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abstract

PURPOSE Acute lymphoblastic leukemia (ALL) is the most prevalent cause of childhood cancer and requires a
long course of therapy consisting of three primary phases with interval intensification blocks. Although these
phases are necessary to achieve remission, the primary chemotherapeutic agents have potentially serious
toxicities, which may lead to delays or discontinuations of therapy. The purpose of this study was to perform a
comprehensive pharmacogenomic evaluation of common antileukemic agents and develop a polygenic toxicity
risk score predictive of the most common toxicities observed during ALL treatment.

METHODS This cross-sectional study included 75 patients with pediatric ALL treated between 2012 and 2020 at
the University of Florida. Toxicity data were collected within 100 days of initiation of therapy using CTCAE v4.0 for
toxicity grading. For pharmacogenomic evaluation, single-nucleotide polymorphisms (SNPs) and genes were
selected from previous reports or PharmGKB database. 116 unique SNPs were evaluated for incidence of
various toxicities. A multivariable multi-SNP modeling for up to 3-SNP combination was performed to develop a
polygenic toxicity risk score of prognostic value.

RESULTS We identified several SNPs predictive of toxicity phenotypes in univariate analysis. Further multi-
variable SNP-SNP combination analysis suggest that susceptibility to chemotherapy-induced toxicities is likely
multigenic in nature. For 3-SNPscore models, patients with high scores experienced increased risk of GI (P =
2.07E-05, 3 SNPs: TYMS-rs151264360/FPGS-rs1544105/GSTM1-GSTM5-rs3754446), neurologic (P = .0005,
3 SNPs: DCTD-rs6829021/SLC28A3-rs17343066/CTPS1-rs12067645), endocrine (P = 4.77E-08, 3 SNPs:
AKR1C3-rs1937840/TYMS-rs2853539/CTH-rs648743), and heme toxicities (P = .053, 3 SNPs: CYP3A5-
rs776746/ABCB1-rs4148737/CTPS1-rs12067645).

CONCLUSION Our results imply that instead of a single-SNP approach, SNP-SNP combinations in multiple genes
in drug pathways increases the robustness of prediction of toxicity. These results further provide promising SNP
models that can help establish clinically relevant biomarkers allowing for greater individualization of cancer
therapy to maximize efficacy and minimize toxicity for each patient.

JCO Precis Oncol 7:e2200580. © 2023 by American Society of Clinical Oncology

INTRODUCTION

Acute lymphoblastic leukemia (ALL) is the leading
cause of childhood cancer, representing approxi-
mately 25% of all cancers in patients younger than
15 years.1 Cure rates have improved from 10% in the
1960s to more than 90% in contemporary clinical
trials.2,3 Standard treatment regimens consist of
prolonged cytotoxic therapy administered over three
primary phases—remission induction, consolidation,
and maintenance—with interval intensification
blocks.4 This approach, although effective, produces a
myriad of chronic health consequences for survivors.5

Interpatient variation in pharmacogenomics can result
in unpredictable variability in occurrence of adverse
events and toxicity as well as discrepancies in thera-
peutic efficacy. Dose-limiting toxicities lead to

modifications in treatment regimens and dosing
schedules. Data have shown these delays and omis-
sions can affect long-term outcomes in patients with
pediatric cancer6. Studies in leukemia cohorts have
uncovered a need for less toxic approaches without
compromising efficacy.

Pharmacogenomic biomarkers are an evolving area
that may help identify patient-specific factors affecting
responses to chemotherapeutic agents. Inherited
variation in genes involved in drug metabolism and
transport have been described in a multitude of
modern drugs.7-11 Genetic polymorphisms can influ-
ence the gene expression and/or activity, thereby
affecting drug pharmacokinetics and causing in-
terindividual variation in drug levels, which can alter
toxicity phenotype and therapeutic efficacy.12 To
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date, the most understood example of this in pediatric
cancer is thiopurine S-methyltransferase (TPMT) and
nudix hydrolase 15 (NUDT15) activities.13 First de-
scribed as early as the 1980s,14 a total of 21 TPMT
genetic polymorphisms have since been described and
are associated with decreased levels of TPMT enzyme
activity and/or thiopurine drug-induced toxicity.15 This
knowledge led to standardized practices evaluating
TPMT and NUDT15 genetic polymorphisms in patients
to tailor dosing before the initiation of purines on the
basis of these genetic variations.12,16,17 Numerous efforts
have been made to replicate these findings in other key
genes.18,19

Herein, we sought to describe single-nucleotide polymor-
phism (SNP) variants as pharmacogenomic biomarkers
predictive of treatment toxicity phenotypes in a cohort of
children with ALL. Characterization of such variations could
establish clinically relevant predictors, allowing for per-
sonalized leukemia therapy tailored toward optimizing drug
efficacy while lessening toxicities. The objective of this
study was to identify SNPs in target genes associated with
drug metabolism or transport that could predict undue
toxicity from antileukemic agents in children with ALL.

