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Abstract

Pathologic diagnosis of bone marrow disorders relies in part on microscopic analysis of bone 

marrow aspirate (BMA) smears and manual counting of marrow nucleated cells to obtain a 

differential cell count (DCC). This manual process has significant limitations, including analysis 

of only a small subset of optimal slide areas and nucleated cells, and inter-observer variability due 

to differences in cell selection and classification. To address these shortcomings, we developed 

an automated machine learning-based pipeline for obtaining 11-component DCCs on whole-slide 

BMAs. This pipeline utilizes a sequential process of identifying optimal BMA regions with high 

proportions of marrow nucleated cells, detecting individual cells within these optimal areas, 

and classifying these cells into one of 11 DCC components. Convolutional neural network 

models were trained on 396,048 BMA region, 28,914 cell boundary, and 1,510,976 cell class 

images from manual annotations. The resulting automated pipeline produces 11-component 

DCCs that demonstrate high statistical and diagnostic concordance with manual DCCs among 

a heterogeneous group of testing BMA slides with varying pathologies and cellularities. 

Additionally, we show that automated analysis can reduce intra-slide variance in DCCs by 

analyzing the whole slide and marrow nucleated cells within optimal regions. Finally, pipeline 

outputs of region classification, cell detection, and cell classification can be visualized using 

whole-slide image analysis software. This study demonstrates the feasibility of a fully-automated 
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pipeline for generating DCCs on scanned whole-slide BMA images, with the potential for 

improving the current standard of practice for utilizing BMA smears in the laboratory analysis 

of hematologic disorders.
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INTRODUCTION

The pathologic diagnosis of many benign and neoplastic hematologic disorders relies on 

examination of bone marrow aspirates (BMAs), liquid samples containing marrow nucleated 

cells1,2. Differential cell counts (DCCs) from microscopy on Wright-stained BMA smears 

are obtained by manually counting a set number of nucleated cells and recording the relative 

proportion of various cell types3. BMA DCCs yield insight into disease pathophysiology and 

can provide disease-defining information, notably for myeloid diseases (e.g., acute myeloid 

leukemia and myelodysplastic syndromes) and plasma cell neoplasms (e.g., multiple 

myeloma)4–6.

Current labor-intensive, manual analysis of BMA smears is confounded by many 

shortcomings which affect DCCs and potentially the final diagnosis. While a typical BMA 

may contain tens of thousands of marrow nucleated cells, only a subset of cells is counted, 

thereby increasing the statistically expected variability7,8. Additionally, given the use of 

such a small proportion of available cells, only a subset of optimal BMA slide regions 

is employed3. Since an aspirate sample is not perfectly homogeneous, consistent with 

functionally and biologically distinct marrow microniches, this subjectivity in localization 

for cell counting could impact measured relative cell proportions9,10. Finally, inter-observer 

variability in the cytologic classification of individual cells can lead to differences in 

DCCs11,12.

Previous studies have attempted to address these shortcomings by developing automated 

machine learning-based models for detection and classification of marrow nucleated cells 

from BMA smears. Wang et al. utilized a faster region-based convolutional neural network 

(Faster R-CNN) for detection of marrow nucleated cells in BMA smears13. We previously 

utilized Faster R-CNN and CNN networks to detect and classify cells in manually-annotated 

BMA regions, demonstrating strong performance on non-neoplastic BMAs14. Fu et al. 

compared automated classification results to manual DCCs and obtained strong correlation 

for three cell types15. Matek et al. and Yu et al. developed large expert-annotated training 

datasets to train highly accurate CNN-based cell classification models16,17. Nonetheless, 

most prior studies fall short of fully automating BMA analysis by failing to identify optimal 

BMA regions in an automated fashion, outputting full DCCs, and, importantly, directly 

comparing model outputs to clinically-reported manual DCCs.

Here, we present a fully-automated pipeline for obtaining 11-component DCCs from 

scanned whole-slide BMA smears (Figure 1). This pipeline consists of three sequential 

machine learning models which identify optimal regions on slides for cell counting, detect 
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individual marrow nucleated cells within these regions, and subsequently classify these 

cells. The pipeline output includes a complete DCC of 11 cell types that can be directly 

compared to manual DCCs. This study demonstrates the strong performance of each of the 

three sequential steps in the pipeline, as well as the pipeline’s overall accuracy in yielding 

DCCs across heterogeneous samples of BMA smears from multiple different pathologies 

and with varying cellularities. Additionally, we show the capability of automated DCCs 

to reduce imprecision through whole slide analysis. Taken together, our results suggest a 

feasible automated pipeline for BMA DCCs with potential clinical utility in improving 

hematopathology diagnostics.

MATERIALS AND METHODS

Bone marrow aspirate smears

BMA smears were uniformly prepared from EDTA-anticoagulated samples in the bone 

marrow laboratory at Emory University Hospital for routine patient care during the years 

2013-2021. This laboratory has used the same reagent vendors and protocol for Wright-

Giemsa staining for all slides analyzed in this study, which included Wright stain, acetone-

free methanol (Fisher Scientific), and Giemsa stain (Sigma). Slides were scanned at 0.25 

μm/pixel (40x) using a Leica Aperio AT2 scanner™. A spectrum of BMA smear slides with 

varying cellularities, pathologies, and white blood cell (WBC), red blood cell (RBC), and 

platelet counts, were chosen. Supplementary Table 1 lists all BMA slides utilized in training 

and testing of machine learning models, and those used in prior work14. Supplementary 

Figure 1 outlines the data splits and cross-validation procedure used in this study. Whole-

slide images (WSIs) were uploaded to a Digital Slide Archive server, and HistomicsUI was 

used for slide visualization and region/cell annotation18.

