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INTRODUCTION

Cholangiocarcinoma (CCA), also known as bile duct
cancer, is responsible for more than 7,000 deaths per
year in the United States.1 Estimated mortality because
of intrahepatic cholangiocarcinoma (ICC) has signifi-
cantly increased both globally and in the United States in
recent years, while the mortality for extrahepatic chol-
angiocarcinoma (ECC) has leveled off or decreased.2

Risk factors for biliary tract cancers (BTCs) include
choledochal cysts, cholelithiasis, cirrhosis, and chronic
inflammatory conditions of the bile ducts such as pri-
mary sclerosing cholangitis or liver fluke infection, but
most cases are sporadic or emerge in the setting of
weakly associated risk factors such as chronic hepatitis
B or C, advanced age, alcohol use, inflammatory bowel
disease, or type 2 diabetes.3

Traditionally, BTCs have been divided anatomically
into intrahepatic, perihilar, and distal bile duct CCAs as
well as cancers of the gallbladder. ICC, defined as
cancer arising distal to the left and right hepatic ducts,
is responsible for approximately two thirds of the an-
nual deaths from CCA in the United States.1,2

Although staging and surgical management vary by site,
systemic chemotherapies have been developed in clin-
ical trials that include all BTCs. For advanced BTCs, the
combination of gemcitabine and cisplatin (GemCis)
has been a frontline standard for more than a decade.4

Recently, the TOPAZ-1 study demonstrated improve-
ments in objective response rate (ORR; 26.7% v 18.7%;
P = .011), progression-free survival (PFS; median,
7.2 v 5.7months; hazard ratio [HR], 0.75; P = .001), and
overall survival (OS, median, 12.8 v 11.5 months; HR,
0.80; P = .021) with the addition of the PD-L1 inhibitor
durvalumab to GemCis, resulting in US Food and Drug
Administration (FDA) approval and establishing a new
frontline standard.5

National Comprehensive Cancer Network (NCCN)
guidelines also include the triplet regimen gemcitabine,
cisplatin, and nab-paclitaxel (GAP) as an acceptable
option for frontline treatment of advanced BTC on the

basis of a median PFS of 11.8 months and an OS of
19.2 months in a single-arm phase II trial.6 The recently
completed phase III SWOG S1815 study comparing
GemCis and GAP did not demonstrate an OS advantage
for GAP. Subset analyses suggested potential benefit
with GAP in patients with locally-advanced tumors or
gallbladder cancer.118

In the past decade,molecular profiling has shown that ICC
is distinct from other BTCs, with rates of targetable driver
mutations estimated as high as 40%-50%.7-12 ICCs arise
from the peripheral bile ducts of the liver, and pathologists
have further subclassified ICC on the basis of morphologic
features into two subtypes—cholangiolar and bile
duct—with isocitrate dehydrogenase (IDH) mutations
and fibroblast growth factor receptor 2 (FGFR2) fusions
being more common in the cholangiolar subtype and
human epidermal growth factor receptor 2 (HER2)
amplification/overexpression and KRAS mutations be-
ing more common in the bile duct subtype.13,14 The
recognition of the potential of personalized medicine for
patients with CCA has resulted in many novel treat-
ments directed at molecular subsets (Table 1). In this
review, we aim to summarize recent developments in
therapeutics for CCA and discuss emerging targets and
ongoing clinical trials (Fig 1).

Molecularly Targeted Agents for Cholangiocarcinoma

Large-scale genomic sequencing efforts have elucidated
the mutational landscape of CCA and demonstrated
distinct molecular profiles on the basis of site of
origin.7,8,10-12,15-17 For example, FGFR2 fusions and
IDH1mutations nearly exclusively occur in ICC.10 Some
alterations co-occur frequently in ICC, such as FGFR2
fusions and BAP1 mutations, while others tend to be
mutually exclusive, such as FGFR2 fusions and KRAS
mutations.8 Mutational frequency can vary on the basis
of the underlying etiology (eg, liver-fluke–associated v
non-fluke–associated) and geography, with lower fre-
quencies of FGFR2 fusions and IDH1 mutations in
Asian populations.16,18,19
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The frequency of any given genomic alteration in CCA varies
widely among published studies because of differences in
sample size, sequencing platform, and proportion of resection
versus metastatic samples. More recent analyses of com-
mercial and academic sequencing databases have provided
larger sample sizes enriched for advanced disease, whichmay
further refine estimates of mutation prevalence in the relevant
treatment population.8,10,12 A variety of assays exist for the
molecular profiling of cholangiocarcinoma, and understanding
their coverage and limitations is critical for optimizing selection
or clinical use. A recent review by Saab et al20 summarizes
these assays. Increased use of circulating tumor DNA analysis
or liquid biopsy, especially in patients with tumor biopsies
insufficient for next-generation sequencing, has provided an
additional tool to expand molecular profiling and increase
understanding of mutational changes during treatment.21-23

