PRECISION MEDICINE

Polygenic Pharmacogenomic Markers as Predictors of Toxicity Phenotypes in the Treatment of Acute Lymphoblastic Leukemia: A Single-Center Study

Trisha Larkin, MD^{1,2}; Reema Kashif, MD¹; Abdelrahman H. Elsayed, PhD³; Beate Greer, BA⁴; Karna Mangrola, MD¹; Roya Raffiee, PhD³; Nam Nguyen, PharmD³; Vivek Shastri, PhD³; Biljana Horn, MD¹; and Jatinder K. Lamba, PhD³

PURPOSE Acute lymphoblastic leukemia (ALL) is the most prevalent cause of childhood cancer and requires a long course of therapy consisting of three primary phases with interval intensification blocks. Although these phases are necessary to achieve remission, the primary chemotherapeutic agents have potentially serious toxicities, which may lead to delays or discontinuations of therapy. The purpose of this study was to perform a comprehensive pharmacogenomic evaluation of common antileukemic agents and develop a polygenic toxicity risk score predictive of the most common toxicities observed during ALL treatment.

METHODS This cross-sectional study included 75 patients with pediatric ALL treated between 2012 and 2020 at the University of Florida. Toxicity data were collected within 100 days of initiation of therapy using CTCAE v4.0 for toxicity grading. For pharmacogenomic evaluation, single-nucleotide polymorphisms (SNPs) and genes were selected from previous reports or PharmGKB database. 116 unique SNPs were evaluated for incidence of various toxicities. A multivariable multi-SNP modeling for up to 3-SNP combination was performed to develop a polygenic toxicity risk score of prognostic value.

RESULTS We identified several SNPs predictive of toxicity phenotypes in univariate analysis. Further multivariable SNP-SNP combination analysis suggest that susceptibility to chemotherapy-induced toxicities is likely multigenic in nature. For 3-SNPscore models, patients with high scores experienced increased risk of GI (P =2.07E-05, 3 SNPs: TYMS-rs151264360/FPGS-rs1544105/GSTM1-GSTM5-rs3754446), neurologic (P = .0005, 3 SNPs: DCTD-rs6829021/SLC28A3-rs17343066/CTPS1-rs12067645), endocrine (P = 4.77E-08, 3 SNPs: AKR1C3-rs1937840/TYMS-rs2853539/CTH-rs648743), and heme toxicities (P = .053, 3 SNPs: CYP3A5rs776746/ABCB1-rs4148737/CTPS1-rs12067645).

CONCLUSION Our results imply that instead of a single-SNP approach, SNP-SNP combinations in multiple genes in drug pathways increases the robustness of prediction of toxicity. These results further provide promising SNP models that can help establish clinically relevant biomarkers allowing for greater individualization of cancer therapy to maximize efficacy and minimize toxicity for each patient.

JCO Precis Oncol 7:e2200580. © 2023 by American Society of Clinical Oncology

INTRODUCTION

ASSOCIATED CONTENT

Appendix

Author affiliations and support information (if applicable) appear at the end of this article.

Accepted on January 31, 2023 and published at ascopubs.org/journal/ po on March 23, 2023: D0I https://doi. org/10.1200/P0.22. 00580 Acute lymphoblastic leukemia (ALL) is the leading cause of childhood cancer, representing approximately 25% of all cancers in patients younger than 15 years.¹ Cure rates have improved from 10% in the 1960s to more than 90% in contemporary clinical trials.^{2,3} Standard treatment regimens consist of prolonged cytotoxic therapy administered over three primary phases—remission induction, consolidation, and maintenance—with interval intensification blocks.⁴ This approach, although effective, produces a myriad of chronic health consequences for survivors.⁵ Interpatient variation in pharmacogenomics can result in unpredictable variability in occurrence of adverse events and toxicity as well as discrepancies in therapeutic efficacy. Dose-limiting toxicities lead to

modifications in treatment regimens and dosing schedules. Data have shown these delays and omissions can affect long-term outcomes in patients with pediatric cancer⁶. Studies in leukemia cohorts have uncovered a need for less toxic approaches without compromising efficacy.

Pharmacogenomic biomarkers are an evolving area that may help identify patient-specific factors affecting responses to chemotherapeutic agents. Inherited variation in genes involved in drug metabolism and transport have been described in a multitude of modern drugs.⁷⁻¹¹ Genetic polymorphisms can influence the gene expression and/or activity, thereby affecting drug pharmacokinetics and causing interindividual variation in drug levels, which can alter toxicity phenotype and therapeutic efficacy.¹² To

CONTEXT

Key Objective

Patients with acute lymphoblastic leukemia (ALL) are treated with intensive chemotherapy that results in severe toxicities, which can sometimes result in delays or discontinuations of therapy. The objective of this study was to comprehensively evaluate pharmacogenomics of antileukemic agents and establish a polygenic toxicity risk score predictive of the common toxicities observed during ALL treatment.

Knowledge Generated

We took a pharmacological pathway–based pharmacogenomics approach and identified several single-nucleotide polymorphisms (SNPs) associated with individual toxicities. A multi-SNP predictor modeling approach established a 3-SNP combination score with significant association with specific toxicities.

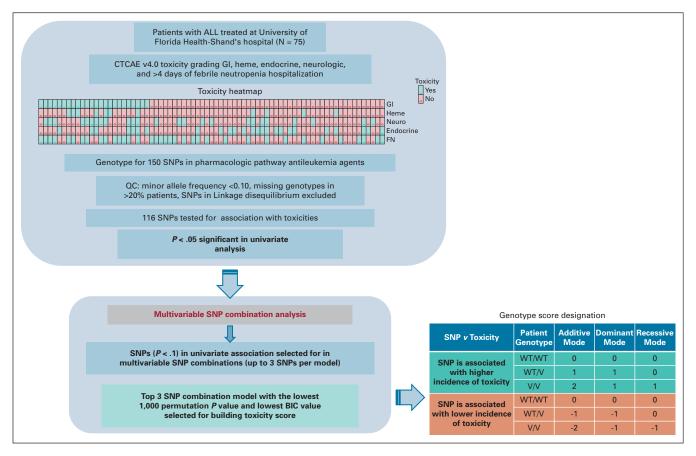
Relevance

Multi-SNP combination approach is more robust and takes into account multiple SNPs predictive of toxicity and thus holds significant clinical relevance. Promising SNP models can help establish clinically relevant biomarkers that can be used preemptively and monitor risk of toxicity and accordingly design interventions to reduce toxicity and improve quality of life in patients with ALL.

date, the most understood example of this in pediatric cancer is thiopurine S-methyltransferase (TPMT) and nudix hydrolase 15 (NUDT15) activities.¹³ First described as early as the 1980s,¹⁴ a total of 21 TPMT genetic polymorphisms have since been described and are associated with decreased levels of TPMT enzyme activity and/or thiopurine drug-induced toxicity.¹⁵ This knowledge led to standardized practices evaluating TPMT and NUDT15 genetic polymorphisms in patients to tailor dosing before the initiation of purines on the basis of these genetic variations.^{12,16,17} Numerous efforts have been made to replicate these findings in other key genes.^{18,19}

Herein, we sought to describe single-nucleotide polymorphism (SNP) variants as pharmacogenomic biomarkers predictive of treatment toxicity phenotypes in a cohort of children with ALL. Characterization of such variations could establish clinically relevant predictors, allowing for personalized leukemia therapy tailored toward optimizing drug efficacy while lessening toxicities. The objective of this study was to identify SNPs in target genes associated with drug metabolism or transport that could predict undue toxicity from antileukemic agents in children with ALL.