Region classification

A training dataset for BMA region classification was generated from 69 BMA slides 

(Supplementary Table 1). On each WSI at 40x magnification, rectangular bounding boxes 

were manually drawn encompassing one of four region classes: 1) “optimal” – regions near 

aspirate particles with the highest proportions of marrow nucleated cells; 2) “particle” – 

regions containing dense aspirate particles; 3) “hemodilute” – bloody regions with high 

proportions of RBCs; and 4) “outside” – regions containing glass only. 10,948 regions of 

size at least 448 px were annotated (4,856 optimal, 2,644 particle, 3,318 hemodilute, 130 

outside).

Each annotated region was cropped into multiple 448x448 px images, where the number of 

cropped images from each region was determined as follows:

# crops = image widtℎ px × image ℎeigℎt px
448px × 448px

Each cropped image was copied 16 times, and each copy was randomly augmented by 

flipping horizontally and/or vertically, rotating by a random multiple of 90°, and randomly 

changing brightness (0.75x-1.25x original) and contrast (0.9x-1.4x original). In total, 
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396,048 cropped/augmented region images were obtained (119,456 optimal, 58,528 particle, 

176,672 hemodilute, 41,392 outside).

A sequential neural network architecture consisting of an EfficientNetV2S backbone CNN 

with weights pre-trained on ImageNet, global average pooling layer, batch normalization 

layer, dropout layer (dropout rate = 0.2), and dense layer with softmax activation function, 

was used to classify regions into one of four classes19. First, all layers except the top 

layers were frozen. The top layers were trained with a larger learning rate (Adam optimizer 

with learning rate = 1e-3) and categorical cross-entropy loss function. Subsequently, all 

layers were unfrozen, and the entire model was trained using a smaller learning rate (1e-5). 

Ten-fold cross-validation was performed, with data split into training (64%), early stopping 

(16%; patience of 10 epochs), and validation (20%) datasets. For each cross-validation 

split, the area under the receiver operating characteristic (AUROC) performance metric was 

calculated.

Cell detection

A training dataset for BMA cell detection was generated from 36 BMA slides 

(Supplementary Table 1). BMA slide regions of varying cellularities containing cells with 

distinct cell boundaries were identified. Rectangular bounding boxes were drawn around 

all cells in these areas at 40x magnification. All cell types used for cell classification were 

included. In total, 28,914 cell bounding boxes within 215 BMA areas were obtained.

HistomicsDetect was used to develop a faster region-based convolutional neural network 

(Faster R-CNN) for cell detection20,21. This network utilized a ResNet50V2 CNN backbone 

with 14 residual blocks22. Tau (minimum intersection over union (IoU) to validate a 

detection) and nms_iou (maximum IoU allowed between detections) parameters were set 

to 0.5 and 0.1, respectively. HistomicsDetect provides significant advantages over prior 

cell detection packages, including utilizing ROIAlign versus ROI pooling, improving 

selection of anchor sizes to match cell sizes and shapes, and decoupling of cell detection 

and classification with two separate models, allowing for collection of supplementary 

annotations for rarer cell types outside of detection ROIs for more efficient cell classifier 

training21,23. Ten-fold cross-validation was performed, with data split into training (64%), 

early stopping (16%; patience of 10 epochs), and validation (20%) datasets. For each 

cross-validation split, average precision with IoU thresholds of 0.25, 0.50, and 0.75 (AP25, 

AP50, and AP75, respectively) performance metrics were calculated.

Cell classification

A training dataset for BMA cell classification was generated from 73 BMA slides 

(Supplementary Table 1). Points representing cell centroids were annotated at 40x 

magnification, and cell class was recorded from one of 16 labels: erythroid precursor, 

blast, promyelocyte, myelocyte, metamyelocyte, band/seg, eosinophil, basophil, monocyte, 

lymphocyte, plasma cell, macrophage, mast cell, megakaryocyte, unknown intact cell, and 

disrupted cell. Neoplastic and non-neoplastic counterparts (e.g., neoplastic and benign 

blasts) were grouped as one class. 23,609 cells were annotated, and cell images were 

extracted by drawing 64x64 px bounding boxes around cell centroids. Each cell image 
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was copied 64 times, with each copy undergoing random center cropping (central fraction 

between 0.7-1.0) and resizing to 64x64px, horizontal and/or vertical flipping, rotation by a 

random multiple of 90°, and random changes to image brightness (0.75x-1.25x original) and 

contrast (0.9x-1.4x original). In total, 1,510,976 augmented cell images were produced.

A sequential neural network architecture consisting of an EfficientNetV2L backbone CNN 

with weights pre-trained on ImageNet, global average pooling layer, batch normalization 

layer, dropout layer (dropout rate = 0.2), and dense layer with softmax activation function, 

was used to classify cell images into one of sixteen classes19. Model training and validation 

were performed analogously to region classification.