FGFR2 Fusions and Other Activating Alterations

The fibroblast growth factor (FGF) pathway is composed of
four membrane tyrosine kinase receptors (FGFR1-4) and 22
FGF ligands involved in cellular growth and development.24

Wu and colleagues first reported the presence of FGFR2
fusions in two cases of ICC in 2013, and subsequent studies
have shown the transforming potential and oncogenic activity
of these alterations in ICC.25-27 Present in 10%-15% of ICCs,
FGFR2 fusions have emerged as a druggable target in this
disease with oral small-molecule FGFR inhibitors demon-
strating an ORR of 20.7%-41.7% and a median PFS of
5.7-9.0 months.28-31 Additional activating FGFR2 alterations
including extracellular domain in-frame deletions (indels) and
activating point mutations such as C382R have also dem-
onstrated responsiveness to FGFR inhibition.32,33

In April 2020, the reversible FGFR1-3 inhibitor pemigatinib
gained accelerated FDA approval for patients with previously
treated cholangiocarcinoma harboring an FGFR2 fusion or
rearrangement.28 Among 107 patients with FGFR2 fusions or
rearrangements, pemigatinib demonstrated an ORR of
35.5%, a median PFS of 6.9 months, and a median OS of

21.1 months. No responses were seen in 20 patients with
other FGF/FGFR alterations or in 18 patients without an
FGF/FGFR genetic alteration.34

Infigratinib, another reversible FGFR1-3 inhibitor, received
accelerated FDA approval in May 2021. In 108 patients
with an FGFR2 fusion or rearrangement, the ORR was
23.1%, with a median PFS of 7.3 months and a median OS
of 12.2 months.29

Futibatinib, an irreversible pan-FGFR inhibitor, received
accelerated FDA approval in September 2022. It is the first and
only covalently binding FGFR inhibitor to receive an oncology
indication. Futibatinib demonstrated an ORR of 41.7%, a
median PFS of 9.0 months, and a median OS of 21.7 months
in patients with FGFR2 fusion or rearrangement positive CCA.30

The reversible FGFR1-3 inhibitor derazantinib has shown
preliminary efficacy in patients with cholangiocarcinoma
harboring FGFR2 fusions (ORR, 20.7%; PFS, 5.7 months) or
activating FGFR2 mutations or FGFR2 amplification (ORR,
8.7%; PFS, 7.3 months).31,35 More recently, RLY-4008, a
highly selective irreversible inhibitor specific to FGFR2,
showed early clinical activity in patients with FGFR2 fusion
cholangiocarcinoma, with objective responses in 14 of 17
patients (82.4%) naive to FGFR inhibitors at the recom-
mended phase II dose and activity in patients previously
treated with FGFR inhibitors (RLY-4008: ClinicalTrials.gov
identifier: NCT04526106).36-38 Additional FGFR inhibitors are
under exploration in ICC, including the multikinase inhibitor
TT-00420 (ClinicalTrials.gov identifier: NCT04919642), the
bivalent FGFR1-3 inhibitor E7090 (ClinicalTrials.gov identi-
fier: NCT04238715), the FGFR1-3 inhibitor HMPL-453
(ClinicalTrials.gov identifier: NCT04353375), and the irre-
versible pan-FGFR inhibitors gunagratinib (formerly ICP-192;
ClinicalTrials.gov identifier: NCT04565275) and KIN-3248
(ClinicalTrials.gov identifier: NCT05242822).

Given the success of FGFR inhibitors in previously treated
patients, an ongoing phase III trial aims to assess the superiority
of pemigatinib to frontline GemCis (NCT03656536).

CONTEXT

Key Objective
To summarize recent advances in precision medicine and immunotherapy for patients with cholangiocarcinoma.
Knowledge Generated
Targetable alterations are found in up to 40%-50% of patients with intrahepatic cholangiocarcinoma and up to 15%-20% of

patients with extrahepatic cholangiocarcinoma. Effective therapies exist for FGFR2 fusions, IDH1mutations, BRAF V600E
mutations,NTRK and RET fusions,HER2 amplification/overexpression, MSI-high tumors, and TMB-high tumors, and data
continue to emerge for other potential targets such as KRAS G12C mutations, MDM2 amplifications, and DNA repair
deficiencies.