METHODS


Study Design and Patients

This was a cross-sectional study of subjects treated at a tertiary academic center. Overall study design is shown in Figure 1. Patients age 3 months to 26 years with a diagnosis of de novo or secondary ALL who received induction and consolidation therapy between May 2012 and December 2019 at the University of Florida were eligible for enrollment, regardless of disease risk category, sex, or racial or ethnic background, for enrollment. Study enrollment occurred between February 2019 and May 2020 at the

University of Florida. Patients who met eligibility criteria were excluded if they declined participation, or if they were unable to provide an adequate blood specimen. The study protocol was approved by the University of Florida Institutional Review Board (IRB#201802623). All patients provided written informed consent before participating in the study and received treatment according to standard-of-care options at the discretion of their treating physician. To be eligible for assessment, patients were required to have received induction and consolidation chemotherapy at the University of Florida. A total of 75 patients treated between 2012 and 2020 were included in the study.

Comprehensive Pharmacogenomic Evaluation

A peripheral blood sample (5-10 mL) for pharmacogenomic testing was collected at a single time point during routine follow-up care. Blood samples were stored in a malignant hematology biorepository for subsequent genomic studies. Genomic DNA was isolated from the samples for further genotyping. 150 SNPs in key candidate genes involved in cellular transport and metabolism of cytarabine, vincristine, methotrexate, daunorubicin/doxorubicin, and mercaptopurine/thioguanine were analyzed. Sequenom genotyping that uses matrix-assisted laser desorption/ionization-time of flight-based chemistry was performed at University of Minnesota, Biomedical Genomics Center. Genes involved in pharmacological chemotherapy agents were obtained from PharmGKB.²⁰ Literature search as well as information from PharmGKB²⁰ was used to select the SNPs. After excluding 27 SNPs with minor-allele frequency (MAF) < 0.1, 1 SNP missing genotypes in >20% of the samples, and 6 SNPs that occurred in linkage disequilibrium (LD) with at least one another SNP, a total of 116 unique SNPs (listed in Appendix Table A1 [Supplementary Table 1]) were included in the study. Toxicities were documented in real time by the

FIG 1. Overall study design. In table, 0 = no toxicity and 1 = toxicity as per description in the methods section. FN, Febrile Neutropenia; GI, gastrointestinal; Heme, hematological toxicity; Neuro, neurological toxicity; QC, quality control; SNP, single-nucleotide polymorphism; V, variant; WT, wildtype.

primary treatment team according to standard-of-care practices and additionally confirmed by physicians on the study team and included the following: hepatic injury defined by increase in serum total bilirubin >3.0 times the upper normal limit; hematologic impairment including severe neutropenia, thrombocytopenia, and anemia leading to treatment delays; number of hospitalizations for febrile neutropenia (FN); thromboembolic events requiring medical intervention; pancreatitis requiring medical intervention; neurotoxicity defined by detailed neurologic examination and alterations in function; and glucose resistance defined by insulin dependence. Overall, CTCAE v4.0 was used for toxicity grading, and all toxicity events during the first 100 days of therapy that include gastrointestinal (GI), hematologic, neurologic, endocrine toxicities, and prolonged hospitalization (>4 days) because of FN were included in the analysis. Logistic regression models were used to test the association between the 116 SNPs in additive, dominant, and recessive modes of inheritance with all different types of toxicities. Odds ratio (OR) and 95% CI were calculated for each test. P < .05 was considered significant. In this exploratory study, no adjustment for multiple testing was done. For multivariable SNP combination analysis, SNPs with univariate association P < .1 were selected for each toxicity, and then SNP combinations (up to 3 SNPs per model) were tested for association with each toxicity. The combination model with the 1,000 permutation P < .05 and lowest Bayesian information criterion (BIC) value was selected to build a 3-SNP score after considering the mode of inheritance and the direction of association with the toxicity for the individual genotypes. 3-SNP score was generated by summation of genotype scores for the individual SNPs passing the top model. Patients were further classified into three groups: 3SNP_Tox score group of ">0," "0," or "<0." Chi-square and the Cochran-Armitage trend tests were used to test for the association between the toxicity risk score groups and the incidence of each of the evaluated toxicities.

RESULTS

Demographics and Clinical Comparisons

Table 1 summarizes demographics and incidence of toxicities. Twenty-five (33%) patients had neurologic and endocrinologic toxicities (grade 1-3). Twenty-four patients had GI toxicities (grades 2-4), 11 (15%) patients had hematologic toxicities (grade 2-4), and 36 patients were hospitalized at least one time >4 days because of FN.

Univariate Analysis of SNP Association With Toxicity Risk

Table 2 provides summary of the univariate analysis. At P < .05, 5 unique SNPs were found significantly associated with GI toxicity, 5 SNPs were associated with

 TABLE 1. Characteristics Summary for 75 Patients Included in the

 Study

Characteristics	Patients
Age, years, median (range)	9.9 (1.2-25)
Sex, No. (%)	
Male	42 (56)
Female	32 (42.7)
Unknown	1 (1.3)
Race, No. (%)	
Black/African American	9 (12)
Caucasian/White	33 (44)
Hispanic	18 (24)
Asian	2 (2.7)
Other or unknown	13 (17.3)
Diagnosis, No. (%)	
B-cell ALL	12 (16)
Standard-risk B-cell ALL	29 (38.6)
High- or very high-risk B-cell ALL	26 (34.6)
T-cell ALL	6 (8)
Other	2 (2.6)
GI toxicity, No. (%)	
Grade ≥ 2	24 (32)
Grade < 2	51 (68)
Hematologic toxicity, No. (%)	
Grade ≥ 2	11 (15)
Grade < 2	64 (85)
Febrile neutropenia, No. (%)	
Hospitalization > 4 days	36 (48)
<4 days	39 (52)
Neurologic toxicity, No. (%)	
Grade 1-3	25 (33.3)
No toxicity	50 (66.6)
Endocrine toxicity, No. (%)	
Grade 1-3	25 (33.3)
No toxicity	50 (66.6)