WSI BMA pipeline

We employed 44 BMA slides not used in the training of region classification, cell detection, 

or cell classification models for testing the automated pipeline (Supplementary Table 1). For 

all testing slides, a manual 11-component DCC (300 or 500 cells total) had been performed 

per ICSH guidelines by a medical technologist or hematopathologist using glass slides 3. 

Each BMA WSI was split into 448x448 px tiles. The predicted region class of each tile 

was determined by the region classification model. Optimal tiles were then subjected to cell 

detection, and identified cells were processed by the cell classification model. Cells with a 

predicted class within the 11-component DCC (erythroid precursor, blast, promyelocyte, 

myelocyte, metamyelocyte, band/seg, eosinophil, basophil, monocyte, lymphocyte, and 

plasma cell) underwent further analysis, whereas other detected cells (macrophage, mast 

cell, megakaryocyte, unknown intact cell, and disrupted cell) did not. Automated DCC 

percentages were calculated by dividing the number of identified cells of a particular cell 

type by the total number of identified cells among all cell types within the 11-component 

DCC. Test-time augmentation was performed at region and cell classification steps, with 16 

and 64 random augments per image being utilized, respectively.

When comparing manual and automated DCC percentages among testing slides, the Pearson 

correlation coefficient (r) and concordance correlation coefficient (ρc) were calculated:

r = ∑i = 1
n xi − x yi − y

∑i = 1
n xi − x 2 yi − y 2

ρc = 2rσxσy

σx
2 + σy

2 + μx − μy
2

Statistically expected variability in manual and automated DCC percentages was determined 

by calculating 95% confidence intervals based on the binomial distribution8.

Localized differentials

Localized DCCs were calculated at the location of each detected marrow nucleated cell on 

the BMA WSI with a predicted class within the 11-component DCC. For each starting cell, 

the 499 nearest neighboring cells that had a predicted class within the 11-component DCC 

Lewis et al. Page 5

Mod Pathol. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were identified. A 500-cell DCC was then calculated using the cell classes of the starting 

cell and these 499 nearest neighbors. For visualization of localized DCCs, differential values 

were averaged across all starting cells located within an individual tile.

Execution time analysis

For inference execution time experiments we developed an optimized data loader using 

the NVIDIA cuCIM (v22.06) and DALI (v1.16) libraries. We applied NVIDIA TensorRT 

(v2.9) to convert each of the saved TensorFlow/Keras models into an optimized TensorRT 

inference model with 16-bit floating-point precision. We first evaluated the number of 

multiprocessing workers on the data loader and found that data loading throughput does 

not improve after 2 workers. To estimate region inference rate, we timed the data loading, 

image augmentation, and region classifier inference steps. The cell classification inference 

rate was estimated by timing the cropping of cells in the loaded images and includes the data 

augmentation and cell classification inference steps. Since the cell detector runtime depends 

on the number of cells detected, we estimated inference rates using the tiles classified as 

“optimal” in this image. Total execution time for images was calculated based on these rates 

and the total number of regions, optimal regions, and cells in each image.

Software and hardware

TensorFlow 2.9.0 was used to develop and train neural network models24. All experiments 

were performed on a Linux server with dual Intel Xeon Gold 6226R CPUs, NVMe RAID 5 

disk, 384 GB of DDR4 RAM, and RTX A4000 GPUs.

RESULTS

Region classifier accurately identifies optimal areas for DCCs

Previous studies relied on manual identification of optimal BMA slide areas for further 

cell detection and classification14,15. Here, we developed a machine learning model for 

automating optimal region identification. This model classifies BMA regions as one of 

four types: 1) “optimal” – regions richest in marrow nucleated cells, ideal for the DCC, 

and also called cellular trails; 2) “particle” – regions containing dense aspirate particles; 

3) “hemodilute” – regions of mostly blood; and 4) “outside” – glass-only regions. To 

develop a training dataset for BMA region classification, rectangular bounding boxes 

encompassing these four region types were manually annotated among 69 designated 

training BMA slides (Figure 2A; Supplementary Table 1). To increase training data sample 

size and model performance, image cropping and augmentation (flip, rotation, brightness/

contrast adjustment) was performed on each annotated region. In total, 10,948 regions were 

annotated, resulting in a training dataset of 396,048 total cropped/augmented images for 

model training (Figure 2B).

Overall, the region classification model demonstrated strong performance on all four region 

classes, with average AUROC values across ten cross-validation folds exceeding 0.9995 

for each class (Figure 2C). The optimal class showed particularly strong performance, 

with a mean AUROC of 0.99997, mean sensitivity of 99.79%, and mean specificity of 

99.89%. Misclassifications were minimal, with the largest misclassifications being between 
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hemodilute and outside classes, and only 22.9% of misclassifications involving optimal 

tiles (Figure 2D). Additionally, performance was excellent on slides across different patient 

diagnoses, including those with high WBC and platelet counts, and marrow cellularities, 

with mean optimal class AUROC values above 0.9999 for all subsets (Figure 2E). These 

results demonstrate that the machine learning-based region classification model accurately 

identifies optimal BMA slide regions for further detection and classification of marrow 

nucleated cells without regard to overall smear cellularity, blood composition, or pathologic 

diagnosis.

