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Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is a membrane receptor on myeloid cells and plays an important role in
the body’s immune defense. Recently, TREM2 has received extensive attention from researchers, and its activity has been found in
Alzheimer’s disease, neuroinflammation, and traumatic brain injury. The appearance of TREM2 is usually accompanied by
changes in apolipoprotein E (ApoE), and there has been a lot of research into their structure, as well as the interaction mode and
signal pathways involved in them. As two molecules with broad and important roles in the human body, understanding their
correlation may provide therapeutic targets for certain diseases. In this article, we reviewed several diseases in which TREM2 and
ApoE are synergistically involved in the development. We further discussed the positive or negative effects of the TREM2–ApoE
pathway on nervous system immunity and inflammation.
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Introduction

Triggering receptor expressed on myeloid cells 2
(TREM2) plays an important role in the regulation of
life activities of many cells, including survival,[1,2]

proliferation,[3,4] differentiation, phagocytosis,[1,5-7] and
inflammatory response.[8-10] TREM2 can recognize dif-
ferent ligands of apoptotic cells, phospholipids, glyco-
lipids, and lipoproteins: low-density lipoprotein (LDL)
and high-density lipoprotein (HDL), clusterin (CLU),
plexin A1, Hsp60, and apolipoprotein E (ApoE)[11-13];
particularly, ApoE has attracted more and more attention
in recent years. To date, more than 60 coding TREM2
variants have been identified, showing various degrees of
population frequency.[14] TREM2 variants have altered
binding to their ligands, including R47H, R62H+, and
T96K.[15-17]

ApoE is a glycoprotein containing 299 amino acids. As a
lipid carrier that regulates lipid homeostasis,[18-20] its role
in lipid transport is crucial. ApoE is involved in
pathogenesis of atherosclerosis,[21] and plays an important
role in transporting cholesterol and other lipids in the
brain.[19,22,23] There are three ApoE alleles: E2, E3, and
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E4.[24,25] Lipids play a vital role in immune regulation and
act as ligands for many immune receptors.[26] This is
achieved through cell signaling and membrane fluidity.
Therefore, ApoE has an irreplaceable position in the body.
ApoE binds to receptors in the LDL receptor family, such
as low-density lipoprotein receptor (LDLR), LDLR-
related protein 1, very-low-density lipoprotein receptor,
and ApoE receptor 2.[27]

Data show that TREM2 and ApoE are positively
correlated in the physiological condition and many
diseases.[28,29] There is a growing interest in studying the
role of TREM2 and ApoE pathway in health and disease.

Triggering Receptor Expressed on Myeloid Cells 2

The gene of human TREM2 is on chromosome 6p21.1, in
the TREM gene cluster.[30,31] The structural components
of TREMs include an extracellular immunoglobulin-like
domain, a transmembrane domain, and a small cyto-
plasmic tail. The function of TREM proteins is related to
the removal of extracellular waste materials.[32] Soluble
TREM2 (sTREM2) is produced by proteolytic cleavage of
the extracellular domain of TREM2.[33] sTREM2 can pass
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through the brain-cerebrospinal fluid (CSF) barrier and
can be identified in CSF.[34]

TREM2 activates downstream molecules DNAX-activat-
ing protein of 12 kDa (DAP12) and DAP10 through
charge interactions in the transmembrane domain.[35,36]

DAP12, also known as TYRO protein tyrosine kinase
binding protein, mediates the activation of spleen tyrosine
kinases Syk and p85,[37] regulating cell fate. TREM2
induces the recruitment of multiple ligands to the DAP12
complex, which requires DAP10. DAP10 is a transmem-
brane receptor closely related to DAP12, and may form a
DAP12-DAP10 heterodimer.[36] The TREM2/DAP12
pathway ultimately causes Ca2+ mobilization in mouse
macrophages. The TREM2/DAP10 pathway can lead to
the activation of serine/threonine protein kinase and
extracellular signal-regulated kinase (ERK).
Apolipoprotein E