METHODS

Study Design and Patients

This was a cross-sectional study of subjects treated at a
tertiary academic center. Overall study design is shown in
Figure 1. Patients age 3months to 26 years with a diagnosis
of de novo or secondary ALL who received induction and
consolidation therapy between May 2012 and December
2019 at the University of Florida were eligible for enroll-
ment, regardless of disease risk category, sex, or racial or
ethnic background, for enrollment. Study enrollment oc-
curred between February 2019 and May 2020 at the

University of Florida. Patients who met eligibility criteria
were excluded if they declined participation, or if they were
unable to provide an adequate blood specimen. The study
protocol was approved by the University of Florida Insti-
tutional Review Board (IRB#201802623). All patients
provided written informed consent before participating in
the study and received treatment according to standard-of-
care options at the discretion of their treating physician. To
be eligible for assessment, patients were required to have
received induction and consolidation chemotherapy at the
University of Florida. A total of 75 patients treated between
2012 and 2020 were included in the study.

Comprehensive Pharmacogenomic Evaluation

A peripheral blood sample (5-10mL) for pharmacogenomic
testing was collected at a single time point during routine
follow-up care. Blood samples were stored in a malignant
hematology biorepository for subsequent genomic studies.
Genomic DNA was isolated from the samples for further
genotyping. 150 SNPs in key candidate genes involved
in cellular transport and metabolism of cytarabine, vin-
cristine, methotrexate, daunorubicin/doxorubicin, and
mercaptopurine/thioguanine were analyzed. Seque-
nom genotyping that uses matrix-assisted laser
desorption/ionization-time of flight–based chemistry
was performed at University of Minnesota, Biomedical
Genomics Center. Genes involved in pharmacological
chemotherapy agents were obtained from PharmGKB.20

Literature search as well as information from PharmGKB20

was used to select the SNPs. After excluding 27 SNPs
with minor-allele frequency (MAF) , 0.1, 1 SNP missing
genotypes in .20% of the samples, and 6 SNPs that
occurred in linkage disequilibrium (LD) with at least one
another SNP, a total of 116 unique SNPs (listed in Ap-
pendix Table A1 [Supplementary Table 1]) were included
in the study. Toxicities were documented in real time by the

CONTEXT

Key Objective
Patients with acute lymphoblastic leukemia (ALL) are treated with intensive chemotherapy that results in severe toxicities,

which can sometimes result in delays or discontinuations of therapy. The objective of this study was to comprehensively
evaluate pharmacogenomics of antileukemic agents and establish a polygenic toxicity risk score predictive of the common
toxicities observed during ALL treatment.

Knowledge Generated
We took a pharmacological pathway–based pharmacogenomics approach and identified several single-nucleotide poly-

morphisms (SNPs) associated with individual toxicities. A multi-SNP predictor modeling approach established a 3-SNP
combination score with significant association with specific toxicities.

Relevance
Multi-SNP combination approach is more robust and takes into account multiple SNPs predictive of toxicity and thus holds

significant clinical relevance. Promising SNP models can help establish clinically relevant biomarkers that can be used
preemptively andmonitor risk of toxicity and accordingly design interventions to reduce toxicity and improve quality of life in
patients with ALL.
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primary treatment team according to standard-of-care prac-
tices and additionally confirmed by physicians on the study
team and included the following: hepatic injury defined by
increase in serum total bilirubin.3.0 times the upper normal
limit; hematologic impairment including severe neutropenia,
thrombocytopenia, and anemia leading to treatment delays;
number of hospitalizations for febrile neutropenia (FN);
thromboembolic events requiring medical intervention; pan-
creatitis requiring medical intervention; neurotoxicity defined
by detailed neurologic examination and alterations in function;
and glucose resistance defined by insulin dependence.
Overall, CTCAE v4.0 was used for toxicity grading, and all
toxicity events during the first 100 days of therapy that include
gastrointestinal (GI), hematologic, neurologic, endocrine tox-
icities, and prolonged hospitalization (.4 days) because of FN
were included in the analysis. Logistic regressionmodels were
used to test the association between the 116 SNPs in additive,
dominant, and recessive modes of inheritance with all dif-
ferent types of toxicities. Odds ratio (OR) and 95% CI were
calculated for each test. P , .05 was considered significant.
In this exploratory study, no adjustment for multiple testing
was done. For multivariable SNP combination analysis, SNPs
with univariate association P , .1 were selected for each
toxicity, and then SNP combinations (up to 3 SNPs permodel)
were tested for association with each toxicity. The combination

model with the 1,000 permutation P , .05 and lowest
Bayesian information criterion (BIC) value was selected to
build a 3-SNP score after considering themode of inheritance
and the direction of association with the toxicity for the in-
dividual genotypes. 3-SNP score was generated by sum-
mation of genotype scores for the individual SNPs passing the
top model. Patients were further classified into three groups:
3SNP_Tox score group of “.0,” “0,” or “,0.”Chi-square and
the Cochran-Armitage trend tests were used to test for the
association between the toxicity risk score groups and the
incidence of each of the evaluated toxicities.

RESULTS

Demographics and Clinical Comparisons

Table 1 summarizes demographics and incidence of tox-
icities. Twenty-five (33%) patients had neurologic and
endocrinologic toxicities (grade 1-3). Twenty-four patients
had GI toxicities (grades 2-4), 11 (15%) patients had he-
matologic toxicities (grade 2-4), and 36 patients were
hospitalized at least one time .4 days because of FN.