Cell detector and classifier accurately identify marrow nucleated cells

To develop a training dataset for BMA cell detection, 215 areas among 36 designated 

training BMA slides with varying cellularities and patient pathologies were manually 

identified; within these 215 areas, bounding boxes around 28,914 identified cells were 

manually drawn (Figure 3A; Supplementary Table 1). This training dataset represents 

a significant improvement over previous BMA cell detection studies by including an 

order of magnitude larger number of cell boundary annotations as well as incorporating 

non-neoplastic and neoplastic cases13,14. The cell detection model demonstrates strong 

performance as evidenced by average precision-at-intersection-over-union (IoU) threshold 

of 0.5 (AP50) values matching or exceeding those in similar cell detection studies (Table 

1)13,25. AP50 values did not substantially differ between samples representing different 

pathologic diagnoses or between slides with varying cellularities (Table 2).

To develop a training dataset for BMA cell classification, 23,609 cells among 16 cell 

classes were manually annotated from 73 designated training BMA slides (Figure 3B; 

Supplementary Table 1). Cell images centered at labeled cell centroids underwent further 

augmentation (center crop, flip, rotation, brightness/contrast adjustment) to increase training 

data sample size and model performance. In total, 1,510,976 total augmented images were 

utilized for model training (Figure 3C). The cell classification model demonstrated strong 

performance for all 11 cell types within the DCC, and 3 additional cell types (macrophage, 

mast cell, megakaryocyte), evidenced by mean AUROC values exceeding 0.95 (Figure 3D). 

While the model also performed well on disrupted cells, lower performance was observed 

for unknown intact cells, likely because this class represents a heterogeneous catch-all 

group for intact cells with ambiguous morphology. The model most accurately identified 

cells with very distinct morphologies, including eosinophils, basophils, plasma cells, and 

megakaryocytes (Figure 3E). As expected, some misclassifications were made stepwise 

along the myeloid lineage, for example between blasts and promyelocytes, promyelocytes 

and myelocytes, etc. Left-shifted BMA slides exemplified stronger classification accuracy 

for blasts, but weaker accuracy for other granulocytic precursors and neutrophils 

(Supplementary Figure 2). While the overall accuracy of unknown intact cell classifications 

was poor, the relatively uniform misclassification of these cells across all other classes 

within the 11-component DCC indicates that these misclassifications are unlikely to 

significantly impact automated differential outputs. Overall, this cell classification model 

matches the performance of prior BMA cell classification studies which either only utilized 

cells from non-neoplastic BMA slides or required significantly greater annotations for model 

training14,16,17.
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Automated pipeline outputs DCCs with high correspondence to manual DCCs

Trained region classification, cell detection, and cell classification models were combined 

to develop an automated sequential pipeline which outputs an 11-component DCC from 

a BMA whole slide image. Outputted automated differentials from the pipeline were 

compared to manual DCCs using 44 testing BMA slides that were not utilized in model 

training. An average of 19,753 viable cells, excluding “unknown intact” and “disrupted” 

classes, were detected and classified from optimal regions, with a range of 237 to 

126,483 cells per slide (Figure 4A). Figure 4B shows the regression of erythroid precursor 

differential percentages between manual and automated DCCs among testing slides. 

Supplementary Figure 3 displays regressions for all 11 cell types. Most cell types had strong 

correlation based on the Pearson correlation coefficient r (measure of linearity) and the 

concordance correlation coefficient ρc (measure of regression along the 1:1 line); correlation 

coefficients were similarly strong when combining all cell classes on single slides (Figure 

4C). Better performance was observed for more common cell types (erythroid precursors, 

band/segs, lymphocytes) and those with significant diagnostic relevance (blasts, plasma 

cells), with lower performance on myeloid lineage maturation intermediates (myelocytes, 

metamyelocytes) and rarer cell types (basophils, monocytes). Bland-Altman plots show 

minimal bias for most cell types, with exceptions including blasts and plasma cells, which 

tended to be underestimated by automated DCCs for AML and MM cases containing high 

proportions of these cell types, respectively (Supplementary Figure 4). We found that these 

biases were due to a proportion of neoplastic blasts and plasma cells in these cases being 

classified as “unknown intact” cells and thus not being incorporated into the 11-component 

DCC (Figure 3E; Supplementary Figure 5); however, biases appear to be largest in cases for 

which both manual and automated DCC values still exceed clinically relevant thresholds and 

thus would not impact pathologic diagnosis.

We next compared results of automated and manual DCCs using clinically employed 

thresholds for myeloid neoplasms (5% and 20% blasts) and plasma cell neoplasms (10% 

and 60% plasma cells) (Figure 4D)1. While few discrepancies between automated and 

manual DCCs were identified with blast percentages at the 20% threshold (40/44, 90.9% 

agreement), a larger proportion of discrepancies were found at the 5% threshold (32/44, 

72.7% agreement). Similarly, fewer discrepancies in plasma cell percentages were observed 

at the 60% threshold (41/44, 93.2%) compared to the 10% threshold (38/44, 86.4% 

agreement).

Strong correlation between manual and automated DCCs for individual BMA slides was 

observed when regressing across all 11 cell types (Figure 4E; Supplementary Figure 6). 

BMA slides from benign, AML, and CLL cases demonstrated the highest correlation, with 

relatively poor correlation on the two CML cases analyzed (Figure 4F). Figure 4G shows 

the visualization of pipeline outputs on an example WSI BMA slide. Overall, the automated 

machine learning-based pipeline provides 11-component DCCs with high correspondence to 

manual DCCs.