The C-terminal lipid binding domain of ApoE is located
at positions 244–272.[23,38] In humans, the amino acid
composition of ApoE differs at position 112 or 158.[20]

ApoE2 has cysteine (Cys) residues at both positions,
whereas ApoE3 has Cys residue at 112 and arginine (Arg)
residue at position 158,[39] and ApoE4 has Arg residues
at both positions. Other mammals have a single ApoE
isoform with Arg residue at the position equivalent to
human ApoE 112.[40]

In the brain, ApoE is mainly synthesized de novo, and
rarely comes from the exchange between ApoE circulating
in the blood and the brain.[41] It is mainly secreted by
astrocytes and lipidated by adenosine triphosphate binding
cassette transporters A1 (ABCA1) and G1 (ABCG1).[42]

ABCA1 can interact with enough cholesterol and phos-
pholipids to undergo conformational changes and form
dimers. The lipidated dimer of ABCA1 is attached to the
actin filaments on the plasmamembrane until the lipid-free
apolipoprotein directly binds to the ABCA1 dimer. ApoE
binds to cholesterol and phospholipids transported by
ABCA1 to form disc-shaped HDL particles.[43] The disc-
shaped HDL particles are composed of >100 lipid
molecules, surrounded by two apolipoprotein mole-
cules.[44] Afterwards, the ABCA1dimer dissociates, returns
to the monomer state, and starts the process again.[44]

Experiments in ApoE knockout mice have proved that
ApoE plays an important role in synaptic integrity,
plasticity, and dendritic complexity.[45,46] Impaired
synaptic function is a pathological feature of many
neurodegenerative diseases, including Alzheimer’s disease
(AD).[47,48] At the same time, more and more evidence
shows that changes inApoE subtypes can affect its function
and change the integrity and plasticity of synapses.[49]
Interaction of TREM2 and ApoE

TREM2 and ApoE are jointly responsible for the
movement of phagocytes and myeloid cells, indicating
that the activities of this group of closely related genes
affect the same cellular functions.[50] In TREM2�/�APP-
PS1 mice (overexpressing mutated genes for human
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amyloid precursor protein [APP] and presenilin 1
[PS1]), ApoE signal transduction is inhibited, and the
homeostatic phenotype of microglia is restored.[29] When
TREM2 was highly expressed, plaques in the hippocam-
pus and cortex increased co-staining with ApoE. In
contrast, inhibition of TREM2 results in a decrease of
ApoE-positive microglia and ApoE-related plaques.[28]

In APP/PS1 mouse and human tissue sections, loss-of-
function variants of TREM2 can reduce the accumulation
of microglia around amyloid plaques and the expression
of ApoE.[51] It also results in a reduction of co-localization
of amyloid plaques and ApoE.[51] These data indicate that
the expression and function of TREM2 are positively
correlated with the expression of ApoE in amyloid
plaques. Thus, the level of ApoE expression may depend
on the regulation of TREM2. One study has proven that
the ApoE hinge region, in particular residues 192–238,
and a separate hydrophobic surface of TREM2, most
strongly contribute to TREM2–ApoE binding [Figure 1].
The lipidation of ApoE alters its binding to TREM2, as
the hinge region undergoes major conformational changes
upon lipid loading. Moreover, it is possible that the
C-terminal domain of ApoE contributes to direct
interactions with TREM2.[15] However, the specific
molecular mechanism of their interplay is still unclear.
TREM2/ApoE Signaling Pathway

Microglia are important for homeostasis of the central
nervous system (CNS).[54] In physiological condition,
TREM2 is only expressed inmicroglia in CNS. The activity
of TREM2 is related to a few physiological processes.
However, the TREM2 pathway is becoming the center of
detecting tissue damage and restricting its spread.[20] Along
with important ligand ApoE, TREM2/ApoE signaling
pathway plays an important role in many diseases, such as
AD, traumatic brain injury (TBI), and neuroinflammation.