Abbreviation: GI, gastrointestinal.

hematologic toxicities, 9 SNPs were associated with neurologic toxicity, 6 SNPs were associated with endocrine toxicities, and 8 SNPs were found associated with prolonged hospitalization because of FN. For GI toxicities, variant alleles for SNPs rs151264360 in TYMS, rs3740065 in ABCC2, and rs1544105 in folylpolyglutamate synthetase (FPGS) were found associated with reduced risk of toxicity (OR < 1), while rs11853372 in SLC28A1 and rs4880 in SOD2 were found associated with higher risk of toxicity (OR > 1). For hematologic toxicities, SNPs in CDA (rs1048977), CTPS1 (rs12067645), SLIT1 (rs2784917), and CBR3 (rs1056892) were associated with higher risk of toxicity, while ABCB1 SNP rs4148737 was associated with

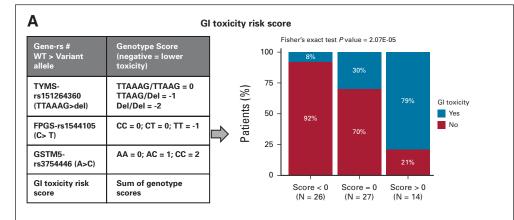
lower risk of toxicity. Higher risk of neurologic toxicity was associated with variant alleles of rs12067645 (CTPS1), (SHMT1), rs4673 (CYBA), rs11598702 rs1979277 (NT5C2), rs6829021 deoxycytidine deaminase (DCTD), and rs5760410 (ADPRA2A), while rs2228100 (ALDH3A1), rs1883112 (NCF4), and rs1937840 (AKR1C3) were found associated with lower risk of neurologic toxicity. With respect to endocrine toxicity, variant alleles of 3 SNPs (rs1051740 in EPHX1, rs2853539 in TYMs, and rs1544105 in FPGS) were found associated with higher risk of toxicity, while rs1937840 in AKR1C3 and rs2838958 in SLC19A1 were associated with lower risk of toxicity. We also tested length of hospitalization for FN for association with polymorphism in genes important in metabolism of chemotherapy. rs12404655 in CDA and rs4673 in CYBA were associated with higher risk of > 4 days of hospitalization, whereas six other SNPs were predictive of lower risk (rs1051266 in SLC19A1, rs4715354 in GSTA5, rs2853539 in TYMS, rs10948059 in GNMT, rs1053129 in DHFR, and rs2413739 in PACSIN2).

Development of Pharmacogenomics Toxicity Risk Score Models

To enhance the clinical utility of the pharmacogenomic discoveries, we performed a multi-SNP predictor modeling to create a pharmacogenomics toxicity risk score as described in Methods (Appendix Table A2 [Supplementary Table 2] provides the list of SNPs included in the modeling as explained above). The best 3-SNP predictor model with lowest BIC and 1,000 permutations test *P* value of < .05 was selected for each toxicity. Toxicity score was created by adding the genotype scores of the 3 SNPs in the top model with consideration of a direction of association with toxicity (negative for lower toxicity and positive for higher toxicity) as well as mode of inheritance. Overall, higher score meant higher incidence of toxicity.

The top 3-SNP model predictor of GI toxicity included rs151264360 in TYMS (TTAAAG > del), rs1544105 in FPGS (C>T), and rs3754446 GSTM5 (A>C). GI toxicity score was created as shown in Figure 2A. Patients were classified into three groups: score <0, score =0, and score >0. As shown in the bar plot, patients within >0score group had higher incidence of GI toxicity compared with those in score <0 or = 0 (GI toxicity incidence: 8% v 30% v79% in score <0, = 0 or >0, respectively; P = 2.07E-05). The Cochran-Armitage trend test, which tests if the trend of incidence of toxicity increases by increasing score, was also significant for GI toxicity (P = 3.89E-06). For hematologic toxicity, the top model consisted of CYP3A5-rs776746 (C>T), ABCB1-rs4148737 (T>C), and CTPS1-rs12067645 (G>A). Figure 2B shows the genotype scores for SNPs used to create the toxicity score. As shown in the bar plot, none of the patients with score <0 experienced toxicity, whereas for patients with score >0 around 24%, patients experienced significant hematologic toxicity (heme toxicity incidence: 0% v 12% v 24% in score <0, = 0, or >0, respectively; Fisher's exact P = .053;