Univariate Analysis of SNP Association With Toxicity Risk

Table 2 provides summary of the univariate analysis.
At P , .05, 5 unique SNPs were found significantly
associated with GI toxicity, 5 SNPs were associated with

Patients with ALL treated at University of
Florida Health-Shand's hospital (N = 75)

Genotype for 150 SNPs in pharmacologic pathway antileukemia agents

QC: minor allele frequency <0.10, missing genotypes in
>20% patients, SNPs in Linkage disequilibrium excluded

116 SNPs tested for  association with toxicities

P < .05 significant in univariate

analysis

Multivariable SNP combination analysis

SNPs (P < .1) in univariate association selected for in

multivariable SNP combinations (up to 3 SNPs per model)

Top 3 SNP combination model with the lowest

1,000 permutation P value and lowest BIC value

selected for building toxicity score

CTCAE v4.0 toxicity grading GI, heme, endocrine, neurologic,
and >4 days of febrile neutropenia hospitalization
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FIG 1. Overall study design. In table, 0 = no toxicity and 1 = toxicity as per description in themethods section. FN, Febrile Neutropenia; GI, gastrointestinal;
Heme, hematological toxicity; Neuro, neurological toxicity; QC, quality control; SNP, single-nucleotide polymorphism; V, variant; WT, wildtype.
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hematologic toxicities, 9 SNPs were associated with
neurologic toxicity, 6 SNPs were associated with endo-
crine toxicities, and 8 SNPs were found associated with
prolonged hospitalization because of FN. For GI toxic-
ities, variant alleles for SNPs rs151264360 in TYMS,
rs3740065 in ABCC2, and rs1544105 in folylpolyglutamate
synthetase (FPGS) were found associated with reduced risk
of toxicity (OR , 1), while rs11853372 in SLC28A1 and
rs4880 in SOD2 were found associated with higher risk of
toxicity (OR . 1). For hematologic toxicities, SNPs in CDA
(rs1048977), CTPS1 (rs12067645), SLIT1 (rs2784917),
and CBR3 (rs1056892) were associated with higher risk of
toxicity, while ABCB1 SNP rs4148737 was associated with

lower risk of toxicity. Higher risk of neurologic toxicity was
associated with variant alleles of rs12067645 (CTPS1),
rs1979277 (SHMT1), rs4673 (CYBA), rs11598702
(NT5C2), rs6829021 deoxycytidine deaminase (DCTD), and
rs5760410 (ADPRA2A), while rs2228100 (ALDH3A1),
rs1883112 (NCF4), and rs1937840 (AKR1C3) were found
associated with lower risk of neurologic toxicity. With respect
to endocrine toxicity, variant alleles of 3 SNPs (rs1051740 in
EPHX1, rs2853539 in TYMs, and rs1544105 in FPGS) were
found associatedwith higher risk of toxicity, while rs1937840
in AKR1C3 and rs2838958 in SLC19A1 were associated
with lower risk of toxicity. We also tested length of hospi-
talization for FN for association with polymorphism in genes
important in metabolism of chemotherapy. rs12404655 in
CDA and rs4673 in CYBA were associated with higher risk
of . 4 days of hospitalization, whereas six other SNPs were
predictive of lower risk (rs1051266 in SLC19A1, rs4715354
in GSTA5, rs2853539 in TYMS, rs10948059 in GNMT,
rs1053129 in DHFR, and rs2413739 in PACSIN2).

Development of Pharmacogenomics Toxicity Risk

Score Models

To enhance the clinical utility of the pharmacogenomic
discoveries, we performed a multi-SNP predictor modeling
to create a pharmacogenomics toxicity risk score as de-
scribed in Methods (Appendix Table A2 [Supplementary
Table 2] provides the list of SNPs included in the modeling
as explained above). The best 3-SNP predictor model with
lowest BIC and 1,000 permutations test P value of , .05
was selected for each toxicity. Toxicity score was created by
adding the genotype scores of the 3 SNPs in the top model
with consideration of a direction of association with toxicity
(negative for lower toxicity and positive for higher toxicity) as
well as mode of inheritance. Overall, higher score meant
higher incidence of toxicity.

The top 3-SNP model predictor of GI toxicity included
rs151264360 in TYMS (TTAAAG . del), rs1544105 in
FPGS (C.T), and rs3754446 GSTM5 (A.C). GI toxicity
score was created as shown in Figure 2A. Patients were
classified into three groups: score ,0, score = 0, and
score .0. As shown in the bar plot, patients within .0
score group had higher incidence of GI toxicity compared
with those in score ,0 or = 0 (GI toxicity incidence: 8% v
30% v 79% in score,0, = 0 or.0, respectively; P = 2.07E-
05). The Cochran-Armitage trend test, which tests if the
trend of incidence of toxicity increases by increasing
score, was also significant for GI toxicity (P = 3.89E-06).
For hematologic toxicity, the top model consisted of
CYP3A5-rs776746 (C.T), ABCB1-rs4148737 (T.C), and
CTPS1-rs12067645 (G.A). Figure 2B shows the genotype
scores for SNPs used to create the toxicity score. As shown
in the bar plot, none of the patients with score ,0 ex-
perienced toxicity, whereas for patients with score .0
around 24%, patients experienced significant hematologic
toxicity (heme toxicity incidence: 0% v 12% v 24% in
score,0, = 0, or.0, respectively; Fisher’s exact P = .053;