Relevance
The emerging therapies outlined in this review are likely to reshape the treatment landscape for cholangiocarcinoma in the

coming years.
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TABLE 1. Efficacy of Targeted Therapies in CCA

Molecular Abnormality Prevalence Drug Name
Study
Phase

No.
of Patients

with
Molecular
Abnormality ORR

Disease
Control
Rate

Median
PFS (months) References

FGFR2 fusion 10%-15% (primarily ICC) Pemigatinib (INCB054828) II 107 35.5% 82.2% 6.9 28

Infigratinib (BGJ398) II 108 23.1% 84.3% 7.3 29

Futibatinib (TAS-120) II 103 41.7% 82.5% 9.0 30

Derazantinib (ARQ087) I/II 103 21.4% 74.8% 8.0 35

IDH1 R132 mutation 13%-20% (primarily ICC) Ivosidenib III 124 2.4% 53.2% 2.7 51

BRAF V600E mutation 1%-3% Dabrafenib plus trametinib II 43 46.5% 85.4% 9.0 54

Vemurafenib II 9 33.3% NA NA 55

HER2 overexpression or amplification ICC 5%
ECC 8%-12%
GBC 14%-16%

Trastuzumab plus pertuzumab II 39 23.1% 51.3% 4.0 57

Trastuzumab deruxtecan II 24 36.4% 81.8% 4.4 58

Zanidatamab I 17 47% 65% NA 61

HER2 mutation 2%-3% Neratinib II 20 10% 30% 1.8 59

KRAS G12C mutation 1% Adagrasib II 8 50% 100% NA 76

Tumor agnostic indications

NTRK fusion 0.2% Larotrectinib
Entrectinib

RET fusion ,1% Pralsetinib
Selpercatinib

MSI-high 2% Pembrolizumab

TMB-high 3%-4% Pembrolizumab

Abbreviations: CCA, cholangiocarcinoma; ECC, extrahepatic cholangiocarcinoma; GBC, gallbladder cancer; ICC, intrahepatic cholangiocarcinoma; MSI, microsatellite instability; ORR, objective
response rate; PFS, progression-free survival; TMB, tumor mutational burden.
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The similarly designed phase III trials for infigratinib
(NCT03773302) and futibatinib (NCT04093362) had
modest accrual and are no longer actively recruiting. Com-
bination studies with FGFR inhibitors are also ongoing in
cholangiocarcinoma (GemCis plus pemigatinib or ivodesi-
denib: ClinicalTrials.gov identifier: NCT04088188, futibatinib
plus binimetinib: ClinicalTrials.gov identifier: NCT04965818,
derazantinib plus atezolizumab: ClinicalTrials.gov identifier:
NCT05174650).

Data continue to emerge about resistance mechanisms to
FGFR inhibitors in cholangiocarcinoma, with polyclonal
secondary mutations in the FGFR2 kinase domain being a
common form of acquired resistance.33,39-43 Many of these
resistance mutations are either gatekeeper mutations (eg,
V565F/L/I) that prevent binding of FGFR inhibitors through
steric hindrance, or molecular brake mutations (eg, N550K/

H/D/T) that lead to ligand-independent kinase activation.44,45

Futibatinib has shown potent preclinical and clinical activity

against multiple of these mutations that arise at progression
on reversible, ATP-competitive FGFR inhibitors.43,46,47

IDH Mutations

Isocitrate dehydrogenase 1 (IDH1) catalyzes the oxidative
decarboxylation of isocitrate to α-ketoglutarate in the
cytoplasm.48 Several IDH1 R132 mutations result in neo-
morphic activity of the enzyme and consequent abnormal
production of 2-hydroxyglutarate (2-HG), an oncometabolite
that inhibits histone and DNA demethylases and results in
widespread epigenetic alterations and oncogenesis.49,50 The
reported frequency of IDH1mutations in ICC versus ECCwas
13.1% and 0.8%, respectively, in a systematic review.18
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FIG 1. New and emerging targets in cholangiocarcinoma. ARID1A, AT-rich interaction domain 1A; BAP1, BRCA1-associated protein 1; BRAF,
v-raf murine sarcoma viral oncogene homolog B1; BRCA, breast cancer gene; ERK, extracellular signal-regulated kinase; FGFR2, fibroblast
growth factor receptor 2; HCQ, hydroxychloroquine; HER2, human epidermal growth factor receptor 2; IDH, isocitrate dehydrogenase; KGDH,
alpha ketoglutarate dehydrogenase; KRAS, Kirsten rat sarcoma virus; MDM2, mouse double minute 2; MEK, mitogen-activated protein kinase;
NTRK, neurotrophic tropomyosin receptor kinase; PDH, pyruvate dehydrogenase; PK CK2, protein kinase CK2; RAF, rapidly accelerated fi-
brosarcoma; RAS, rat sarcoma virus; RET, rearranged during transfection; TGF-β1, transforming growth factor beta 1.
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Ivosidenib, a specific inhibitor of mutated IDH1, gained FDA
approval in August 2021 for patients with previously treated
IDH1-mutated cholangiocarcinoma on the basis of an im-
provement in PFS versus placebo (HR, 0.37; median,
2.7 v 1.4 months; P, .0001) in the phase III ClarIDHy trial.51

Most patients with clinical benefit had stable disease as the
ORR was 2%.