TABLE 2. Results From Univariate Analysis of SNPs v Toxicity After Treatment


		Talysis of SNE's V Toxicity After Treatment			95% CI	
SNP	Gene Symbol	Gene Name	MOI	OR	GI toxicity	Р
rs151264360	TYMS	Thymidylate synthase	A ^a (D)	0.229	(0.09 to 0.6)	.0026
rs3740065	ABCC2	ATP-binding cassette subfamily C member 2 (ABCC2)	A ^a (D)	0.179	(0.04 to 0.80)	.0248
rs1544105	FPGS	Folylpolyglutamate synthase	R	0.308	(0.11 to 0.88)	.0272
rs4880	SOD2	Superoxide dismutase 2	R	1.915	(1.05 to 3.49)	.0343
rs11853372	SLC28A1	Solute carrier family 28 member 1	R	3.162	(1.03 to 9.75)	.0451
					Hematologic toxicity	,
rs1048977	CDA	Cytidine deaminase	A ^a (R)	3.232	(1.1 to 9.42)	.0318
rs4148737	ABCB1	ABCB1	D	0.488	(0.25 to 0.95)	.0341
rs12067645	CTPS1	CTPS1	А	3.575	(1.06 to 11.9)	.0389
rs2784917	SLIT1	Slit guidance ligand 1	А	3.409	(1.03 to 11.3)	.0450
rs1056892	CBR3	Carbonyl reductase 3	R	2.332	(1.01 to 5.37)	.0468
					Neurologic toxicity	
rs2228100	ALDH3A1	Aldehyde dehydrogenase 3 family member A1	A ^a (D)	0.309	(0.14 to 0.7)	.0048
rs12067645	CTPS1	CTPS1	D ^a (A)	2.062	(1.21 to 3.49)	.0070
rs1979277	SHMT1	Serine hydroxymethyltransferase	D	1.871	(1.13 to 3.09)	.0144
rs4673	СҮВА	Cytochrome b-245 alpha chain	D	2.291	(1.17 to 4.47)	.0149
rs11598702	NT5C2	5'-nucleotidase, cytosolic II	А	2.349	(1.07 to 5.13)	.0321
rs1937840	AKR1C3	Aldo-keto reductase family 1 member C3	А	0.478	(0.24 to 0.95)	.0350
rs6829021	DCTD	dCMP deaminase	R	3.179	(1.02 to 9.81)	.0444
rs5760410	ADPRA2A	Adenosine receptor 2a	D	1.984	(1.01 to 3.88)	.0451
rs1883112	NCF4	Neutrophil cytosolic factor 4	А	0.466	(0.22 to 0.99)	.0469
					Endocrine toxicity	
rs1937840	AKR1C3	Aldo-keto reductase family 1 member C3	A ^a (D)	0.289	(0.13 to 0.62)	.0015
rs1051740	EPHX1	Epoxide hydrolase	A ^a (R)	2.747	(1.29 to 5.84)	.0086
rs2853539	TYMS	Thymidylate Synthase	D	2.126	(1.2 to 3.74)	.0088
rs1544105	FPGS	Folylpolyglutamate synthase	A ^a (R)	2.173	(1.1 to 4.3)	.0255
rs3768142	MTR	5-methyltetrahydrofolate-homocysteine methyltransferase	A ^a (D)	0.391	(0.16 to 0.94)	.0372
rs2838958	SLC19A1	Solute carrier family 19 member 1	D	0.585	(0.35 to 0.99)	.0445
					Febrile neutropenia	
rs1051266	SLC19A1	Solute carrier family 19 member 1	A ^a (D)	0.418	(0.20 to 0.84)	.0157
rs12404655	CDA	Cytidine deaminase	A ^a (D)	3.432	(1.22 to 9.64)	.0193
rs4715354	GSTA5	Glutathione S-transferase alpha 5	R	0.524	(0.30 to 0.90)	.0200
rs2853539	TYMS	Thymidylate synthase	D	0.571	(0.35 to 0.92)	.0222
rs4673	СҮВА	Cytochrome b-245 alpha chain	D	1.799	(1.06 to 3.04)	.0277
rs10948059	GNMT	Glycine N-methyltransferase	D ^a (A)	0.589	(0.35 to 0.97)	.0368
rs2413739	PACSIN2	Protein kinase C and casein kinase substrate in neurons 2	D	0.604	(0.37 to 0.97)	.0392
rs1053129	DHFR	Dihydrofolate reductase	А	0.436	(0.19 to 0.986)	.0460

Abbreviations: ABCB1, ATP-binding cassette subfamily B member 1; A, additive; CTPS1, CTP synthase; DCTD, deoxycytidine deaminase; D, dominant; FPGS, folylpolyglutamate synthetase; MOI, mode of inheritance; OR, odds ratio; R, recessive.

^aSNP is associated with toxicity in at least two different modes of inheritance.

Cochran-Armitage trend test P = .01). All 3 SNPs identified rs6829021 (G>A) in DCTD, rs17343066 (G>A) in uptake in the model for predicting neurologic toxicities belong to

transporter SLC28A3, and rs12067645 (G>A) in CTPS1 the cytarabine metabolic pathway. Top model included (Fig 2C). As shown in the bar plot (Figs 2C), none of the

В

(C>T)

(T>C)

(G>A)

score

Gene-rs # WT > Variant allele

CYP3A5-rs776746

ABCB1-rs4148737

CTPS1-rs12067645

Heme toxicity risk

Hematologic toxicity risk score

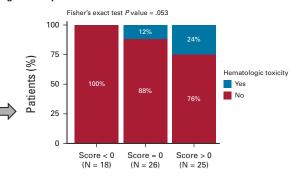
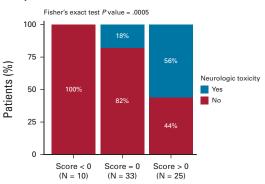


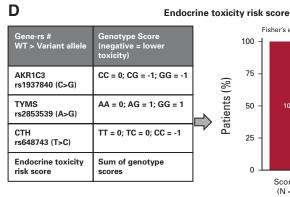
FIG 2. Toxicity incidence by respective composite 3-SNP score groups within patients with ALL. Top model 3 SNPs that were used to create each toxicity SNP score and bar plot of score group versus incidence of toxicity is shown for (A) GI toxicity, n = 67, (B) hematologic toxicity, n = 71, (C) neurologic toxicity, n = 68, (D) and endocrine toxicity, n = 73. Toxicity risk score was computed just for patients with genotype data available for the 3 SNPs in the model. Pvalues for Fisher's exact test are listed on top of each bar plot. GI, gastrointestinal; SNP, singlenucleotide polymorphism.

С Genotype Score (negative = lower toxicity) Gene-rs # WT > Variant allele DCTD-rs6829021 GG = 0; GA = 0; AA = 1 (G>A) SLC28A3-GG = 0: GA = 0:rs17343066 (G>A) AA = -1CTPS1-rs12067645 GG = 0; GA = 1; AA = 2 (G>A) Heme Toxicity Risk Sum of genotype Score scores

Genotype Score (negative = lower toxicity)

CC = 0; CT = 1; TT = 2


TT = 0; TC = -1; CC = -1


GG = 0; GA = 1; AA = 2

Sum of genotype

scores

Neurologic toxicity risk score

Fisher's exact test *P* value = 4.77E-08 100 75 50 100% 50 63% 91% 91% 91% 9%No Endocrine toxicity No 9% 9% 100% 9% 100% 100% 63% 91% 100% 10% 100% 100% 100% 100% 100% 100% 100% 100% 100% 10% 100% patients with score <0 experienced toxicity, while 56% of patients with score >0 experienced significant neurologic toxicity (neurologic toxicity incidence: 0% v 18% v 56% in score <0, = 0 or >0, respectively; Fisher's exact *P* = .0005; Cochran-Armitage trend test *P* = 9.27E-05). For endocrine toxicity, top multi-SNP predictor model consisted of AKR1C3-rs1937840(C>G), TYMS-rs2853539(A>G), and cystathionase (CTH)-rs648743(T>C). Again, none of the patients with score <0 experienced any endocrine toxicity compared with 91% of patients with score >0 (endocrine toxicity incidence: 0% v 37% v 91% in score <0, = 0 or >0, respectively; Fisher's exact *P* = 4.77E-08; Cochran-Armitage trend test *P* = 5.34E-08; Figure 2D). For FN, the score was not generated as none of the 3 SNP-based model's reached permuted *P* < .05.