Neurodegeneration occurred in APP transgenic mice (the
earliest established mouse AD pathological model) with
potential changes in the AD brain microglia at the
transcriptome level from steady state to disease-related
state.[29,55] This disease-associated microglia (DAM) has
lower gene expression of key homeostatic markers, such as
Tmem119, P2ry12, and Cx3cr1. The differentiation of
steady-state microglia to DAM involves two sequential
stages.[56] The stage 1 DAM conversion is required to
further activate the stage 2 DAM program.[57] The
transition from steady-state microglia to stage 1 DAM
is independent of TREM2, but the transition from stage 1
to stage 2 DAM depends on TREM2 signaling. Interest-
ingly, in the APP mice deficient in TREM2 or ApoE,
microglia cannot transition from a steady state to a
disease-related state.[29,55] The existence of DAM accel-
erates the progression of the disease and the decline of
cognitive function.[57]

In several neurodegenerative models, phagocytosis of
apoptotic neurons induces the microglial neurodegenera-
tive (C) phenotype.[29] This neurodegenerative microglia
(MGnD) phenotype is found in the neuritic b-amyloid
(Ab) plaque associated microglia in mouse AD model and
human AD patients, consistent with the existence of
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Figure 1: The potential binding mechanism of TREM2 and ApoE. The main hinge region of
ApoE (shown in hydrophobic surface) potentially binds to the hydrophobic surface (brown
color) of TREM2 extracellular domain (shown in hydrophobicity surface). The predicted
structural models of ApoE and TREM2 were downloaded from the AlphaFold Protein
Structure Database (https://alphafold.ebi.ac.uk/)[52,53] and visualized with the Discovery
Studio Visualizer (BIOVIA, San Diego, CA, USA). Two dotted lines delineate the plasma
membrane. Arrows indicate potential hydrophobic interactions between two proteins.
ApoE: Apolipoprotein E; TREM2: Triggering receptor expressed on myeloid cells 2.
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senescent microglia,[58] which lose sensome function
including transforming growth factor-b signaling.[59]

ApoE binds to TREM2 and promotes the phagocytosis
of apoptotic neurons through the TREM2 pathway under
physiological and pathological conditions.[29] ApoE
signaling also induces expression of miR-155 microRNA
in MGnD.[29]

MiR-155 is a major pro-inflammatory miRNA in a variety
of neuroinflammation mouse models, such as amyotro-
phic lateral sclerosis and superoxide dismutase 1 (SOD1)
models,[60] and it destabilizes microglia and accelerates
disease progression[61] by directly targeting myocyte
specific enhancer factor 2A (Mef2a)[62] and PU.1.[63] At
the same time, TREM2 knockout in phagocytic microglia
and SOD1 mice can down-regulate miR-155 expres-
sion.[29] Together, these data indicate that TREM2/ApoE
signaling via miR-155 can modulate the microglia
enhancer, thereby controlling the core microglia-specific
molecular markers.

ApoE promotes the phagocytosis of apoptotic neurons by
microglia through the TREM2 pathway.[64,65] Engulfed
apoptotic neurons form phagosomes in themicroglia. This
will activate TREM2 and up-regulate lipid metabolism
genes through downstreammolecules DAP12 andDAP10,
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activate lysosomes, and break down phagocytic neuronal
debris.[50,64,65] Part of the breakdown product cholesterol
enters the endoplasmic reticulum of microglia and is
converted into cholesterolis (CEs) by acetyl coenzyme A
acetyltransferase 1 for metabolism and physiological
activities. Another part of CEs is transported out of
microglia through the action of ABCA1 and ABCG1
transporters, and then transported to other places after
binding to ApoE to maintain the physiological activity of
microglia.[50,65]