The IDH1 inhibitor BAY1436032 was evaluated in 12
patients with CCA, with stable disease in 42% of patients
but no objective responses.52 No further clinical develop-
ment of BAY1436032 in CCA is planned. Additional agents
targeting IDH-mutated cholangiocarcinoma are under de-
velopment in early-phase trials (FT 2102: ClinicalTrials.gov
identifier: NCT03684811, LY3410738: ClinicalTrials.gov
identifier: NCT04521686, HMPL-306: ClinicalTrials.gov
identifier: NCT04762602)

Isocitrate dehydrogenase 2 (IDH2) is a mitochondrial protein
which also promotes tumorigenesis via 2-HG through acti-
vating mutations in codons 140 and 172. Mutations in IDH2
occur less frequently in ICC (2%-5%) thanmutations in IDH1,
and the only reported study targeting IDH2 in patients with
cholangiocarcinoma enrolled four patients and observed no
objective responses with enasidenib.53

BRAF V600E

Activating V600Emutations in the oncogeneBRAF are found
in approximately 1%-3% of BTCs. In the phase II ROAR
basket trial, 33 patients with previously treated BRAF V600E
mutant BTC were treated with the BRAF inhibitor dabrafenib
and theMEK inhibitor trametinib.54 Objective responses were
seen in 20 of 43 evaluable patients (47%), with a median OS
of 14.0 months. The FDA approved dabrafenib and trame-
tinib for all noncolorectal solid tumors harboring a BRAF
V600E mutation in June 2022. Data are limited with other
BRAF inhibitors for BTCs, although vemurafenib mono-
therapy did demonstrate objective responses in three of nine
patients with advanced BTCs.55

HER2

HER2 is a receptor tyrosine kinase overexpressed infrequently
in ICC (4.8% per ameta-analysis) andmore frequently in ECC
(17.4%) and gallbladder cancer (19.1%).56 In theMyPathway
basket trial, 39 patients with previously treated BTC with
HER2 amplification and/or overexpression were treated with a
combination of two anti-HER2 antibodies, trastuzumab and
pertuzumab. Partial responses were seen in nine of 39 (23%)
patients, and stable disease for at least 4 months was seen in
11 additional patients (28%).57 Median PFS was 4.0 months
and median OS was 10.9 months. On the basis of this study,
the regimen has been included within NCCN guidelines for
advanced previously treated HER2-positive BTC.

The antibody-drug conjugate (ADC) trastuzumab deruxtecan
demonstrated an ORR of 36.4% in patients with previously
treated advanced HER2-positive BTC, with a median PFS of
4.4months andamedianOSof 7.1months. One responsewas

also seen amongeight patientswithHER2-low expression.58 An
ongoing international basket study in HER2-expressing solid
tumors will provide additional data about the efficacy of tras-
tuzumab deruxtecan in BTC (ClinicalTrials.gov identifier:
NCT04482309).

For patients with HER2-mutated BTC, the pan-HER irre-
versible tyrosine kinase inhibitor neratinib showed responses
in two patients (10%) and stable disease of at least 16 weeks
in an additional four patients (20%) in a subgroup of the
SUMMIT trial.59 Trastuzumab in combination with chemo-
therapy has also demonstrated anecdotal benefit in case
series in advanced HER2 overexpressing and/or amplified
BTC.60

A variety of novel HER2-targeting agents are under devel-
opment in BTCs. Zanidatamab, formerly ZW-25, a bispecific
antibody targeting the same epitopes as trastuzumab and
pertuzumab, demonstrated an interim ORR of 47% in 17
evaluable patients with advanced pretreated BTCs.61 Further
monotherapy expansion in BTC is ongoing for zanidatamab
(ClinicalTrials.gov identifier: NCT04466891), as are explo-
rations in combinations with chemotherapy (ClinicalTrials.gov
identifier: NCT03929666). The HER2 tyrosine kinase in-
hibitor tucatinib is being tested in combination with trastu-
zumab in HER2-positive BTC (ClinicalTrials.gov identifier:
NCT04579380). Novel ADCs are also under development
in HER2-overexpressing solid tumors including CCA (A166:
ClinicalTrials.gov identifier: NCT03602079, ZW-49: Clinical-
Trials.gov identifier: NCT03821233).