DISCUSSION

Although ALL is one of the most successfully treated pediatric malignancies, with the current survival rate >90%, its treatment is related to numerous and sometimes lifethreatening toxicities. With the progressive integration of immunotherapy in contemporary clinical trials for leukemia, a greater understanding of toxicities from historical antileukemic agents may allow researchers to tailor future treatment approaches to optimize the balance between standard-of-care chemotherapy and novel agents without sacrificing efficacy. This study focused on the most common chemotherapeutic agents used in the treatment of patients with ALL, and instead of taking a single gene-single drug approach, we performed a comprehensive pharmacogenomics evaluation of key genes implicated in the metabolic pathways of these chemotherapeutic agents. Relationships between SNPs within TPMT and NUDT15 genes and hematologic toxicities have been well established and implemented in standard of care to guide mercaptopurine/thioguanine dosing (Clinical Pharmacogenomics Implementation Consortium Guidelines).^{17,21} In our cohort, the NUDT15 and TPMT SNPs occurred at a very low frequency. Herein, we focused on common genetic polymorphisms (minor allele frequency of >0.1) within genes relevant in metabolism of chemotherapeutic agents used in ALL. Our focus was on toxicities observed within 100 days of treatment initiation as this time period is critical in obtaining disease remission. The results show a significant association between SNPs in genes of pharmacologic significance to chemotherapeutic agents with toxicities experienced in patients with pediatric ALL.

To enhance the prediction by co-occurrence of multiple variants within a patient, we performed a multi-SNP predictor modeling to identify the most significant 3-SNP combination that is predictive of a particular toxicity incidence. The top 3-SNP model predictive of GI toxicity included (1) rs151264360 is a 6 bp deletion (TTAAAG > del) in thymidylate synthase (TYMS). TYMS catalyzes methylation of dUMP to dTMP and is targeted by methotrexate. This SNP is also referred to as rs11280056 (as a 9 bp deletion), rs34489327, or rs16430 in many publications, and the deletion has been associated with reduced mRNA stability and TYMS expression. Association of this SNP with toxicity and outcome in patients with rheumatoid arthritis receiving methotrexate and patients with cancer treated with methotrexate or other anticancer agents is summarized in the PharmGKB database.²⁰ Its association with reduced toxicity in multiple studies in rheumatoid arthritis^{22,23} is consistent with our results. (2) rs1544105 (C>T) in FPGS, another gene of relevance to methotrexate. TT genotype of this SNP has been associated with increased response compared with CC and CT genotypes in patients with ALL^{24,25}; however, associations with toxicity has not been reported; and (3) rs3754446 (A>C) maps to GSTM1-GSTM5 locus. GST family of genes is involved in metabolism of wide range of drugs and this SNP has previously associated with outcome in patients with AML.²⁶ For hematologic toxicity, the top 3-SNPs included in the top were the following: (1) rs776746 (C>T, with C allele designated as *3 allele) is the most studied functional SNP in the drug metabolizing enzyme CYP3A5. rs776746 is a splicing SNP, and presence of the C allele (which is more abundant in Caucasian ancestry) results in loss of CYP3A5 expression; (2) rs4148737 (T>C) occurs in a multidrug transporter ABCB1 (also known as PgP1) and has been implicated in efflux of wide range of drugs; and (3) rs12067645 (G>A) is in CTP synthase (CTPS1), which is involved in pyrimidine synthesis and has been associated with cytarabine metabolic pathway. As indicated before, all 3 SNPs in neurologic toxicity mapped to cytarabine metabolic pathway genes and included (1) rs6829021 (G>A) in inactivating enzyme DCTD and (2) rs17343066 (G>A) in uptake transporter SLC28A3. Our group has previously shown this SNP to be associated with intracellular ara-CTP levels in patients with AML.¹⁰ SLC28A3 has also been implication in thiopurine and (3) rs12067645 (G>A) in CTPS1 implicated in pyrimidine synthesis. Endocrine toxicity model included 3-SNPs: (1) rs1937840(C>G), in aldoketoreductase 1C3 (AKR1C3), a member of NAD(P)H oxidoreductase. AKR1C3 has been implicated in multiple malignancies including leukemias and is also involved in the metabolism of anthracyclines. This SNP has been associated with increased response to docetaxel and doxorubicin in breast cancer²⁷; (2) rs2853539(A>G) in TYMS, a target of methotrexate. AA genotype for this SNP has been associated with reduced methotrexate response in rheumatoid arthritis previously,²⁵ and (3) rs648743(T>C) in CTH involved in glutathione synthesis, which has previously been associated with sinusoidal obstruction in transplant patients.²⁸ Although FN is one of the life-threatening toxicities and we did identify 8 SNPs predictive of patients receiving >4 days of hospitalization because of FN, none of the multi-SNP predictor model passed the permutated P value threshold of < .05. So, at this time, we did not create a multi-SNP score for this toxicity. One of the reasons for this might be the limited sample size of the study cohort.

Development of the toxicity score by taking direction of association of the SNP with toxicity risks (positive for higher toxicity risk) and mode of inheritance (additive, dominant, or recessive), we propose a pharmacogenomics-based toxicity score for each type of toxicity. Our results show that each described high multi-gene/SNP-based toxicity risk score is significantly associated with a higher incidence of toxicity.

A limitation of the current study was a limited sample size, warranting validation of these findings in a larger cohort of patients with ALL. Additionally, our cohort, although reflective of patients seen at our center, has ethnicity bias with more patients reflective of Caucasian and Hispanic ethnicity.

AFFILIATIONS

 $^{1}\text{Department}$ of Pediatrics, University of Florida College of Medicine, Gainesville, FL

²St Joseph's Children's Hospital/BayCare Medical Group, Tampa, FL ³Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL

⁴Pediatrics Division, UF Health Cancer Center, University of Florida, Gainesville, FL

CORRESPONDING AUTHOR

Jatinder K. Lamba, PhD, Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL 32610; e-mail: jatinderklamba@ufl.edu.

PRIOR PRESENTATION

This manuscript was previously published in abstract form or presented (oral or poster) at the American Society of Hematology (ASH) Annual Meeting, Atlanta, GA, December 11-14, 2021, and the American Society of Clinical Pharmacology and Therapeutics (ASCPT) Meeting, virtual, March 16-18, 2022.

SUPPORT

J.K.L.: R01-CA132946, Live like Bella (9LA04); Larkin: University of Florida Clinical and Translational Science Institute Pilot Grant and Children's Miracle Network Trainee Grant.