TABLE 1. Characteristics Summary for 75 Patients Included in the
Study
Characteristics Patients

Age, years, median (range) 9.9 (1.2-25)

Sex, No. (%)

Male 42 (56)

Female 32 (42.7)

Unknown 1 (1.3)

Race, No. (%)

Black/African American 9 (12)

Caucasian/White 33 (44)

Hispanic 18 (24)

Asian 2 (2.7)

Other or unknown 13 (17.3)

Diagnosis, No. (%)

B-cell ALL 12 (16)

Standard-risk B-cell ALL 29 (38.6)

High- or very high-risk B-cell ALL 26 (34.6)

T-cell ALL 6 (8)

Other 2 (2.6)

GI toxicity, No. (%)

Grade ≥ 2 24 (32)

Grade , 2 51 (68)

Hematologic toxicity, No. (%)

Grade ≥ 2 11 (15)

Grade , 2 64 (85)

Febrile neutropenia, No. (%)

Hospitalization . 4 days 36 (48)

,4 days 39 (52)

Neurologic toxicity, No. (%)

Grade 1-3 25 (33.3)

No toxicity 50 (66.6)

Endocrine toxicity, No. (%)

Grade 1-3 25 (33.3)

No toxicity 50 (66.6)

Abbreviation: GI, gastrointestinal.
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Cochran-Armitage trend test P = .01). All 3 SNPs identified
in the model for predicting neurologic toxicities belong to
the cytarabine metabolic pathway. Top model included

rs6829021 (G.A) in DCTD, rs17343066 (G.A) in uptake
transporter SLC28A3, and rs12067645 (G.A) in CTPS1
(Fig 2C). As shown in the bar plot (Figs 2C), none of the

TABLE 2. Results From Univariate Analysis of SNPs v Toxicity After Treatment

SNP Gene Symbol Gene Name MOI OR

95% CI

PGI toxicity

rs151264360 TYMS Thymidylate synthase Aa(D) 0.229 (0.09 to 0.6) .0026

rs3740065 ABCC2 ATP-binding cassette subfamily C member 2 (ABCC2) Aa(D) 0.179 (0.04 to 0.80) .0248

rs1544105 FPGS Folylpolyglutamate synthase R 0.308 (0.11 to 0.88) .0272

rs4880 SOD2 Superoxide dismutase 2 R 1.915 (1.05 to 3.49) .0343

rs11853372 SLC28A1 Solute carrier family 28 member 1 R 3.162 (1.03 to 9.75) .0451

Hematologic toxicity

rs1048977 CDA Cytidine deaminase Aa(R) 3.232 (1.1 to 9.42) .0318

rs4148737 ABCB1 ABCB1 D 0.488 (0.25 to 0.95) .0341

rs12067645 CTPS1 CTPS1 A 3.575 (1.06 to 11.9) .0389

rs2784917 SLIT1 Slit guidance ligand 1 A 3.409 (1.03 to 11.3) .0450

rs1056892 CBR3 Carbonyl reductase 3 R 2.332 (1.01 to 5.37) .0468

Neurologic toxicity

rs2228100 ALDH3A1 Aldehyde dehydrogenase 3 family member A1 Aa(D) 0.309 (0.14 to 0.7) .0048

rs12067645 CTPS1 CTPS1 Da(A) 2.062 (1.21 to 3.49) .0070

rs1979277 SHMT1 Serine hydroxymethyltransferase D 1.871 (1.13 to 3.09) .0144

rs4673 CYBA Cytochrome b-245 alpha chain D 2.291 (1.17 to 4.47) .0149

rs11598702 NT5C2 5’-nucleotidase, cytosolic II A 2.349 (1.07 to 5.13) .0321

rs1937840 AKR1C3 Aldo-keto reductase family 1 member C3 A 0.478 (0.24 to 0.95) .0350

rs6829021 DCTD dCMP deaminase R 3.179 (1.02 to 9.81) .0444

rs5760410 ADPRA2A Adenosine receptor 2a D 1.984 (1.01 to 3.88) .0451

rs1883112 NCF4 Neutrophil cytosolic factor 4 A 0.466 (0.22 to 0.99) .0469

Endocrine toxicity

rs1937840 AKR1C3 Aldo-keto reductase family 1 member C3 Aa(D) 0.289 (0.13 to 0.62) .0015

rs1051740 EPHX1 Epoxide hydrolase Aa(R) 2.747 (1.29 to 5.84) .0086

rs2853539 TYMS Thymidylate Synthase D 2.126 (1.2 to 3.74) .0088

rs1544105 FPGS Folylpolyglutamate synthase Aa(R) 2.173 (1.1 to 4.3) .0255

rs3768142 MTR 5-methyltetrahydrofolate-homocysteine methyltransferase Aa(D) 0.391 (0.16 to 0.94) .0372

rs2838958 SLC19A1 Solute carrier family 19 member 1 D 0.585 (0.35 to 0.99) .0445

Febrile neutropenia

rs1051266 SLC19A1 Solute carrier family 19 member 1 Aa(D) 0.418 (0.20 to 0.84) .0157