To evaluate pipeline execution time, we profiled throughput of inference models for all 

pipeline stages (Supplementary Table 2). Inference on an average-sized whole-slide image 

in our dataset completes in 36.1 minutes on a single GPU. Data augmentation was a 
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significant factor in runtime, and without augmentation this time drops to 2.26 minutes. 

Based on analysis of throughput for each stage, execution could be further accelerated by 

staging models on different GPUs, and duplicating models to balance throughput between 

stages. We note that acceleration will ultimately be constrained by data loading throughput. 

Regardless, based on the current iteration of the computational pipeline, on average 53 slides 

could be analyzed in an 8 hour period using 4 GPUs, which could meet the workflow needs 

of even very busy bone marrow pathology services.

Intra-slide and inter-observer variance confound manual DCC comparisons

Variance in manual BMA DCC values for a particular slide is expected between 

hematopathologists or even between multiple DCCs from the same hematopathologist; this 

variance has multiple sources, including counting only a small subset of cells on the slide 

(typically 500), utilization of only a subset of optimal BMA slide regions, and differences 

in cell classification between observers. Statistically expected variance in manual BMA 

DCC values as a function of number of counted cells has been previously assessed by 

calculating 95% confidence intervals based on the binomial distribution8. This variance 

is significantly smaller in automated DCC values compared to manual DCCs due to the 

much larger number of counted cells. Additionally, the large variance observed in manual 

DCCs greatly affects the comparison of manual and automated DCC values, both at the cell 

type level and slide level (Figures 5A and 5B, Supplementary Figures 7 and 8). If slides 

with variability large enough to overlap with clinically-relevant thresholds are excluded 

from analysis, greater agreement between manual and automated DCCs is observed at 3/4 

threshold values analyzed in Figure 4D (Figure 5C; 20% blasts: 33/33, 100%; 5% blasts: 

22/33, 66.7%; 60% plasma cells: 34/36, 94.4%; 10% plasma cells: 34/36, 94.4%).

To further quantify intra-slide variance in DCC values and its impact on the comparison 

between manual and automated DCCs, we calculated 500-cell localized differentials using 

our computational pipeline (Figure 5D). These localized differentials assess local slide-level 

changes in DCC values by calculating a 500-cell DCC using individual cells and their 499 

nearest neighboring cells; localized differentials were calculated at the location of each 

identified cell on the BMA slide, and the range in differential values across the entire 

slide was determined. Figure 5E provides a visualization of localized differential values, 

showing that peaks and troughs in DCC values are highly localized to particular slide 

areas. This localized variation can straddle clinically-relevant thresholds, including plasma 

cell levels above and below 10% (Figure 5F)1. We therefore used this tool as another 

method of measuring imprecision of the automated blast and plasma cell percentages. 

Notably, 10/15 testing slides presented in Figure 5C no longer displayed overt discrepancies 

between manual and automated DCCs at diagnostic thresholds when accounting for such 

intra-slide variance (Figure 5G). Furthermore, we also measured imprecision in the manual 

DCCs of the remaining 5 discrepant cases by assessing interobserver variability. We found 

inter-observer variations in the DCCs of 5 pathologists that crossed diagnostic thresholds for 

3/5 cases, rendering these apparent discrepancies of less significance (Supplementary Table 

3). These latter results also highlight intra-slide variance in manual DCC values which could 

have diagnostic ramifications.
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Automated pipeline minimizes intra-slide variance in DCC values

We hypothesized that our automated pipeline for DCCs provides two distinct advantages in 

reducing intra-slide variance for DCC values: (1) the pipeline assesses cells from all optimal 

BMA regions, whereas manual DCCs focus on small subsets of optimal regions; and (2) 

the pipeline analyzes all detected marrow nucleated cells, whereas manual DCCs analyze 

a significantly smaller set number of cells per slide, generally 500 or fewer. To quantify 

these advantages, we compared the variance in automated DCC values between 500-cell 

DCCs from localized BMA areas, and 500-cell and 5000-cell DCCs with cells taken 

randomly from all BMA regions (Figure 6). For all 11 cell types, statistical imprecision 

significantly decreased by switching from localized BMA areas to randomly-localized cells 

across the BMA slide, and by increasing analyzed cells from 500 to 5,000. This suggests 

that the location-agnostic approach and increased cell utilization from automated DCCs can 

substantially reduce intra-slide variance in DCC values observed from manual DCCs, and 

thus could lead to more representative assessments.