AUTHOR CONTRIBUTIONS

Conception and design: Trisha Larkin, Abdelrahman H. Elsayed, Beate Greer, Roya Raffiee, Biljana Horn, Jatinder K. Lamba Administrative support: Trisha Larkin, Biljana Horn Provision of study materials or patients: Trisha Larkin, Beate Greer Collection and assembly of data: Trisha Larkin, Reema Kashif, Roya Raffiee, Beate Greer, Karna Mangrola, Vivek Shastri, Jatinder K. Lamba Data analysis and interpretation: Trisha Larkin, Abdelrahman H. Elsayed, Roya Raffiee, Beate Greer, Nam Nguyen, Biljana Horn, Jatinder K. Lamba Manuscript writing: All authors Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

Nonetheless, this approach demonstrates the advantages of multi-SNP prediction modeling compared with single genesingle SNP evaluations and warrants the need to perform similar analysis in other ethnic and racial groups while considering SNPs more prevalent in the population selected. Although preliminary, the results demonstrate the potential use of pharmacogenomic risk scores in individualizing chemotherapy with a goal of reducing toxicities, avoiding toxicity-related omissions and delays in treatment, and designing future trials to incorporate our current knowledge of antileukemic chemotherapy toxicities with novel treatment approaches.

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or ascopubs. org/po/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Abdelrahman H. Elsayed

Patents, Royalties, Other Intellectual Property: I have two patent applications: Patent 1: Title: "Pharmacogenomics score to make decisions on therapy augmentation in AML"; Status: Filed; Number: US Provisional Application No.: 63/233,673 Patent 2: Title: "Methods for Predicting AML Outcome"; Status: Published; Number: PCT/US2020/051961

Biljana Horn

Stock and Other Ownership Interests: My retirement counts contain numerous health companies Research Funding: Orca Bio Expert Testimony: multiple

Honoraria: Sobi

Jatinder K. Lamba

Patents, Royalties, Other Intellectual Property: Patent 1: Title: "Pharmacogenomics score to make decisions on therapy augmentation in AML"; Status: Filed; Number: US Provisional Application No.: 63/233, 673 Patent 2: Title: "Methods for Predicting AML Outcome"; Status: Published; Number: PCT/US2020/051961 Patent 3: Title: "Development of Novel CD33 Antibodies," Status: Filed Number: 63/078,686 Patent 4: Title: "CD33-Targeted Cancer Therapy" Status: Nationalized Number: PCT/US2017/026369

No other potential conflicts of interest were reported.

REFERENCES

- 1. NIH: Childhood Acute Lymphoblastic Leukemia Treatment (PDQ)—Health Professional Version. National Cancer Institute. https://www.cancer.gov/types/ leukemia/hp/child-all-treatment-pdq
- 2. Hunger SP, Mullighan CG: Acute lymphoblastic leukemia in children. N Engl J Med 373:1541-1552, 2015
- 3. Pui CH: Precision medicine in acute lymphoblastic leukemia. Front Med 14:689-700, 2020
- 4. Rivera GK, Pinkel D, Simone JV, et al: Treatment of acute lymphoblastic leukemia. 30 years' experience at St Jude Children's Research Hospital. N Engl J Med 329:1289-1295, 1993
- Mulrooney DA, Hyun G, Ness KK, et al: The changing burden of long-term health outcomes in survivors of childhood acute lymphoblastic leukaemia: A retrospective analysis of the St Jude lifetime cohort study. Lancet Haematol 6:e306-e316, 2019
- 6. Dulucq S, Laverdiere C, Sinnett D, et al: Pharmacogenetic considerations for acute lymphoblastic leukemia therapies. Expert Opin Drug Metab Toxicol 10:699-719, 2014
- Cairns J, Ingle JN, Dudenkov TM, et al: Pharmacogenomics of aromatase inhibitors in postmenopausal breast cancer and additional mechanisms of anastrozole action. JCI Insight 5:e137571, 2020
- 8. Yang M, Huan G, Wang M: Influence of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics/pharmacodynamics of tacrolimus in pediatric patients. Curr Drug Metab 19:1141-1151, 2018
- Bargal SA, Rafiee R, Crews KR, et al: Genome-wide association analysis identifies SNPs predictive of in vitro leukemic cell sensitivity to cytarabine in pediatric AML. Oncotarget 9:34859-34875, 2018
- Elsayed AH, Cao X, Crews KR, et al: Comprehensive Ara-C SNP score predicts leukemic cell intracellular ara-CTP levels in pediatric acute myeloid leukemia patients. Pharmacogenomics 19:1101-1110, 2018
- 11. Gbadamosi M, Meshinchi S, Lamba JK: Gemtuzumab ozogamicin for treatment of newly diagnosed CD33-positive acute myeloid leukemia. Future Oncol 14:3199-3213, 2018
- 12. Maxwell RR, Cole PD: Pharmacogenetic predictors of treatment-related toxicity among children with acute lymphoblastic leukemia. Curr Hematol Malig Rep 12:176-186, 2017
- Yang JJ, Landier W, Yang W, et al: Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol 33:1235-1242, 2015
- 14. Weinshilboum RM, Sladek SL: Mercaptopurine pharmacogenetics: Monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 32:651-662, 1980
- Salavaggione OE, Wang L, Wiepert M, et al: Thiopurine S-methyltransferase pharmacogenetics: Variant allele functional and comparative genomics. Pharmacogenet Genom 15:801-815, 2005
- 16. Relling MV, Gardner EE, Sandborn WJ, et al: Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin Pharmacol Ther 93:324-325, 2013
- Relling MV, Schwab M, Whirl-Carrillo M, et al: Clinical pharmacogenetics implementation consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin Pharmacol Ther 105:1095-1105, 2019
- Yang SK, Hong M, Baek J, et al: A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat Genet 46:1017-1020, 2014
- Zgheib NK, Akra-Ismail M, Aridi C, et al: Genetic polymorphisms in candidate genes predict increased toxicity with methotrexate therapy in Lebanese children with acute lymphoblastic leukemia. Pharmacogenet Genom 24:387-396, 2014
- 20. Whirl-Carrillo M, McDonagh EM, Hebert JM, et al: Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92:414-417, 2012
- 21. Relling MV, Ramsey LB: Pharmacogenomics of acute lymphoid leukemia: New insights into treatment toxicity and efficacy. Hematology 2013:126-130, 2013
- 22. Chen Y, Zou K, Sun J, et al: Are gene polymorphisms related to treatment outcomes of methotrexate in patients with rheumatoid arthritis? A systematic review and meta-analysis. Pharmacogenomics 18:175-195, 2017
- Ghodke-Puranik Y, Puranik AS, Shintre P, et al: Folate metabolic pathway single nucleotide polymorphisms: A predictive pharmacogenetic marker of methotrexate response in Indian (Asian) patients with rheumatoid arthritis. Pharmacogenomics 16:2019-2034, 2015
- 24. Huang Z, Tong HF, Li Y, et al: Effect of the polymorphism of folylpolyglutamate synthetase on treatment of high-dose methotrexate in pediatric patients with acute lymphocytic leukemia. Med Sci Monit 22:4967-4973, 2016
- Sharma S, Das M, Kumar A, et al: Purine biosynthetic pathway genes and methotrexate response in rheumatoid arthritis patients among north Indians. Pharmacogenet Genom 19:823-828, 2009
- 26. Yee SW, Mefford JA, Singh N, et al: Impact of polymorphisms in drug pathway genes on disease-free survival in adults with acute myeloid leukemia. J Hum Genet 58:353-361, 2013
- Voon PJ, Yap HL, Ma CYT, et al: Correlation of aldo-ketoreductase (AKR) 1C3 genetic variant with doxorubicin pharmacodynamics in Asian breast cancer patients. Br J Clin Pharmacol 75:1497-1505, 2013
- Huezo-Diaz Curtis P, Uppugunduri CRS, Muthukumaran J, et al: Association of CTH variant with sinusoidal obstruction syndrome in children receiving intravenous busulfan and cyclophosphamide before hematopoietic stem cell transplantation. Pharmacogenomics J 18:64-69, 2018