rs12404655 CDA Cytidine deaminase Aa(D) 3.432 (1.22 to 9.64) .0193

rs4715354 GSTA5 Glutathione S-transferase alpha 5 R 0.524 (0.30 to 0.90) .0200

rs2853539 TYMS Thymidylate synthase D 0.571 (0.35 to 0.92) .0222

rs4673 CYBA Cytochrome b-245 alpha chain D 1.799 (1.06 to 3.04) .0277

rs10948059 GNMT Glycine N-methyltransferase Da(A) 0.589 (0.35 to 0.97) .0368

rs2413739 PACSIN2 Protein kinase C and casein kinase substrate in neurons 2 D 0.604 (0.37 to 0.97) .0392

rs1053129 DHFR Dihydrofolate reductase A 0.436 (0.19 to 0.986) .0460

Abbreviations: ABCB1, ATP-binding cassette subfamily B member 1; A, additive; CTPS1, CTP synthase; DCTD, deoxycytidine deaminase; D, dominant;
FPGS, folylpolyglutamate synthetase; MOI, mode of inheritance; OR, odds ratio; R, recessive.

aSNP is associated with toxicity in at least two different modes of inheritance.
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FIG 2. Toxicity incidence
by respective composite 3-
SNP score groups within
patients with ALL. Top
model 3 SNPs that were
used to create each toxicity
SNP score and bar plot of
score group versus inci-
dence of toxicity is shown
for (A) GI toxicity, n = 67,
(B) hematologic toxicity,
n = 71, (C) neurologic
toxicity, n = 68, (D) and
endocrine toxicity, n = 73.
Toxicity risk score was
computed just for patients
with genotype data avail-
able for the 3 SNPs in the
model.P values for Fisher’s
exact test are listed on top
of each bar plot. GI, gas-
trointestinal; SNP, single-
nucleotide polymorphism.
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patients with score ,0 experienced toxicity, while 56% of
patients with score .0 experienced significant neurologic
toxicity (neurologic toxicity incidence: 0% v 18% v 56% in
score,0, = 0 or.0, respectively; Fisher’s exact P = .0005;
Cochran-Armitage trend test P = 9.27E-05). For endocrine
toxicity, top multi-SNP predictor model consisted of
AKR1C3-rs1937840(C.G), TYMS-rs2853539(A.G), and
cystathionase (CTH)-rs648743(T.C). Again, none of the
patients with score ,0 experienced any endocrine toxicity
compared with 91% of patients with score .0 (endocrine
toxicity incidence: 0% v 37% v 91% in score,0, = 0 or.0,
respectively; Fisher’s exact P = 4.77E-08; Cochran-
Armitage trend test P = 5.34E-08; Figure 2D). For FN,
the score was not generated as none of the 3 SNP-based
model’s reached permuted P , .05.

DISCUSSION

Although ALL is one of the most successfully treated pe-
diatric malignancies, with the current survival rate .90%,
its treatment is related to numerous and sometimes life-
threatening toxicities. With the progressive integration of
immunotherapy in contemporary clinical trials for leuke-
mia, a greater understanding of toxicities from historical
antileukemic agents may allow researchers to tailor future
treatment approaches to optimize the balance between
standard-of-care chemotherapy and novel agents without
sacrificing efficacy. This study focused on the most com-
mon chemotherapeutic agents used in the treatment of
patients with ALL, and instead of taking a single gene-single
drug approach, we performed a comprehensive pharma-
cogenomics evaluation of key genes implicated in the
metabolic pathways of these chemotherapeutic agents.
Relationships between SNPs within TPMT and NUDT15
genes and hematologic toxicities have been well estab-
lished and implemented in standard of care to guide
mercaptopurine/thioguanine dosing (Clinical Pharmaco-
genomics Implementation Consortium Guidelines).17,21 In
our cohort, the NUDT15 and TPMT SNPs occurred at a
very low frequency. Herein, we focused on common ge-
netic polymorphisms (minor allele frequency of .0.1)
within genes relevant in metabolism of chemotherapeutic
agents used in ALL. Our focus was on toxicities observed
within 100 days of treatment initiation as this time period is
critical in obtaining disease remission. The results show a
significant association between SNPs in genes of phar-
macologic significance to chemotherapeutic agents with
toxicities experienced in patients with pediatric ALL.

To enhance the prediction by co-occurrence of multiple
variants within a patient, we performed a multi-SNP pre-
dictor modeling to identify the most significant 3-SNP
combination that is predictive of a particular toxicity inci-
dence. The top 3-SNP model predictive of GI toxicity in-
cluded (1) rs151264360 is a 6 bp deletion (TTAAAG. del)
in thymidylate synthase (TYMS). TYMS catalyzes methyl-
ation of dUMP to dTMP and is targeted by methotrexate.
This SNP is also referred to as rs11280056 (as a 9 bp