DISCUSSION

Most prior studies explored automation of BMA slide analysis by developing machine 

learning-based models for cell detection and classification13–17. However, these studies fall 

short of providing fully automated BMA DCCs by relying on manual selection of optimal 

regions for subsequent cell detection and classification, focusing on select portions of the 

BMA analysis pipeline, or restricting their application to non-neoplastic samples. Wang et 

al. incorporated a less selective region classifier in their model, but importantly did not 

compare outputs to manual DCCs26. Here, we present a fully-automated pipeline for DCCs 

from whole-slide BMA smears for benign and malignant samples (Figure 1). The pipeline 

encompasses a sequential process of classifying BMA slide regions, detecting marrow 

nucleated cells within optimal regions, and classifying these cells as one of 11 constituents 

of the DCC. This methodology employs a novel approach of automating the classification 

of slide regions into optimal, particle, hemodilute, or outside categories using a CNN model 

(Figure 2). The region classification model accurately identifies optimal regions across all 

subsets of BMA slides, including benign and a spectrum of malignant cases and of smear 

cellularities. Additionally, the cell detection and classification models demonstrated strong 

performance across all 11 cell types of the DCC and 3 other cell types (macrophages, mast 

cells, and megakaryocytes) (Figure 3). Of note, the performance of this cell classification 

model matches that reported in prior studies, which either restricted their dataset to 

non-neoplastic cells or utilized significantly more cell annotations, and is likely due to 

our implementation of extensive image augmentation14,16,17,27,28. Our sequential approach 

closely resembles the standard procedure for manual microscopic analysis, namely starting 

with a low-power view to identify optimal regions, followed by high-power cell assessment 

within these regions. Because of this close resemblance, we expect that this automated 

region classification approach could be applied to other areas of digital pathology29–31.

Automated DCCs from our integrated pipeline showed a promising degree of 

correspondence with manual DCCs at multiple levels: 1) regression of manual versus 

automated DCC percentages for individual cell types across all testing slides; 2) regression 
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of DCC percentages for individual testing slides across all cell types; and 3) contingency 

tables of DCC percentages below versus above clinically-relevant thresholds when 

accounting for imprecision (Figure 4). Both cell-type performance and slide performance 

were highly correlated with training dataset composition, with greater correspondence 

observed for more common cell types (erythroid precursors, blasts, band/segs, plasma 

cells) and for diagnoses with greater representation in training datasets (benign, AML, 

MM). This suggests that pipeline performance can be directly improved by training dataset 

enlargement and diversification. Minimal bias in automated DCC percentages was observed 

for most cases, except for underestimation of blast and plasma cell percentages in AML 

and MM cases containing high proportions of these cell types, respectively (Supplementary 

Figure 4). These biases were due to a proportion of neoplastic blasts and plasma cells 

being misclassified as “unknown intact” cells by the automated pipeline, analogous to the 

clinical situation of how neoplastic cells with ambiguous morphology are often placed in 

an “other” category until ancillary studies are provided to assess neoplastic cell lineage and 

correctly re-categorize these cells (Supplementary Figure 5). Such misclassifications by the 

automated pipeline could potentially be improved upon by increasing the number of myeloid 

malignancy and MM cases in training datasets and by utilizing separate cell classes for 

non-neoplastic and neoplastic counterparts (e.g., non-neoplastic and neoplastic blasts).

A novel aspect of this work, in comparison with other reported machine learning approaches 

to BMA DCC analysis, is the introduction of slide-level method comparisons of automated 

outputs to clinically-obtained manual results and their imprecisions15,26. While the utility 

remains for traditional machine learning performance metrics, such as those shown in 

Figures 2 and 3, ultimate clinical laboratory validation of these automated tools will 

undoubtedly require extensive slide- and disease-level comparisons. In this promising study, 

strong correspondence between manual and automated DCC percentages was observed 

at 3 of 4 clinically-relevant thresholds for blasts and plasma cells (at least 86.4% 

agreement; Figure 4D). This correspondence was improved when taking into account 

statistically expected variability in manual DCC values (3/4 thresholds with at least 94.4% 

agreement; Figure 5C). Additionally, among the 15 slides which showed discrepancies 

between manual and automated DCC percentages at these thresholds, 10/15 no longer 

displayed discrepancies when accounting for intra-slide variance in localized differential 

values (Figure 5G), and 3/5 slides with continued discrepancies had significant inter-

observer variations in manual DCCs that crossed diagnostic thresholds (Supplementary 

Table 3). Thus, while manual 500-cell DCCs remain the gold standard of analyzing BMA 

nucleated cells to which comparison of automated pipeline results should be made, intrinsic 

imprecision in manual DCCs should be considered in such method comparisons.

While manual differential counting is often performed using 60x or 100x objectives, 

scanning at 40x equivalent magnification for this study provides substantial advantages 

regarding digital pathology workflows. First, scanning at 40x greatly decreases the time 

required for generation of whole-slide images, the file size for storing these images, 

and the overall computational run time. In addition, objectives offering magnifications 

higher than 40x often require oil immersion which introduces significant challenges, 

including difficulties in dispensation and containment of oil that can contaminate imaging 

systems and increase maintenance requirements. Finally, high throughput scanning at higher 
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magnifications, such as 60x or 100x, is not widely available for clinical use at this time, 

whereas digital pathology implementations of scanners with 40x objectives is becoming 

more widespread, such that our pipeline that employs 40x scans can be more seamlessly 

integrated with current clinical workflows.

In this manuscript, we demonstrate that substantial agreement between manual and 

automated DCCs can in fact be obtained with 40x whole-slide images. Additionally, prior 

machine learning models for bone marrow aspirate smear analysis have also utilized 40x 

images14,16,26,32. Interestingly, Arabyarmohammadi et al. derived a machine learning model 

that extracted subtle cytologic findings from 40x images of bone marrow myeloblasts that 

predicted disease relapse, suggesting that important latent information can be present in 

images even at 40x magnification33. Nonetheless, as the automated pipeline for BMA DCCs 

continues to be improved upon, higher resolution images may be required to classify and 

analyze marrow nucleated cells with more subtle cytomorphologic details such as those with 

dysplastic changes, Auer rods, and iron particles, as well as the differentiation of early and 

late erythroid precursors.