APPENDIX

TABLE A1. SNPs With Minor Allele Frequency of >0.1 Tested in thePatient's Cohort

SNP	Gene_function_list					
rs1045642	ABCB1/cds-synon					
rs1128503	ABCB1/cds-synon					
rs2032582	ABCB1/missense					
rs4148737	ABCB1/intron					
rs35592	ABCC1/intron					
rs246240	ABCC1/intron					
rs3784864	ABCC1/intron					
rs3740065	ABCC2/intron					
rs3740066	ABCC2/cds-synon					
rs7317112	ABCC4/intron					
rs9561778	ABCC4/intron					
rs12505410	ABCG2/intron					
rs13137622	ABCG2/intron					
rs1135989	ACTG1/cds-synon,ACTG1/ncRNA					
rs2236624	ADORA2A/intron, ADORA2A-AS1/intron					
rs2267076	ADORA2A/intron					
rs2298383	ADORA2A/intron					
rs1937840	AKR1C3/intron					
rs2228100	ALDH3A1/missense					
rs2784917	ARHGAP19-SLIT1/intron, SLIT1/intron					
rs4948496	ARID5B/intron					
rs10821936	ARID5B/intron					
rs2372536	ATIC/missense					
rs16853826	ATIC/intron					
rs1056892	CBR3/missense,CBR3-AS1/intron					
rs8133052	CBR3/missense,CBR3-AS1/intron					
rs602950	CDA/UTR-5					
rs818196	CDA/intron					
rs1048977	CDA/cds-synon					
rs2072671	CDA/missense					
rs3215400	CDA/UTR-5					
rs10916819	CDA/Upstream					
rs12404655	CDA/intron					
rs1044457	CMPK1/ncRNA, CMPK1/UTR-3					
rs3088062	CMPK1/ncRNA, CMPK1/UTR-3					
rs3925058	CMPK1/nearGene-5					
rs4600090	CMPK1/intron					
rs17103168	CMPK1/ncRNA, CMPK1/UTR-3					
rs648743	CTH/nearGene-5					
rs4135385	CTNNB1/intron					
rs4364871	CTPS1/intron					
rs7533657	CTPS1/Upstream					
	(Continued in next column)					

SNP	Gene_function_list
rs12067645	CTPS1/Upstream
rs12144160	CTPS1/intron
rs1801157	CXCL12/UTR-3
rs4673	CYBA/missense
rs1056836	CY1B1/misense
rs2279343	CYP2B6/missense
rs4802101	CYP2B6/nearGene-5
rs7254579	CYP2B6/Upstream
rs12248560	CYP2C19/nearGene-5
rs1799853	CYP2C9/missense
rs2740574	CYP3A4/nearGene-5
rs776746	CYP3A5/intron,CYP3A5/splice-3
rs4694362	DCK/intron
rs4742	DCTD/cds-synon
rs2037067	TENM3/intron
rs6829021	DCTD/3'
rs9990999	DCTD/intron
rs442767	DHFR/nearGene-5,MSH3/intron
rs1053129	DHFR/UTR-3
rs1643650	DHFR/intron
rs1051740	EPHX1/missense
rs11615	ERCC1/cds-synon
rs3212986	CD3EAP/missense, ERCC1/UTR-3
rs1799793	ERCC2/missense
rs1544105	FPGS/Upstream
rs3824662	GATA3/intron
rs3758149	GGH/nearGene-5
rs10948059	GNMT/nearGene-5
rs3957357	GSTA1/nearGene-5
rs4715354	GSTA5/intron
rs3754446	GSTM5/nearGene-5
rs1695	GSTP1/missense
rs2236225	MTHFD1/missense
rs1476413	MTHFR/intron
rs1801131	MTHFR/missense
rs1801133	MTHFR/missense
rs3768142	MTR/intron
rs1801394	FASTKD3/nearGene-5,MTRR/missense
rs1883112	NCF4/nearGene-5
rs2302254	NME1/nearGene-5,NME1-NME2/UTR-5,
	NME1-NME2/ncRNA
rs3760468	NME1/nearGene-5,NME1-NME2/nearGene-5
rs3744660	NME1-NME2/intron,NME2/intron
rs5841	DECR2/nearGene-5,NME4/cds-synon
	(Continued on following page)

TABLE A1. SNPs With Minor Allele Frequency of >0.1 Tested in the

TABLE A1. SNPs With Minor Allele Frequency of >0.1 Tested in thePatient's Cohort (Continued)

SNP	Gene_function_list
rs1799983	NOS3/missense
rs1143684	NQO2/missense
rs11598702	NT5C2/intron
rs2413739	PACSIN2/intron
rs738409	PNPLA3/missense
rs13058338	RAC2/intron
rs9937	RRM1/cds-synon
rs1561876	STIM1/UTR-3
rs11030918	RRM1/nearGene-5
rs1130609	RRM2/UTR-5,RRM2/missense
rs1979277	SHMT1/missense
rs7853758	SLC28A3/ncRNA,SLC28A3/cds-synon
rs1051266	SLC19A1/missense
rs2838958	SLC19A1/intron
rs9977268	COL18A1/intron
rs11231809	SLC22A11/Upstream
rs714368	SLC22A16/missense
	(Continued in next column)

TABLE A1. SNPs With Minor Allele Frequency of >0.1 Tested in the	
Patient's Cohort (Continued)	

SNP	Gene_function_list
rs11853372	SLC28A1/intron
rs17343066	SLC28A3/intron
rs324148	SLC29A1/intron
rs507964	SLC29A1/nearGene-5
rs693955	SLC29A1/intron
rs2306283	SLCO1B1/missense
rs10841753	SLC01B1/intron
rs11045879	SLC01B1/intron
rs4880	SOD2/missense
rs5760410	SPECC1L-ADORA2A/SPECC1L/3'/ADORA2A/5'
rs2853539	C18orf56/nearGene-5,TYMS/intron
rs151264360	ENOSF1/intron, ENOSF1/cds-indel,TYMS/cds-indel
rs25487	XRCC1/missense

Abbreviations: CTH, cystathionase; DCTD, deoxycytidine deaminase; FPGS, folylpolyglutamate synthetase; SNP, single-nucleotide polymorphism.