Additional Molecular Targets

Homologous DNA repair deficiencies. Approximately 3%-4%
of BTCs harbor mutations in BRCA1 (0.6%) or BRCA2
(3%).62 These mutations result in homologous repair defi-
ciency, which limits cellular repair of double-stranded DNA
breaks and connotes sensitivity to platinum chemotherapy
and PARP inhibitors.63 Case reports have shown efficacy of
PARP inhibitors in BRCA-mutant cholangiocarcinoma.64 An
additional 10%-15% of ICCs have mutations in BRCA1 as-
sociated protein-1 (BAP1) and 15%-20% have mutations in
ARID1A, both of which lead to alterations in homologous DNA
repair and sensitivity to PARP inhibition in preclinical
studies.65-67 A trial of niraparib forBAP1-mutated solid tumors
including CCA was terminated early for lack of efficacy.68

Olaparib remains under evaluation in cholangiocarcinoma
with DNA repair deficiencies (ClinicalTrials.gov identifier:
NCT04042831).

NTRK and RET Fusions. Oncogenic fusions involving the
three tropomyosin receptor kinases TrkA, TrkB, and TrkC
(encoded by genes NTRK1, NTRK2, and NTRK3, re-
spectively) occur in approximately 0.2% of BTCs, and are
effectively targeted by the NTRK inhibitors larotrectinib and
entrectinib.69 Both agents received FDA approval agnostic
of histology on the basis of efficacy across tumor types.70,71
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RET fusions are also very rare in cholangiocarcinoma but
appear sensitive to the RET inhibitors pralsetinib and
selpercatinib.72,73 Pralsetinib is now recommended within
NCCN guidelines for patients with previously treated BTC
with a RET fusion, and selpercatinib is FDA approved for all
solid tumors with a RET fusion.

KRAS G12C. Activating KRAS mutations are present in
approximately 12% of ICCs and 35%-40% of ECCs, but
only 1% of cholangiocarcinomas harbor KRAS G12C
mutations.10,23,74,75 In the initial phase I/II study of the KRAS
G12C inhibitor adagrasib, a 100% disease control rate was
observed in eight patients with BTCs, with four partial re-
sponses (50%).76 Further monotherapy expansion and
exploration of combination approaches are ongoing with
both adagrasib and sotorasib, and additional KRAS G12C
inhibitors have entered clinical development (GDC-6036:
ClinicalTrials.gov identifier: NCT04449874, JAB-21822:
ClinicalTrials.gov identifier: NCT05002270).

One additional approach under development inKRAS-mutant
BTCs is the combination of the MEK inhibitor trametinib
with the autophagy inhibitor hydroxychloroquine (Clin-
icalTrials.gov identifier: NCT04566133). This approach
has shown preclinical and clinical activity in pancreatic
adenocarcinoma and is being tested across a variety of
tumor types.77

MDM2 Amplification. Mouse double minute 2 (MDM2)
amplification is a common driver of certain sarcomas, but has
also been reported in up to 6% of ICCs, all bile duct subtype.78

MDM2 acts a negative regulator of TP53, and novel MDM2
inhibitors such as BI 907828 and milademetan have begun
to demonstrate efficacy in TP53-wildtype, MDM2-amplified
solid tumors79 (BI 907828: ClinicalTrials.gov identifier:
NCT03449381; milademetan: ClinicalTrials.gov identifier:
NCT05012397).

Immunotherapy for Cholangiocarcinoma

Like pancreatic cancer, CCA is characterized by cancer-
associated fibroblasts that produce a desmoplastic stroma
as well as a pauci-immune tumor microenvironment rich in
immunosuppressive tumor-associated macrophages and
myeloid-derived suppressor cells.80 The immune compo-
sition of the surrounding liver also plays an important role,
with an immunotolerant environment rich in macrophages
(Kupffer cells) and natural killer cells with an active innate
immune system that is continually exposed to intestinal
microbial products.81 Tumor agnostic indications for im-
munotherapy are uncommon in CCA, with approximately
2% being MSI-high and 3.5% having a high tumor mu-
tational burden.10,82

Trials of immune checkpoint inhibitors in refractory BTC
have shown mixed results to date with response rates
ranging from 5%-20% with single-agent PD-1 inhibitors
(Table 2). Both nivolumab alone (ORR, 3.3-20%) and
lenvatinib combined with pembrolizumab (ORR, 10%) are

included within NCCN guidelines for refractory advanced
BTCs on the basis of phase II studies.88,89 Pembrolizumab
monotherapy, however, is not included, with an ORR of only
6.8% (eight of 118 patients).87 Small studies using dual
checkpoint blockade have shown promising response rates
in pretreated patients, with an ORR of 24% with nivolumab
and ipilimumab and 11% with durvalumab and trem-
elimumab, although ipilimumab + nivolumab was inferior to
GemCis + nivolumab for frontline treatment of advanced
BTC.84,86,90