Future efforts will allow for enhanced generalizability and performance of machine learning-

based models for automated BMA DCCs. Diverse BMA image datasets from multiple 

institutions with varying staining protocols and patient populations would ideally be 

combined to train machine learning-based models with strong multi-institution performance. 

Matek et al. developed a large publicly-available dataset of expert-annotated BMA 

cell images for training of CNN-based cell classification models16,34. Interestingly, but 

perhaps unsurprisingly, global differences in cell images were identified between their 

cell classification dataset and ours via unsupervised learning (Supplementary Figure 9), 

likely due in part to differences in staining protocols (Wright vs Pappenheim), and 

patient diagnoses (greater proportion of benign and AML cases vs MM cases) in training 

sets. Domain adaptation could be explored as a potential approach to improve model 

generalizability over diverse BMA datasets and allow for inter-institution utilization35. 

Such results also reflect the critical role of external image datasets, representing the 

spectrum of preanalytical variables and disease subsets, for testing any models prior to 

clinical deployment. Additionally, integration of cytogenetic and molecular data from patient 

samples could allow for cell classification models that can accurately distinguish marrow 

nucleated cells from samples representing various genetic subtypes of certain hematologic 

malignancies. Finally, as novel machine learning architectures with improved performance 

are developed, their utilization in automated workflows for BMA analysis will continue to 

improve predictive accuracy in region classification, cell detection, and cell classification 

models.

Overall, the automated pipeline for BMA DCCs presented here addresses and improves 

upon several shortcomings of manual DCCs. From WSIs, automated DCCs can utilize all 

identified cells, often at least two orders of magnitude more than that used for conventional 

500-cell protocols, affording significantly lower imprecision in DCC values8, which our data 

suggest is at least in part due spatial cell-content heterogeneity (Figure 5)9,10. We showed 

that addressing both these shortcomings significantly reduces the observed variation in DCC 

percentages (Figure 6). Finally, utilizing independent models for region classification, cell 
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detection, and cell classification trained on all available annotated data avoids inter-observer 

variability in counting and cytologic classification of marrow cells that ultimately lead to 

differences in DCC percentages11. Machine learning-based pipelines for automated DCCs 

on BMA smears present many advantages over the current gold standard of labor-intensive 

manual DCCs, and continued improvement with training on diverse BMA training sets 

representing a constellation of pathologies and morphologies, and continued updating of 

machine learning models, will ultimately move these pipelines into the clinical laboratory.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overall workflow for automated machine learning-based pipeline for differential cell 
counts (DCCs) on whole-slide bone marrow aspirate (BMA) smears.
BMA slides are scanned at 40x magnification (0.25 μm/pixel), and the scanned image 

is split into individual tiles. Each tile is processed by an EfficientNetV2S convolutional 

neural network (CNN) to determine whether it is an optimal tile to use for cell counting, 

or whether it represents a bone marrow particle, hemodilute region, or glass-only region 

outside of the aspirate. Each optimal tile is processed by a faster region-based convolutional 

neural network (Faster R-CNN) to detect individual cells within the tile, and each detected 

cell is processed by an EfficientNetV2L CNN to classify it as one of the cell differential 

components. All identified cells are averaged to output the final automated 11-component 

DCC.
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Figure 2. Training and evaluation of the bone marrow aspirate region classifier.
(A) Generation of training data for the region classifier. Within each training slide, 

rectangular regions are manually drawn consisting of one of four classes (optimal, 

particle, hemodilute, outside). Random 448x448 pixel crops of each region are made, 

and each crop is subjugated to 16 iterations of augmentation, including flipping, rotation, 

brightness adjustment, and contrast adjustment. (B) Number of annotated regions before 

and after region cropping/annotation for model training. (C) Performance of the region 

classifier across 10 cross-validation splits. Each point represents a cross-validation split. 

(D) Confusion matrix of predictions from the region classifier cross-validation. (E) Region 

classifier performance within slide subsets representing different patient diagnoses and 

aspirate cellularities. Each point represents a cross-validation split. AUROC: area under 

the receiver operating characteristic.

Lewis et al. Page 17

Mod Pathol. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Training and evaluation of the bone marrow aspirate cell detector and classifier.
(A) Generation of training data for the cell detector. Within each training slide, optimal 

areas are chosen and bounding boxes around each cell within these optimal areas are 

manually drawn. The number of annotated areas and cell bounding boxes for model training 

are provided. (B) Generation of training data for the cell classifier. Within each training 

slide, points are manually drawn at the centroid of cells, with the cell type of each manually-

classified cell being noted. For each classified cell, a 64x64 pixel bounding box is made 

around the centroid of each cell, and each cell is subjected to 64 augmentations, including 

central cropping, flipping, rotation, brightness adjustment, and contrast adjustment. (C) 
Number of annotated cell classifications before and after image augmentation for model 

training. (D) Performance of the cell classifier across 10 cross-validation splits. Each 

point represents a cross-validation split. (E) Confusion matrix of predictions from the cell 

