent Neural Network (a specialized deep 

learning technique), was implemented to classify miRNA samples into cancer subtypes. 

Further wet laboratory and clinical evaluations will be necessary to evaluate the utility of 

these miRNA to renal cancer classification.

Lastly, big data derived from radiologic images have emerged as a cutting-edge application 

of artificial intelligence in nephropathology. Uhm et al. [60 ◾◾] developed an integrated 

framework for the detection and differential diagnosis of five major histologic subtypes of 

benign and malignant renal tumours using computed tomographic (CT) data from patients 

with nephrectomies for renal tumours. Their model achieved similar or superior diagnostic 

performance in comparison to radiologists. These studies underscore the promise of using 

radiology as another noninvasive modality by which we profile renal cell carcinoma.
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CHALLENGES

Machine learning algorithms work best when developed in large, diverse and representative 

cohorts, yet this is often limited by the abilities to share data across institutions. To address 

this need, some health systems have de-identified their data and made them freely and 

publicly available [61], and others have created programmes that collect data nationally 

[10,11,17,20,21]. Another approach is federated learning, which allows for the training 

of a prediction model, although all data remain at their respective institutions. This has 

previously been demonstrated to have better performance compared with models developed 

at individual sites and then pooled [62].

Although many models exist in the literature, few of them get implemented into clinical 

practice. One contributing reason may be related to lack of understanding of the models and 

what are drivers of the models. Providers are unlikely to trust models that do not provide 

information regarding which features are contributing to these predictions. Models such as 

deep learning models are particularly difficult to interpret, as they are considered black 

boxes. In addition, the nephrology and medicine workforce need to integrate informatics and 

artificial intelligence into their training curriculum to build an understanding of how these 

tools can improve clinical care [63].

ETHICAL CONSIDERATIONS

Bias in machine learning models refers to the model providing results that are systematically 

prejudiced due to faulty assumptions. First, models that are trained in one population will 

perform well in that population but poorly in other populations. In addition, feature selection 

during the data collection or data cleaning phase can introduce unintended bias: for example, 

during a medical visit, a person of a certain background or appearance may be more 

likely to be asked regarding social determinants of health. Therefore, missing data in EHR 

may not always be missing at random and can lead to bias in models. To mitigate bias, 

researchers need to ensure that models are developed in representative populations and 

ensure careful selection of data features. Use of tools such as the Prediction model Risk of 

Bias Assessment Tool (PROBAST) by researchers can help identify bias in the models [64].

Given the growing use of machine learning in medicine, concerns have grown around 

privacy and confidentiality of patient data. Patients may not be aware of the secondary use of 

their EHR data and are not able to opt out of these practices. Although some countries have 

started to enact laws to address privacy concerns and how machine learning algorithms can 

be used, this is an area that requires additional work [65]. These data are now often stored 

in cloud-based databases and protections must be made to ensure that these data do are not 

obtained by malicious parties [66].

CONCLUSION

Studies discussed in this review exemplify how artificial intelligence can augment diagnostic 

and prognostic capabilities in nephropathology, presenting a tremendous area of growth 

in nephrology, as the field lags behind other organ-based research areas in artificial 

intelligence research [67]. Although in nascent stages of development, leveraging prediction 
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capabilities of artificial intelligence can contribute directly to clinical decision planning to 

monitor patient status [68] and recommend personalized treatment [69]. Nonetheless, these 

methodologies will require a multidisciplinary approach to actualize translation.

We believe that artificial intelligence will become an integral asset, not substitute, 

for clinicians. We foresee artificial intelligence serving as a critical tool by which to 

complete repetitive, routine tasks while providing bandwidth to clinicians to perform 

more complex activities [70]. For this reason, we emphasize the need for universal 

education of pathologists in training programmes to appreciate and apply machine learning 

algorithms [70]. In addition, deployment of artificial intelligence pipelines is an expensive 

investment [70]. To persuade healthcare systems to adopt machine learning in the future, 

implementation research needs to focus on demonstrating value-based care to garner 

funding. This funding will be especially critical for assessing algorithms in clinical trials 

that study not only ethnically diverse cohorts [71] but also clinical consequences as a result 

of implementation that may require recalibration of algorithms [72].

With the ever-growing accumulation of biomedical data, machine learning will continue 

to deliver exciting advances to nephrology, yet it remains important to distinguish this 

hope from hype in acknowledging the limitations of machine learning [3]. By using 

artificial intelligence with awareness of its implementation challenges and observation of its 

ethical considerations, the synergy of clinical data, histopathology, genomics and proteomics 

promises a precise and more individualized system of healthcare for everyone.
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KEY POINTS

• Several advances in technology have catalyzed the application of artificial 

intelligence to nephropathology research, such as near universal usage of 

electronic health records, whole slide imaging technologies, and genomic and 

proteomic sequencing platforms.

• Applying machine learning techniques to large-scale data sets enhances 

image analysis, such as glomeruli segmentation, as well as various forms of 

prediction, such as diagnosis, prognostication and risk stratification of kidney 

diseases.

• Although using artificial intelligence comes with its biases, ethical 

considerations and implementation challenges, synergizing analysis of 

clinical, histopathological and -omics data through machine learning promises 

a more individualized system of healthcare.
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FIGURE 1. 
Data sources and clinical applications of machine learning in nephrology.
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