SNPs/genes were selected through literature review or data deposited in PharmGKB.^{20}

Larkin et al

SNP_MOI	Gene	OR	Lower 95	Upper 95	Р
GI toxicity					
rs151264360.add	TYMS	0.229	0.088	0.598	.00
rs3740065.add	ABCC2	0.179	0.040	0.804	.02
rs1544105.rec	FPGS	0.308	0.109	0.876	.02
rs4880.rec	SOD2	1.915	1.049	3.495	.03
rs11853372.rec	SLC28A1	3.162	1.026	9.750	.04
rs11045879.add	SLCO1B1	0.287	0.079	1.040	.05
rs9977268.add	SLC19A1	2.571	0.936	7.065	.06
rs2306283.add	SLCO1B1	0.534	0.271	1.053	.07
rs10916819.rec	CDA	1.757	0.953	3.242	.07
rs324148.add	SLC29A1	0.500	0.234	1.067	.07
rs1799793.dom	ERCC2	1.581	0.946	2.643	30.
rs714368.dom	SLC22A16	0.641	0.386	1.063	30.
rs3754446.add	GSTM1-M5	1.933	0.905	4.129	30.
rs12067645.add	CTPS1	2.215	0.882	5.566	.09
Hematologic toxicity					
rs1048977.add	CDA	3.232	1.108	9.428	03
rs4148737.dom	ABCB1	0.488	0.251	0.947	.03
rs12067645.add	CTPS1	3.575	1.067	11.974	.03
rs2784917.add	SLIT1	3.409	1.027	11.310	.04
rs1056892.rec	CBR3	2.332	1.012	5.373	.04
rs776746.add	CYP3A5	2.231	0.967	5.147	.06
rs2228100.dom	ALDH3A1	0.507	0.249	1.029	.06
rs13058338.add	RAC2	3.000	0.860	10.471	30.
rs3957357.add	GSTA1	0.416	0.152	1.140	30.
rs10821936.dom	ARID5B	0.566	0.291	1.101	.09
rs2279343.add	CYP3B6	2.336	0.866	6.299	.09
rs4694362.rec	DCK	1.789	0.902	3.546	.09
Neurologic toxicity					
rs2228100.add	ALDH3A1	0.309	0.136	0.699	.00
rs12067645.add	CTPS1	3.422	1.323	8.851	.0.
rs1979277.dom	SHMT1	1.871	1.133	3.089	.0.
rs4673.dom	СҮВА	2.291	1.175	4.468	.01
rs11598702.add	NT5C2	2.349	1.076	5.130	.03
rs1937840.add	AKR1C3	0.478	0.241	0.949	.03
rs6829021rec	DCTD	3.179	1.030	9.815	.04
rs5760410.dom	ADPRA2A	1.984	1.015	3.879	.04
rs1883112.add	NCF4	0.466	0.220	0.990	.04
rs4148737.dom	ABCB1	0.592	0.347	1.009	.05
rs2413739.add	PACSIN2	0.512	0.243	1.076	.07
rs17343066.rec	SLC28A3	0.496	0.225	1.091	30.
rs4742.rec	DCTD	1.958	0.914	4.196	30.
rs3758149.rec	GGH	2.138	0.881	5.189	.09
Endocrine toxicity					
rs1937840.add	AKR1C3	0.289	0.135	0.622	.00

TABLE A2. List of SNPs Associated With Toxicities at P < .1 That Were Included in the 3-SNP Combination Modeling

SNP_MOI	Gene	OR	Lower 95	Upper 95	Р
rs1051740.add	EPHX1	2.747	1.293	5.839	.009
rs2853539.dom	TYMS	2.126	1.209	3.740	.009
rs1544105.add	FPGS	2.173	1.100	4.294	.025
rs3768142add	MTR	0.391	0.161	0.946	.037
rs2838958.dom	SLC19A1	0.585	0.347	0.987	.045
rs4148737.rec	ABCB1	1.885	0.948	3.747	.071
rs648743.rec	CTH	0.382	0.133	1.100	.074
rs1801394.rec	MTRR	0.384	0.134	1.103	.076
rs17103168.dom	CMPK1	1.567	0.955	2.572	.076
rs776746.add	CYP3A5	1.855	0.920	3.740	.084
rs3925058.rec	CMPK1	0.504	0.228	1.113	090
rs10916819.rec	CDA	1.689	0.917	3.109	.092
rs11615.add	ERCC1	1.825	0.904	3.684	.093
Febrile neutropenia					
rs1051266.add	SLC19A1	0.418	0.206	0.848	.016
rs12404655.add	CDA	3.432	1.222	9.640	.019
rs4715354.rec	GSTA5	0.524	0.304	0.903	.020
rs2853539.dom	TYMS	0.571	0.353	0.923	.022
rs4673.dom	СҮВА	1.799	1.066	3.036	.028
rs10948059.dom	GNMT	0.589	0.358	0.968	.037
rs2413739.dom	PACSIN2	0.604	0.374	0.975	.039
rs1053129.add	DHFR	0.436	0.193	0.986	.046
rs1643650.add	DHFR	0.459	0.210	1.002	.051
rs3768142.dom	MTR	1.589	0.987	2.559	.057
rs4802101.rec	CYP2B6	1.972	0.979	3.971	.057
rs1801131.add	MTHFR	2.184	0.941	5.067	.069
rs11598702.add	NT5C2	1.997	0.942	4.235	.071
rs1801133.add	MTHFR	0.539	0.274	1.062	.074
rs1544105.rec	FPGS	0.602	0.337	1.078	.088
rs2236225.dom	MTHFD1	1.523	0.931	2.491	.094
rs776746.dom	CYP3A5	0.650	0.390	1.084	.099
rs7317112.rec	ABCC4	1.715	0.903	3.259	.099

TABLE A2. List of SNPs Associated With Toxicities at P < .1 That Were Included in the 3-SNP Combination Modeling (Continued)

Abbreviations: add, additive, CTH, cystathionase; DCTD, deoxycytidine deaminase; dom, dominant; GI, gastrointestinal; FPGS, folylpolyglutamate synthetase; MOI, mode of inheritance; rec, recessive; SNP, single-nucleotide polymorphism.