The global phase III TOPAZ-1 study demonstrated im-
provements in OS, PFS, and ORR with the addition of dur-
valumab to frontline GemCis, resulting in FDA approval of
durvalumab in combination with chemotherapy for initial
treatment of advanced BTC.83 Chemotherapy was stopped at
6months in both arms, and a greater improvement in OS with
durvalumab was seen after that point (HR, 0.91 up to 6
months; HR, 0.74 after 6 months). Subgroup analyses sug-
gested greater benefit in patients in Asia versus the rest of the
world (HR, 0.72 v 0.89) and no difference in outcome on the
basis of PD-L1 expression. Recently, positive OS results were
announced for the global phase III KEYNOTE-966 study,
which compared GemCis plus pembrolizumab to GemCis
plus placebo in advanced BTC and permitted the use of
maintenance gemcitabine chemotherapy.119

Other novel immunotherapy agents have also been evalu-
ated in advanced BTC. The bifunctional TGF-β trap and
anti–PD-L1 fusion protein bintrafusp alfa demonstrated an
ORR of 10.1% in 159 patients in the second-line setting.91-93

A phase III frontline trial combining bintrafusp alfa with
GemCis was terminated early because of lack of efficacy.94 A
phase I study combining bintrafusp alfa with hypofractioned
radiation in refractory BTC remains ongoing (ClinicalTrials.gov
identifier: NCT04708067).

In patients with previously treated advanced BTC, a phase II
trial evaluating the combination of the MEK inhibitor cobi-
metinib with atezolizumab met its primary end point, with a
significantly increased PFS (3.6 v 1.9months; P = .027) with
the doublet compared with atezolizumab monotherapy. The
ORR was low (3%) in both arms.85 Further preclinical
modeling demonstrated that MEK inhibition impaired T-cell
activation that was rescued by the addition of either a 4-1BB
or a CD27 agonist, and a next-generation trial combining
atezolizumab plus the CD27 agonist varlilumab with or
without cobimetinib is ongoing95 (ClinicalTrials.gov identifier:
NCT04941287).

Novel targets in ongoing trials for BTCs in combination with
immune checkpoint inhibitors include Dickkopf-related
protein 1 (DKK1; DKN-01: ClinicalTrials.gov identifier:
NCT04057365), CSF-1R (SNDX-6532: ClinicalTrials.gov
identifier: NCT04301778), galectin 9 (LYT-200: Clinical-
Trials.gov identifier: NCT04666688), and DNA-dependent
protein kinase (nedisertib: ClinicalTrials.gov identifier:
NCT04068194). In some studies, locoregional therapy
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TABLE 2. Efficacy of Immune Checkpoint Inhibitors in Biliary Tract Cancers

Treatment Study Phase No. of Patients
% PD-L1–Positive

‡1% ORR
Disease Control

Rate
Median PFS
(months) References

GemCis + durvalumab (arm A)
GemCis (arm B)

III Arm A: 341
Arm B: 344

Arm A: 57.8%
Arm B: 59.6%

Arm A: 26.7%
Arm B: 18.7%

Arm A: 85.3%
Arm B: 82.6%

Arm A: 7.2
Arm B: 5.7

83

GemCis + nivolumab (arm A)
Ipilimumab + nivolumab (arm B)

II Arm A: 35
Arm B: 36

NA NA NA Arm A: 7.4
Arm B: 4.1

84

Atezolizumab (arm A) v atezolizumab + cobimetinib
(arm B)

II Arm A: 37
Arm B: 38

NA Arm A: 2.9%
Arm B: 3.2%

Arm A: 33.4%
Arm B: 45.2%

Arm A: 1.9
Arm B: 3.7

85

Durvalumab (arm A)
Durvalumab + tremelimumab (arm B)

II Arm A: 42
Arm B: 65

Arm A: 59.4%
Arm B: 34.0%

Arm A: 4.8% Arm B: 10.8% Arm A: 16.7%
Arm B: 32.2%

Arm A: 1.5
Arm B: 1.6

86

GemCis + durvalumab 6 tremelimumab II 112 NA 50.0%-73.4% 96.7%-100% 11.0-13.0 110

Pembrolizumab II 127 63.3% 7.1% 22.8% 2.0 87

Pembrolizumab II 26 100% 23.1% 50.0% NA 111

Pembrolizumab II 40 100% 10.0% 47.5% 1.5 112

Olaparib + pembrolizumab II 12 NA 8.3% 41.7% NA 113

Lenvatinib + pembrolizumab II 31 NA 10.0% 68.0% 6.1 88

Nivolumab II 46 43% 10.9% 50.0% 3.7 89

Nivolumab II 30 36.6% 20.0% 60.0% 3.1 114

Nivolumab + ipilimumab II 39 NA 23.1% 43.6% 2.9 90

Nivolumab (arm A)
Nivolumab + cisplatin (arm B)