deletion), rs34489327, or rs16430 in many publications,
and the deletion has been associated with reduced mRNA
stability and TYMS expression. Association of this SNP with
toxicity and outcome in patients with rheumatoid arthritis
receiving methotrexate and patients with cancer treated
with methotrexate or other anticancer agents is summarized
in the PharmGKB database.20 Its association with reduced
toxicity in multiple studies in rheumatoid arthritis22,23 is
consistent with our results. (2) rs1544105 (C.T) in FPGS,
another gene of relevance to methotrexate. TT genotype of
this SNP has been associated with increased response
compared with CC and CT genotypes in patients with
ALL24,25; however, associations with toxicity has not been
reported; and (3) rs3754446 (A.C) maps to GSTM1-
GSTM5 locus. GST family of genes is involved in metabolism
of wide range of drugs and this SNP has previously asso-
ciated with outcome in patients with AML.26 For hematologic
toxicity, the top 3-SNPs included in the top were the fol-
lowing: (1) rs776746 (C.T, with C allele designated as *3
allele) is the most studied functional SNP in the drug me-
tabolizing enzyme CYP3A5. rs776746 is a splicing SNP, and
presence of the C allele (which is more abundant in Cau-
casian ancestry) results in loss of CYP3A5 expression; (2)
rs4148737 (T.C) occurs in a multidrug transporter ABCB1
(also known as PgP1) and has been implicated in efflux of
wide range of drugs; and (3) rs12067645 (G.A) is in CTP
synthase (CTPS1), which is involved in pyrimidine synthesis
and has been associated with cytarabinemetabolic pathway.
As indicated before, all 3 SNPs in neurologic toxicity mapped
to cytarabine metabolic pathway genes and included (1)
rs6829021 (G.A) in inactivating enzyme DCTD and (2)
rs17343066 (G.A) in uptake transporter SLC28A3. Our
group has previously shown this SNP to be associated with
intracellular ara-CTP levels in patients with AML.10 SLC28A3
has also been implication in thiopurine and (3) rs12067645
(G.A) in CTPS1 implicated in pyrimidine synthesis. Endo-
crine toxicity model included 3-SNPs: (1) rs1937840(C.G),
in aldoketoreductase 1C3 (AKR1C3), a member of NAD(P)H
oxidoreductase. AKR1C3 has been implicated in multiple
malignancies including leukemias and is also involved in the
metabolism of anthracyclines. This SNP has been associ-
ated with increased response to docetaxel and doxorubicin
in breast cancer27; (2) rs2853539(A.G) in TYMS, a target
of methotrexate. AA genotype for this SNP has been as-
sociated with reduced methotrexate response in rheuma-
toid arthritis previously,25 and (3) rs648743(T.C) in CTH
involved in glutathione synthesis, which has previously
been associated with sinusoidal obstruction in transplant
patients.28 Although FN is one of the life-threatening
toxicities and we did identify 8 SNPs predictive of pa-
tients receiving .4 days of hospitalization because of FN,
none of the multi-SNP predictor model passed the per-
mutated P value threshold of, .05. So, at this time, we did
not create a multi-SNP score for this toxicity. One of the
reasons for this might be the limited sample size of the
study cohort.
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Development of the toxicity score by taking direction of
association of the SNP with toxicity risks (positive for higher
toxicity risk) and mode of inheritance (additive, dominant, or
recessive), we propose a pharmacogenomics-based toxicity
score for each type of toxicity. Our results show that each
described high multi-gene/SNP-based toxicity risk score is
significantly associated with a higher incidence of toxicity.

A limitation of the current study was a limited sample size,
warranting validation of these findings in a larger cohort of
patients with ALL. Additionally, our cohort, although re-
flective of patients seen at our center, has ethnicity bias with
more patients reflective of Caucasian andHispanic ethnicity.

Nonetheless, this approach demonstrates the advantages of
multi-SNP prediction modeling compared with single gene-
single SNP evaluations and warrants the need to perform
similar analysis in other ethnic and racial groups while
considering SNPsmore prevalent in the population selected.
Although preliminary, the results demonstrate the potential
use of pharmacogenomic risk scores in individualizing
chemotherapy with a goal of reducing toxicities, avoiding
toxicity-related omissions and delays in treatment, and de-
signing future trials to incorporate our current knowledge of
antileukemic chemotherapy toxicities with novel treatment
approaches.
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APPENDIX

TABLE A1. SNPs With Minor Allele Frequency of .0.1 Tested in the
Patient’s Cohort
SNP Gene_function_list

rs1045642 ABCB1/cds-synon

rs1128503 ABCB1/cds-synon

rs2032582 ABCB1/missense

rs4148737 ABCB1/intron

rs35592 ABCC1/intron

rs246240 ABCC1/intron

rs3784864 ABCC1/intron

rs3740065 ABCC2/intron

rs3740066 ABCC2/cds-synon

rs7317112 ABCC4/intron

rs9561778 ABCC4/intron

rs12505410 ABCG2/intron

rs13137622 ABCG2/intron

rs1135989 ACTG1/cds-synon,ACTG1/ncRNA

rs2236624 ADORA2A/intron, ADORA2A-AS1/intron

rs2267076 ADORA2A/intron

rs2298383 ADORA2A/intron

rs1937840 AKR1C3/intron

rs2228100 ALDH3A1/missense

rs2784917 ARHGAP19-SLIT1/intron, SLIT1/intron

rs4948496 ARID5B/intron

rs10821936 ARID5B/intron

rs2372536 ATIC/missense

rs16853826 ATIC/intron

rs1056892 CBR3/missense,CBR3-AS1/intron

rs8133052 CBR3/missense,CBR3-AS1/intron

rs602950 CDA/UTR-5

rs818196 CDA/intron

rs1048977 CDA/cds-synon

rs2072671 CDA/missense

rs3215400 CDA/UTR-5

rs10916819 CDA/Upstream

rs12404655 CDA/intron

rs1044457 CMPK1/ncRNA, CMPK1/UTR-3

rs3088062 CMPK1/ncRNA, CMPK1/UTR-3

rs3925058 CMPK1/nearGene-5

rs4600090 CMPK1/intron

rs17103168 CMPK1/ncRNA, CMPK1/UTR-3

rs648743 CTH/nearGene-5

rs4135385 CTNNB1/intron

rs4364871 CTPS1/intron

rs7533657 CTPS1/Upstream

(Continued in next column)