Furthermore, studies have shown that TREM2 and ApoE
binding can promote the metabolism and transport of CEs
in microglia. Deletion of TREM2 or ApoE can lead to
disorders of cholesterol transport and metabolism in
microglia, and further cause dysfunction of micro-
glia.[50,64,65] In the microglia of the demyelinating mouse,
TREM2 participates in the transport and metabolism of
intracellular CEs by sensing lipids.TREM2 gene knockout
decreases both the expression of intracellular ApoE and
CEs level. Moreover, ApoE gene knockout causes down-
regulation of TREM2, DAP12, and lipid metabolism-
related gene expression, which affects neuronal func-
tion.[66]Most of the cholesterol in the brain is contained in
myelin, so the excessive release of myelin fragments in
disease conditions may result in cholesterol accumulation
and cytotoxicity because cholesterol cannot be effectively
metabolized and is harmful to cells in high concentra-
tions.[66] After chronic demyelination, the metabolic flux
of cholesterol in microglia is impaired. Key lysosomal
genes, such asCtse andCtsl, are up-regulated in microglia,
and microglia are converted into the reactive state, namely
DAM.[66] The accumulation of cholesterol in phagocytes
may hinder the clearing of metabolites and is not
conducive to the successful regeneration of tissues.
Cholesterol accumulation may drive unfavorable immune
responses, thereby impairing the regression and repair of
inflammation.[64,67] At the same time, the regulation of
intracellular lipids by the two proteins also plays a role in
peripheral atherosclerosis.[68]

Phosphatidylinositol 3-kinase (PI3K) can phosphorylate
protein kinase B (Akt), thereby regulating cell survival,
growth, and angiogenesis in response to extracellular
signals.[36] PI3K/Akt signaling has anti-neuroinflamma-
tion, anti-oxidative stress, and anti-apoptotic properties in
neurons.[36] PI3K/Akt signaling is also the downstream
target of ApoE/TREM2 pathway and participates in the
TREM2-mediated inflammatory response.[69] Activation
of TREM2 with apoE-mimetic peptide COG1410 inhib-
ited microglia/macrophage activation, neutrophil infiltra-
tion, and neuronal apoptosis, and downregulated the
expression of inflammation related cytokines, tumour
necrosis factor alpha, the cytokine interleukin-1b, B cell
lymphoma 2 (Bcl-2), and Bcl-2-associated X protein,
whichwas, at least in part, mediated by activation of PI3K/
Akt signaling pathway.[69]

Recently, lipid-droplet-accumulating microglia (LDAM)
has entered our field of vision.[70] They appear under the
condition of continuous stimulation of chronic inflamma-
tion and aging, and the accumulation of large numbers of
lipid droplets (LDs) is a characteristic of this microglia
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group. Studies have found that LDAM has the character-
istics of defective phagocytosis, high levels of reactive
oxygen species, and secretion of pro-inflammatory
cytokines.[70] The LDs in LDAM mainly include triglyc-
erides (TG), a small amount of diglycerides and CEs,
which are organelles for the production and storage of
eicosanoids and inflammatory cytokines, and are involved
in antigen presentation and removal of necrotic sub-
stances.[70] The relationship between TREM2–ApoE
pathway and LDAM is further explained in detail below.

Some transmembrane proteins on the membrane of
microglia can regulate TREM2/ApoE pathway. CD33
(or siglec-3) is a transmembrane protein abundantly
expressed in microglia. It inhibits autoimmune activation
by binding to sialylated self-associated molecular pat-
terns.[71,72] The binding of ApoE and CD33 activates
SH2-containing protein tyrosine phosphatase (SHP) 1 and
SHP2 phosphatases, thereby inhibiting the TREM2/
DAP12 pathway.[73] The increase in CD33 expression
in the frontal cortex of human AD patients after death is
related to the decrease in Ab phagocytosis after the
TREM2/DAP12 pathway is inhibited. Similarly, CD33
knockout results in a decrease in Ab load.[71] In addition,
TREM2 promotes the accumulation of CD68-positive
microglia around amyloid plaques. These microglia
increase the expression of ApoE.[70] The increased ApoE
in the plaque promotes plaque fibrosis and compaction,
maintaining the stability of the plaque.
Roles of TREM2/ApoE signaling pathway in AD

AD is the major neurodegenerative disease. More than 40
million people worldwide suffer from the disease, which is
themain cause of dementia in the elderly.[74] There are two
types of AD: early-onset AD, and late-onset AD (LOAD).
LOAD is estimated to affect about 50% of people who are
aged ≥85 years.[75] There are more than 30 AD genetic
risk loci identified.[76] Many of these genetic risk factors
are the genetic variations of the genes related to innate
immunity and microglial function, including ApoE and
TREM2 variants,[5] which are related to the formation of
DAM in the progression of AD.