I 30 per arm NA 3.3%
36.7%

NA Arm A: 1.4
Arm B: 4.2

115

5-FU/Nal-IRI + nivolumab I/II 30 NA 10.0% 53.3% 5.4 116

Durvalumab + tremelimumab I 12 NA 0% 41.7% 3.1 117

Abbreviations: PFS, progression-free survival; ORR, objective response rate.
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such as transarterial embolization or external beam radi-
ation is combined with checkpoint inhibition to promote
antigen release and immune activation. The novel intra-
tumoral injection INT230-6, consisting of an amphiphilic
combination of cisplatin and vinblastine, similarly aims to
increase tumor immunogenicity in combination with check-
point inhibitors (ClinicalTrials.gov identifier: NCT03058289).

Additional Therapeutic Approaches

A variety of additional therapies have demonstrated pre-
clinical and/or early clinical evidence of activity in chol-
angiocarcinoma. These agents target specific proteins or
pathways involved in cholangiocarcinogenesis and are
undergoing further clinical testing (Table 3).

Antibodies and antibody-drug conjugates for CCA. CCA
expresses a variety of cell-surface proteins with limited ex-
pression in nontumor tissue, and a variety of new antibodies,
ADCs, and cellular immunotherapies have been developed to
engage these targets.96 Improvements in molecular biology
have led to improved drug delivery and decreased systemic
exposure with ADCs, allowing for combination with more
potent cytotoxics.

Cancer antigen 19-9 (CA 19-9) is a sialylated Lewis antigen
expressed on the surface of tumor cells as well as in the
blood of approximately 80% of patients with advanced
cholangiocarcinoma.97 MVT-5873, an IgG1 antibody tar-
geting an epitope on CA 19-9, has demonstrated safety in
combination with gemcitabine and nab-paclitaxel in pa-
tients with advanced pancreatic cancer, and is undergoing
evaluation as a perioperative therapy in patients with re-
sectable cholangiocarcinoma98 (ClinicalTrials.gov identi-
fier: NCT03801915).

Mesothelin is a cell-surface protein expressed in meso-
thelial cells lining the peritoneum, pericardium, and pleural

surface that is overexpressed in a variety of cancer types
including pancreatic adenocarcinoma, mesothelioma,
ovarian cancer, lung cancer, and cholangiocarcinoma.99 A
variety of therapies targeting mesothelin overexpression are in
development, including antibody-drug conjugates and cellular
immunotherapies.100

Additional cell-surface targets found in CCA under investi-
gation include claudin 18.2 (BNT141: ClinicalTrials.gov
identifier: NCT04683939) and B7-H4 (AZD8205: Clinical-
Trials.gov identifier: NCT05123482, SGN-B7H4V: Clinical-
Trials.gov identifier: NCT05194072).

Novel molecular therapies. Pevonedistat is an inhibitor of
neddylation, a pathway of intracellular protein catabolism
related to ubiquitination that is overactive in CCA.101 In a
phase Ib trial combining pevonedistat with multiple che-
motherapy regimens, both patients with previously treated
cholangiocarcinoma had partial responses.102 Further eval-
uation of pevonedistat asmonotherapy or in combinationwith
carboplatin and paclitaxel in previously treated advanced ICC
is ongoing (ClinicalTrials.gov identifier: NCT04175912).

Silmitasertib (CX-4945) is a small molecule inhibitor of protein
kinase casein kinase II, which has been shown preclinically to
inhibit growth of cholangiocarcinoma cell lines and induce
lethal vacuolization.103 A phase Ib/II study in 87 patients with
advanced CCA combining silmitasertib with GemCis showed a
median PFS of 11.1 months, a median OS of 17.4 months,
and an ORR of 32.1%, and a phase III trial is planned.104

GNS561 is a small lipophilic molecule that accumulates
within lysosomes and causes dysregulation and apoptotic cell
death. On the basis of preclinical efficacy in hepatocellular
carcinoma and ICC models, a phase I/II trial was launched
(ClinicalTrials.gov identifier: NCT03316222). In the initial 19
patients from the 3 + 3 dose escalation updated at ASCO in
2021, no dose-limiting toxicities were observed and two of
nine patients with ICC experienced stable disease.105

BI 905711 is a novel tetravalent bispecific antibody targeting
TRAILR2 and CDH17.106 TRAIL is a member of the TNFα
superfamily, and activation of the TRAIL receptor results in
apoptotic cell death, but prior antibodies have been limited
by hepatic toxicity.107 The cell-surface marker CDH17 is
expressed in a variety of gastrointestinal cancers but not in
normal liver, allowing for specific targeting of tumor cells
without engaging hepatocytes. A phase I trial is ongoing, with
a planned expansion in cholangiocarcinoma (Clinical-
Trials.gov identifier: NCT04137289).