TABLE A1. SNPs With Minor Allele Frequency of .0.1 Tested in the
Patient’s Cohort (Continued)
SNP Gene_function_list

rs12067645 CTPS1/Upstream

rs12144160 CTPS1/intron

rs1801157 CXCL12/UTR-3

rs4673 CYBA/missense

rs1056836 CY1B1/misense

rs2279343 CYP2B6/missense

rs4802101 CYP2B6/nearGene-5

rs7254579 CYP2B6/Upstream

rs12248560 CYP2C19/nearGene-5

rs1799853 CYP2C9/missense

rs2740574 CYP3A4/nearGene-5

rs776746 CYP3A5/intron,CYP3A5/splice-3

rs4694362 DCK/intron

rs4742 DCTD/cds-synon

rs2037067 TENM3/intron

rs6829021 DCTD/3’

rs9990999 DCTD/intron

rs442767 DHFR/nearGene-5,MSH3/intron

rs1053129 DHFR/UTR-3

rs1643650 DHFR/intron

rs1051740 EPHX1/missense

rs11615 ERCC1/cds-synon

rs3212986 CD3EAP/missense, ERCC1/UTR-3

rs1799793 ERCC2/missense

rs1544105 FPGS/Upstream

rs3824662 GATA3/intron

rs3758149 GGH/nearGene-5

rs10948059 GNMT/nearGene-5

rs3957357 GSTA1/nearGene-5

rs4715354 GSTA5/intron

rs3754446 GSTM5/nearGene-5

rs1695 GSTP1/missense

rs2236225 MTHFD1/missense

rs1476413 MTHFR/intron

rs1801131 MTHFR/missense

rs1801133 MTHFR/missense

rs3768142 MTR/intron

rs1801394 FASTKD3/nearGene-5,MTRR/missense

rs1883112 NCF4/nearGene-5

rs2302254 NME1/nearGene-5,NME1-NME2/UTR-5,
NME1-NME2/ncRNA

rs3760468 NME1/nearGene-5,NME1-NME2/nearGene-5

rs3744660 NME1-NME2/intron,NME2/intron

rs5841 DECR2/nearGene-5,NME4/cds-synon

(Continued on following page)
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TABLE A1. SNPs With Minor Allele Frequency of .0.1 Tested in the
Patient’s Cohort (Continued)
SNP Gene_function_list

rs1799983 NOS3/missense

rs1143684 NQO2/missense

rs11598702 NT5C2/intron

rs2413739 PACSIN2/intron

rs738409 PNPLA3/missense

rs13058338 RAC2/intron

rs9937 RRM1/cds-synon

rs1561876 STIM1/UTR-3

rs11030918 RRM1/nearGene-5

rs1130609 RRM2/UTR-5,RRM2/missense

rs1979277 SHMT1/missense

rs7853758 SLC28A3/ncRNA,SLC28A3/cds-synon

rs1051266 SLC19A1/missense

rs2838958 SLC19A1/intron

rs9977268 COL18A1/intron

rs11231809 SLC22A11/Upstream

rs714368 SLC22A16/missense

(Continued in next column)

TABLE A1. SNPs With Minor Allele Frequency of .0.1 Tested in the
Patient’s Cohort (Continued)
SNP Gene_function_list

rs11853372 SLC28A1/intron

rs17343066 SLC28A3/intron

rs324148 SLC29A1/intron

rs507964 SLC29A1/nearGene-5

rs693955 SLC29A1/intron

rs2306283 SLCO1B1/missense

rs10841753 SLCO1B1/intron

rs11045879 SLCO1B1/intron

rs4880 SOD2/missense

rs5760410 SPECC1L-ADORA2A/SPECC1L/3’/ADORA2A/5’

rs2853539 C18orf56/nearGene-5,TYMS/intron

rs151264360 ENOSF1/intron, ENOSF1/cds-indel,TYMS/cds-indel

rs25487 XRCC1/missense

Abbreviations: CTH, cystathionase; DCTD, deoxycytidine
deaminase; FPGS, folylpolyglutamate synthetase; SNP,
single-nucleotide polymorphism.
SNPs/genes were selected through literature review or data

deposited in PharmGKB.20
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TABLE A2. List of SNPs Associated With Toxicities at P , .1 That Were Included in the 3-SNP Combination Modeling
SNP_MOI Gene OR Lower 95 Upper 95 P