AD is characterized by senile plaques composed of Ab
peptide and neurofibrillary tangles of hyper-phosphory-
lated tau protein.[20] The brain accumulation of Ab
peptide is the initial event in the AD process. Due to the
defect of the brain’s immune clearance function, Ab begins
to appear in the brain 15 to 20 years before the presence of
clinical symptoms. Studies have proposed that ApoE
captures Ab, and TREM2 promotes the endocytosis and
clearance of ApoE-Ab complex.[20] When Ab forms a
complex with LDL, CLU, andApoE, ApoE transfers Ab to
microglia by binding to TREM2, so that the microglia can
phagocytose Ab more effectively.[77]

The most common TREM2 variant is the Arg to histidine
mutation at position 47 (R47H), which impairs ligand
binding of TREM2. This can result in a four-fold increase
in the risk of AD.[78] There is a significant association
between TREM2–R62H variants and LOAD. Even if this
variant was deleted from the analysis, the association
1294
between TREM2 variants and LOAD was still significant,
indicating there are other TREM2 risk variants.[79] The
AD risk of ApoE E4 variants is that one copy increases by
3 to 4 folds, and the risk of two copies increases by 10 to
12 folds.[20] The increased risk of AD may be due to the
above variants affecting the combination between
TREM2 and ApoE.
Roles of TREM2/ApoE signaling pathway in
neuroinflammation

Neuroinflammation plays an important role in in several
neurodegenerative diseases.[80,81] Similar to DAM,
TREM2, and ApoE have multiple effects on the regulation
of microglia in neuroinflammation: (1) downregulating
the steady-state transcription factors of microglia, includ-
ing Mef2a, Mafb, and Smad3; (2) inducing inflammation
program, and up-regulating transcription factors Bhlhe40,
Tfec, and Atf3 and transcription and translation regulator
miR-155;[61] (3) accelerating intracellular cholesterol
transport and maintaining cell function. Certain defects
prevent microglia from transitioning from a steady state to
a disease-related state, thereby impairing basic physiolog-
ical defense functions such as chemotaxis, proliferation,
phagocytosis, and survival.[2]

In neuroinflammation, the result of activating the
TREM2–ApoE pathway is the loss of the ability of
DAM to prevent neuronal loss and provide tolerogenic
signals to T cells; this would amplify the pro-inflammatory
properties of T cells and cause neuronal damage.[29]

The self-limitation of inflammation is very important for
the reconstruction process after tissue injury. Uncon-
trolled inflammatory storm will leave permanent marks
and continue to change the homeostasis of the tissue.

Therefore, regulating the phenotype of MGnD by
targeting TREM2 and ApoE can be used as a method
to restore microglia in the body and treat neurodegenera-
tive disorders. It is worthy of pointing out that TREM2
reverses A1 astrocyte activation, inhibits neuroinflamma-
tion, and suppresses dementia caused by hypertension.[82]

Is ApoE also involved in this process? How does it
participate in “cross-talk” between M1 microglia and A1
astrocytes? This conjecture remains to be verified.