Devimistat (formerly CPI-613) is a lipoate analog that inhibits
pyruvate dehydrogenase and a-ketoglutarate dehydrogenase
and alters mitochondrial metabolism. In the phase I portion of
a phase I/II study of devimistat combined with GemCis in
patients with untreated advanced BTC, the regimen dem-
onstrated an ORR of 45% with a median PFS of 14.9 months
without excess toxicity. The randomized phase II portion of the

TABLE 3. Novel Targeted Agents for Biliary Tract Cancers
Agent Mechanism/Target Phase NCT

MVT-5873 CA 19-9 antibody II NCT03801915

TC-210 Mesothelin TCR I/II NCT03907852

BNT141 Claudin 18.2 ADC I/II NCT04683939

AZD8205 B4-H7 ADC I/II NCT05123482

SGN-B7H4V B4-H7 ADC I NCT05194072

Pevonedistat Neddylation II NCT04175912

Silmitasertib Protein kinase CK2 I/II NCT02128282

GNS561 Lysosome inhibitor I/II NCT03316222

BI 905711 TRAILR2 agonist I NCT04137289

Devimistat Mitochondrial metabolism II NCT04203160

STP705 TGF-β1/COX2 inhibitor I NCT04676633

Abbreviations: ADC, antibody-drug conjugate; CA, 19-9, cancer
antigen 19-9; CK2, casein kinase II; TCR, T-cell receptor; TRAILR2,
tumor necrosis factor alpha–related apoptosis-inducing ligand
receptor 2.
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trial testing GemCis with or without devimistat is ongoing108

(ClinicalTrials.gov identifier: NCT04203160).

STP705 is an injectable combination of small interfering
ribonucleic acid targeting TGF-β1 and cyclooxygenase-2
(COX-2) with histidine-lysine polypeptide (siRNA/HKP) in a
nanoparticle formulation that has demonstrated efficacy
with repeated intratumoral injections in cutaneous squa-
mous cell carcinoma.109 A phase I study is evaluating serial
liver tumor injections in cholangiocarcinoma and other liver
tumors (ClinicalTrials.gov identifier: NCT04676633).

DISCUSSION

With the FDA approvals of pemigatinib, infigratinib, futibatinib,
and ivosidenib, CCA has entered the era of molecular therapy,
and it is likely that additional targeted agents will be approved in
the next several years. Data strongly support targeting FGFR2
fusions, IDH1 mutations, HER2 overexpression/amplification,
and tissue agnostic targets such as BRAF V600E mutations
and NTRK and RET fusions. Among the most promising
targeted therapies in development are irreversible FGFR2 in-
hibitors, which have been shown to overcome resistance to
reversible FGFR2 inhibitors, HER2 ADCs such as trastuzumab
deruxtecan, and KRAS G12C inhibitors.

Given that 40%-50% of ICCs and 15%-20% of ECCs will have
actionable mutations, molecular testing should be conducted
in all patients with advanced CCA early in the course of their
treatment. CCA is often paucicellular and challenging to bi-
opsy, and liquid biopsy can serve as a complementary ap-
proach for molecular profiling.120 Improved access to rapid
biomarker profiling may also facilitate clinical trials in earlier-
stage disease to test molecular therapies in the neoadjuvant

and adjuvant settings. Serial sequencing of circulating tumor
DNA will also elucidate tumor evolution and resistance
mechanisms to targeted therapies and advance development
of rational combinations and next-generation inhibitors.

The TOPAZ-1 study has led to a new frontline standard of
GemCis with durvalumab for patients with advanced disease.
Data from the similarly designed KEYNOTE-966 study are
expected soon and will further clarify the benefit of frontline
immunotherapy. No predictive biomarker for immunotherapy
in cholangiocarcinoma has been identified to date, and further
research in this area is sorely needed to better identify the
subset of patients who experience significant benefit. Immu-
notherapeutic combinationsmay enhance the efficacy of PD-1
and PD-L1 inhibitors, but widespread use of durvalumab in the
frontline setting will affect enrollment rates of immunotherapy-
naive patients in refractory settings and will likely necessitate
changes in trial design.

As additional therapies become available for CCA, questions
about optimal selection and sequencing in those with target-
able mutations will likely arise. No strong data yet exist to guide
the choice between initial chemotherapy and highly effective
therapies such as NTRK inhibitors for NTRK fusions or PD-1
inhibitors for MSI-high tumors. Randomized studies to assess
the performance of frontline FGFR inhibitors against GemCis
are commendable, but the results may be difficult to interpret
with the evolving frontline standard for advancedBTC.With this
growing treatment armamentarium, investment in biomarker
development to optimize patient selection will enable even
bigger strides in precision oncology in cholangiocarcinoma.
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