GI toxicity

rs151264360.add TYMS 0.229 0.088 0.598 .003

rs3740065.add ABCC2 0.179 0.040 0.804 .025

rs1544105.rec FPGS 0.308 0.109 0.876 .027

rs4880.rec SOD2 1.915 1.049 3.495 .034

rs11853372.rec SLC28A1 3.162 1.026 9.750 .045

rs11045879.add SLCO1B1 0.287 0.079 1.040 .057

rs9977268.add SLC19A1 2.571 0.936 7.065 .067

rs2306283.add SLCO1B1 0.534 0.271 1.053 .070

rs10916819.rec CDA 1.757 0.953 3.242 .071

rs324148.add SLC29A1 0.500 0.234 1.067 .073

rs1799793.dom ERCC2 1.581 0.946 2.643 .081

rs714368.dom SLC22A16 0.641 0.386 1.063 .085

rs3754446.add GSTM1-M5 1.933 0.905 4.129 .089

rs12067645.add CTPS1 2.215 0.882 5.566 .091

Hematologic toxicity

rs1048977.add CDA 3.232 1.108 9.428 032

rs4148737.dom ABCB1 0.488 0.251 0.947 .034

rs12067645.add CTPS1 3.575 1.067 11.974 .039

rs2784917.add SLIT1 3.409 1.027 11.310 .045

rs1056892.rec CBR3 2.332 1.012 5.373 .047

rs776746.add CYP3A5 2.231 0.967 5.147 .060

rs2228100.dom ALDH3A1 0.507 0.249 1.029 .060

rs13058338.add RAC2 3.000 0.860 10.471 .085

rs3957357.add GSTA1 0.416 0.152 1.140 .088

rs10821936.dom ARID5B 0.566 0.291 1.101 .094

rs2279343.add CYP3B6 2.336 0.866 6.299 .094

rs4694362.rec DCK 1.789 0.902 3.546 .096

Neurologic toxicity

rs2228100.add ALDH3A1 0.309 0.136 0.699 .005

rs12067645.add CTPS1 3.422 1.323 8.851 .011

rs1979277.dom SHMT1 1.871 1.133 3.089 .014

rs4673.dom CYBA 2.291 1.175 4.468 .015

rs11598702.add NT5C2 2.349 1.076 5.130 .032

rs1937840.add AKR1C3 0.478 0.241 0.949 .035

rs6829021_.rec DCTD 3.179 1.030 9.815 .044

rs5760410.dom ADPRA2A 1.984 1.015 3.879 .045

rs1883112.add NCF4 0.466 0.220 0.990 .047

rs4148737.dom ABCB1 0.592 0.347 1.009 .054

rs2413739.add PACSIN2 0.512 0.243 1.076 .077

rs17343066.rec SLC28A3 0.496 0.225 1.091 .081

rs4742.rec DCTD 1.958 0.914 4.196 .084

rs3758149.rec GGH 2.138 0.881 5.189 .093

Endocrine toxicity

rs1937840.add AKR1C3 0.289 0.135 0.622 .002

(Continued on following page)
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TABLE A2. List of SNPs Associated With Toxicities at P , .1 That Were Included in the 3-SNP Combination Modeling (Continued)
SNP_MOI Gene OR Lower 95 Upper 95 P

rs1051740.add EPHX1 2.747 1.293 5.839 .009

rs2853539.dom TYMS 2.126 1.209 3.740 .009

rs1544105.add FPGS 2.173 1.100 4.294 .025

rs3768142_.add MTR 0.391 0.161 0.946 .037

rs2838958.dom SLC19A1 0.585 0.347 0.987 .045

rs4148737.rec ABCB1 1.885 0.948 3.747 .071

rs648743.rec CTH 0.382 0.133 1.100 .074

rs1801394.rec MTRR 0.384 0.134 1.103 .076

rs17103168.dom CMPK1 1.567 0.955 2.572 .076

rs776746.add CYP3A5 1.855 0.920 3.740 .084

rs3925058.rec CMPK1 0.504 0.228 1.113 090

rs10916819.rec CDA 1.689 0.917 3.109 .092

rs11615.add ERCC1 1.825 0.904 3.684 .093

Febrile neutropenia

rs1051266.add SLC19A1 0.418 0.206 0.848 .016

rs12404655.add CDA 3.432 1.222 9.640 .019

rs4715354.rec GSTA5 0.524 0.304 0.903 .020

rs2853539.dom TYMS 0.571 0.353 0.923 .022

rs4673.dom CYBA 1.799 1.066 3.036 .028

rs10948059.dom GNMT 0.589 0.358 0.968 .037

rs2413739.dom PACSIN2 0.604 0.374 0.975 .039

rs1053129.add DHFR 0.436 0.193 0.986 .046

rs1643650.add DHFR 0.459 0.210 1.002 .051

rs3768142.dom MTR 1.589 0.987 2.559 .057

rs4802101.rec CYP2B6 1.972 0.979 3.971 .057

rs1801131.add MTHFR 2.184 0.941 5.067 .069

rs11598702.add NT5C2 1.997 0.942 4.235 .071

rs1801133.add MTHFR 0.539 0.274 1.062 .074

rs1544105.rec FPGS 0.602 0.337 1.078 .088

rs2236225.dom MTHFD1 1.523 0.931 2.491 .094

rs776746.dom CYP3A5 0.650 0.390 1.084 .099

rs7317112.rec ABCC4 1.715 0.903 3.259 .099

Abbreviations: add, additive, CTH, cystathionase; DCTD, deoxycytidine deaminase; dom, dominant; GI, gastrointestinal; FPGS,
folylpolyglutamate synthetase; MOI, mode of inheritance; rec, recessive; SNP, single-nucleotide polymorphism.
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