Roles of TREM2/ApoE signaling pathway in TBI

TBI is one of the main causes of death and disability. The
surviving patients of TBI in the long term may develop
cognitive impairment, anxiety, and depression.[83] There is
a strong genetic influence on brain susceptibility and
recovery of the TBI patients.[84] TBI is closely related to the
increased risk of dementia, including chronic traumatic
encephalopathy and AD.[85] ApoE4 is associated with
chronic traumatic encephalopathy in TBI patients.[86] TBI
can cause cognitive impairments and increase expression
of TREM2 and DAP12 surrounding the injury site in both
ApoE3 and ApoE4 mice.[87] The presence of high levels of
microglia proliferation at the injury site indicates that
microglia are recruited to the injury site. Studies show that
in the acute phase of TBI with different ApoE subtypes, the
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gene network including TREM2 and DAP12 has changed
dramatically.[87] After TBI, ApoE would bind to TREM2
on the microglia membrane to activate DAP12, helping
the microglia recognize damaged tissues through related
downstream pathways. This will activate the phagocytic
function of microglia, and strengthen the phagocytosis of
microglia on damaged tissues, causing acute neuroin-
flammation.
Roles of TREM2/ApoE signaling pathway in intracerebral
hemorrhage

Intracerebral hemorrhage (ICH) accounts for approxi-
mately 15% to 20% of all strokes and has a highmortality
and morbidity rate.[88] Cell debris from necrosis and
disintegration of red blood cell and other blood
components can cause secondary brain damage after
ICH. This can result in neuroinflammation, oxidative
stress, mitochondrial dysfunction, blood-brain barrier
disruption,[89,90] and neuronal apoptosis. The apoptosis
of neurons leads to the infiltration of peripheral immune
cells in the brain tissue, which further aggravates the
inflammatory damage.[91,92]

The combination of TREM2 and ApoE gives the brain a
powerful neuroprotective effect by reducing the neuro-
inflammatory storm in ICH. As a peptide derived from
ApoE, COG1410 treatment can inhibit acute neuro-
inflammation 24 h after ICH. Furthermore, TREM2
knockdown by small-interfering RNA and PI3K inhibition
by the specific inhibitor LY294002 significantly reversed
the anti-inflammatory and anti-apoptotic effects of
COG1410.[69]

We can speculate that the ApoE-mimic peptide inhibited
neuroinflammation and neuronal apoptosis, and even
reduced mortality by activating the PI3K/Akt pathway
through TREM2 after ICH.

TREM2/ApoE signaling pathway in atherosclerosis

Macrophages play an important role in the development
of atherosclerosis.[93,94] Most of the foam cells that play a
leading role in atherosclerosis are derived from macro-
phages in the blood, and a small portion is derived from
smooth muscle cells in the blood vessel wall. The lipids
deposited in atherosclerotic plaque mainly come from the
necrosis and disintegration of foam cells. Existing data
indicate that after absorbing large numbers of lipids,
mainly through scavenger receptors, macrophages trans-
form into foam cells.

ApoE is the most important factor for the metabolism of
peripheral lipids and lipoproteins. It can promote the
removal of lipoproteins rich in TG (containing apoB) from
the circulation to the liver. ApoE�/� mice are a common
animal model of atherosclerosis,[93] suggesting that this
protein is essential in atherosclerosis.

Aortic TREM2hi macrophages are a new subset of
diseased macrophages, which are characterized by high
expression of TREM2. Gene Ontology term enrichment
analysis shows that TREM2hi macrophages have highly
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specialized functional characteristics, such as lipid proc-
essing and catabolic processes that are abnormally active
in this subset of macrophages.[68] Interestingly, the
gene expression characteristics of atherosclerosis-related
TREM2hi macrophages showed striking similarities to
DAM in AD.[68] As mentioned before, DAM is localized in
the vicinity of Ab plaques in neurodegenerative diseases.
Similarly, in atherosclerotic lesions, apolipoprotein A-I-
derived amyloid deposits increase the likelihood that the
diseased TREM2hi macrophages will appear nearby. In
addition, TREM2hi macrophages may participate in the
formation of such amyloid deposits in atherosclerosis.[68]

TREM2hi macrophages are observed in ApoE�/� mice.[68]