classifier cross-validation. AUROC: area under the receiver operating characteristic.
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Figure 4. Evaluation of the automated machine learning-based pipeline for DCCs on whole-slide 
bone marrow aspirate smears.
(A) Histogram showing the number of viable cells identified by the automated pipeline 

for each of 44 testing slides. (B) Correlation plot comparing the percentage of erythroid 

precursors obtained from the manual differential, versus the percentage obtained from the 

automated machine learning-based pipeline averaged across all identified viable cells in 

each slide. Each point represents one of 44 testing slides. Dotted line represents a 1:1 

correlation between manual and automated values. r: Pearson correlation coefficient between 

manual and automated values. ρc: concordance correlation coefficient between manual and 

automated values, representing how well points are fitted by the 1:1 correlation line. (C) 
Pearson and concordance correlation coefficients for each cell type, as well as the combined 

correlation coefficients across all cell types. (D) 3x3 contingency tables for the number of 

slides with manual and automated differential percentages of (Top) blast cells below 5%, 

between 5-20% and above 20%; and (Bottom) plasma cells below 10%, between 10-60%, 

and above 60%. (E) (Left) Correlation plot comparing the percentage of 11 different cell 
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types from the manual 11-component DCC of an individual slide, versus the percentages 

obtained from the automated machine learning-based pipeline. Each point represents one of 

11 cell types. Dotted line represents a 1:1 correlation between manual and automated values. 

(Right, Top) Histogram showing the individual slide-based Pearson correlation coefficients 

for each of 44 testing slides. (Right, Bottom) Histogram showing the individual slide-based 

concordance correlation coefficients for each of 44 testing slides. (F) Pipeline performance 

within slide subsets representing different patient diagnoses. (G) Visualization of pipeline 

outputs for an individual testing slide. (Left, Middle) Region classification outputs. (Right) 

Cell detection and classification outputs.
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Figure 5. Assessment of intra-slide variance in DCC values.
(A) Correlation plot comparing erythroid precursor differential values between manual 

and automated DCCs, with vertical and horizontal error bars represent the statistically 

expected variability in manual and automated differential values, respectively, based on the 

number of cells identified from the manual and automated methods. Each point represents 

one of 44 testing slides. Dotted line represents a 1:1 correlation between manual and 

automated values. r: Pearson correlation coefficient between manual and automated values. 

ρc: concordance correlation coefficient between manual and automated values, representing 
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how well points are fitted by the 1:1 correlation line. (B) Correlation plot comparing 

the percentage of 11 different cell types between manual and automated DCCs, with 

vertical and horizontal error bars represent the statistically expected variability in manual 

and automated differential values, respectively, based on the number of cells identified 

from the manual and automated methods. Each point represents one of 44 testing slides. 

Dotted line represents a 1:1 correlation between manual and automated values. (C) 3x3 

contingency tables for the number of slides with manual and automated DCC values below 

and above clinically-relevant thresholds, excluding slides with statistically expected variance 

overlapping with threshold values. (D) Diagram demonstrating the calculation of 500-cell 

localized differentials using each individual cell and their 499 nearest neighboring cells. (E) 
Visualization of the localized variability in DCC values across different optimal regions of 

an example BMA smear. For each cell, a localized 500-cell differential is calculated among 

the cell and its 499 nearest neighbors, and differential values are averaged across all cells 

located within an individual optimal tile. Optimal tiles are colored based on average tile 

values for a particular cell type. (F) Thresholding of localized DCC plasma cell values 

at the 10% diagnostic threshold for plasma cell neoplasms. (G) Intra-slide variability in 

localized differential values for (left) blast cells and (right) plasma cells among the 15 BMA 

slides with discrepancies between manual and automated values identified in Figure 5C. 

Each BMA slide is represented by a horizontal line. Black dot and line represent the mean 

value and statistically expected variability, respectively, in automated differential values 

when averaging across all cells. Green/red dot and line represent the mean value and 95% 

confidence interval, respectively, in localized differential values. BMA slides that no longer 

demonstrate a discrepancy between manual and automated values across the diagnostic 

threshold when taking into account intra-slide variability are shown in green; those that still 

demonstrate discrepancies are shown in red.
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Figure 6. Reduction of intra-slide variance by automated DCCs.
Comparison of coefficient of variation (standard deviation divided by mean) in BMA slide 

DCC values between 500-cell DCCs in localized (“Local”) slide areas, 500-cell DCCs with 

cells taken from random (“Rand”) slide areas, and 5000-cell DCCs with cells taken from 

random slide areas. P-values for two-tailed t-tests with unequal variance are provided.
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Table 1.

10-fold cross-validation metrics for the cell detection model.

Metric AP25 AP50 AP75

Mean 0.930 0.890 0.672

Standard Error 0.003 0.003 0.009

AP25: Average precision with intersection over union (IoU) threshold of 0.25

AP50: Average precision with intersection over union (IoU) threshold of 0.50

AP75: Average precision with intersection over union (IoU) threshold of 0.75
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Table 2.

Cell detection AP50 metrics for BMA slide subsets.

Slide Subset AP50, Mean AP50, Standard Error

Diagnosis – Benign 0.871 0.005

Diagnosis – AML 0.923 0.006

Diagnosis – MM 0.903 0.005

Cellularity – Hypocellular 0.914 0.006

Cellularity – Normocellular 0.878 0.004

Cellularity – Hypercellular 0.902 0.006
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