Based on the interaction of the above two molecules in
ICH, it can be speculated that ApoE deficiency is a catalyst
for the increase of TREM2. Combined with the above
regulation of TREM2–ApoE on lipids in microglia, we can
speculate that ApoE deficiency leads to an imbalance of
lipid transport in macrophages, abnormal accumulation
of lipids in macrophages, and increased expression of
TREM2, which promotes lipid transport, finally affecting
the process of atherosclerosis.
Summary

TREM2 and ApoE can interact with each other, which is
likely done through the binding of the ApoE hinge region
to a hydrophobic surface of the TREM2 extracellular
domain. Their effects on microglia and peripheral
macrophages are not unique. In particular, they promote
the activation of microglia in neurodegenerative diseases
to transform into different disease-related phenotypes,
enhance the phagocytic function of microglia through
DAP12, and enhance acute neuroinflammation. However,
microglia can also inhibit the up-regulation of inflamma-
tory factors through the downstream molecule PI3K/Akt,
and protect neurons from excessive immune response
damage [Figure 2].

In summary, the TREM2–ApoE pathway induces multiple
inflammatory reactions of microglia in the CNS or
macrophages in the periphery. The TREM2–ApoE
pathway is a promising therapeutic target for restoring
homeostasis of microglia or macrophages in neurodegen-
erative disorders, neuroinflammation, or atherosclerosis.
Currently, there are still many unanswered questions.
More in-depth research will allow us to further under-
stand the relationship between these two molecules and
their detailed roles in diseases. Future structural studies of
the TREM2–ApoE complex are needed to elucidate the
structural details of the molecular interaction between
TREM2 and ApoE. Such research should focus on how to
moderately regulate this pathway to maximize benefits.
In addition, the biological significance of this pathway
and its immune function has yet to be elucidated,
especially in terms of its regulation of lipid metabolism
in macrophages.

Although these promising findings explain the role,
mechanism, and therapeutic significance of the
TREM2–ApoE pathway in the pathogenesis and progres-
sion of diseases, the use thereof is still far from clinical
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Figure 2: Signal pathway involved in TREM2 and ApoE in microglia. (1) After apoptotic neurons or inflammatory substances, such as LPS, stimulate TREM2, the intracellular ApoE
expression is up-regulated, causing microglia to transform into a disease-related phenotype. At the same time, it promotes intracellular lipid metabolism. (2) After being secreted by
astrocytes, ApoE binds to cellular wastes, such as Ab or apoptotic neurons in CNS, and then activates TREM2. On one hand, it causes the enhancement of microglia phagocytosis. In
addition, it inhibits the inflammation of microglia through the PI3K/Akt pathway. (3) CD33 and CD68 play a regulatory role in this pathway. ApoE: Apolipoprotein E; Ab: b-amyloid; Bax: Bcl-
2 associated X protein; Bcl-2: B cell lymphoma 2; Ccl6: Chemokine ligand;CEs: Cholesterolis; Ch25 h: Cholesterol-25-hydroxylase; Clec7a: C-type lectin domain family 7 member A; CNS:
Central nervous system; Csf1: Colony stimulating factor 1; Cst7: Cystatin F; Fabp5: Fatty acid-binding proteins; Gpnmb: Glycoprotein nonmetastatic melanoma protein B; IL-1b:
Interleukin-1b; Lgals3: Lectin galactoside-binding soluble 3; Itgax: Integrin, alpha X; Lpl: Lipoprteinlipase; LPS: Lipopolysaccharide; mafb: MAF bZIP transcription factor B; Mef2a: Myocyte
specific enhancer factor 2A; PI3K: Phosphatidylinositol 3-kinase; Sall1: Sal-like 1; Spp1: Secreted phosphoprotein 1; TNF-a: Tumor necrosis Factor alpha; TREM2: Triggering receptor
expressed on myeloid cells 2.
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application. Elucidating the detailed mechanism of the
TREM2–ApoE interaction would facilitate structure-
based drug design to precisely target different steps along
the pathway. This would enable the development of
therapeutics with high selectivity and low side effect for a
variety of neurological diseases.
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