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GRAPHICAL ABSTRACT

ABSTRACT

Background. In maintenance hemodialysis patients, intradi-
alytic hypotension (IDH) is a frequent complication that has
been associatedwith poor clinical outcomes. Prediction of IDH
may facilitate timely interventions and eventually reduce IDH
rates.

Methods. We developed a machine learning model to predict
IDH in in-center hemodialysis patients 15–75 min in advance.
IDH was defined as systolic blood pressure (SBP) <90 mmHg.
Demographic, clinical, treatment-related and laboratory data
were retrieved from electronic health records and merged with
intradialytic machine data that were sent in real-time to the
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KEY LEARNING POINTS

What is already known about this subject?
• Intradialytic hypotension (IDH) occurs in over 10% of hemodialysis treatments.
• Timely interventions may prevent IDH.
What this study adds?
• In this manuscript, we developed a machine learning model for real-time (i.e. intradialytic) prediction of IDH, utilizing
electronic health records comprising intradialytic blood pressure measurements andmultiple treatment- and patient-level
variables from 42656 hemodialysis sessions in 693 in-center hemodialysis patients.

• In the training cohort, the model was optimized to generate an alert between 15 and 75 min before an IDH event. In the
validation cohort, the model achieved an area under the receiver operating characteristic curve of 0.89.

What impact this may have on practice or policy?
• Based on this performance, the model could alert clinicians and trigger the timely deployment of interventions to prevent
IDH.

cloud. Formodel development, dialysis sessionswere randomly
split into training (80%) and testing (20%) sets. The area under
the receiver operating characteristic curve (AUROC) was used
as a measure of the model’s predictive performance.
Results. We utilized data from 693 patients who contributed
42656 hemodialysis sessions and 355693 intradialytic SBP
measurements. IDH occurred in 16.2% of hemodialysis treat-
ments. Our model predicted IDH 15–75 min in advance with
an AUROC of 0.89. Top IDH predictors were the most recent
intradialytic SBP and IDH rate, as well as mean nadir SBP of
the previous 10 dialysis sessions.
Conclusions. Real-time prediction of IDH during an ongoing
hemodialysis session is feasible and has a clinically actionable
predictive performance. If and to what degree this predictive
information facilitates the timely deployment of preventive
interventions and translates into lower IDH rates and improved
patient outcomes warrants prospective studies.

Keywords: end-stage kidney disease, intradialytic hypoten-
sion, machine learning, real-time prediction

INTRODUCTION
Intradialytic hypotension (IDH) is a common complication
of hemodialysis (HD), occurring in 8%–40% of HD sessions
[1–4]. IDH reduces quality of life and is associated with mor-
bidity andmortality [1, 4–8]. Themanagement of IDH requires
staff interventions, such as patient evaluation, monitoring and
adjustment of ultrafiltration rates. It is reasonable to assume
that prediction of IDH followed by appropriate preventive
measures may lower IDH rates.

Risk factors for IDH are diabetes, cardiovascular disease,
autonomic dysfunction and high interdialytic weight gain, to
name a few [4, 9, 10]. Because these risk factors are prevalent
in many HD patients, IDH prediction is challenging.

Artificial intelligence (AI) and machine learning (ML),
and cloud infrastructures enable the evaluation of large data
volumes in a secure, reliable and efficient way. This affords
an opportunity to develop and leverage models for real-time
prediction of IDHamong individual patientswhile undergoing
HD. AI and ML have been used to develop models to

predict IDH [11–14]. One model developed to predict IDH
[defined as systolic blood pressure (SBP) <90 mmHg] based
on a relatively limited number of parameters (e.g. body and
dialysate temperature, ultrafiltration rate) predicted IDH with
a sensitivity of 86% and a specificity of 81% [13]. It is expected
that real-time models that consider a larger number of factors
may result in improved IDH predictive ability.

Robust data are routinely captured before and during HD,
including patient characteristics, clinical status, HD treatment
parameters and intradialytic vital signs. These variables can be
considered for cloud computing, advanced modeling and near
real-time reporting. In this quality improvement project (QIP),
we retrospectively assessed data from several HD clinics that
used a secure cloud-based computer infrastructure to develop
and deploy anML predictionmodel that can predict IDHprior
to an IDH event in real time. Clinically, prediction is only
useful if it predicts an IDH event for a given patient during an
ongoing dialysis treatment.

MATERIALS AND METHODS
Participants
Weconducted a post hoc analysis of data from a convenience

sample comprising patients who received in-center HD in six
US Fresenius Kidney Care clinics between January 2020 and
November 2020. Four clinics are located inWaltham,MA, and
two clinics in New York City, NY. These clinics transfer data
from dialysis machines to a secure Internet of Things (IoT)
private server via AmazonWeb Services (AWS) (AmazonWeb
Services, Inc., Seattle, WA, USA) using IoT software [15–17].
In total, data from 42656 dialysis treatments in 693 patients
were included. This project was conducted as an internal QIP
and thereforewas not submitted for Institutional ReviewBoard
review.

Data characteristics and cloud architecture
IDH was defined as any intradialytic SBP <90 mm Hg

[18]. The outcome (i.e. dependent variable) was a binary
classification of patients at risk for IDH within 15–75 min

1762 H. Zhang et al.



of the given prediction time point. Variables included in the
predictive model comprised demographic, clinical and labora-
tory data obtained from electronic health records and dialysis
machine data. Dialysis machine data included variables such
as sitting SBP and diastolic blood pressure (DBP), pulse, blood
flow rate, dialysate flow rate, ultrafiltration rate, ultrafiltration
volume removed and time on dialysis. Additional variables
were derived from these data, including changes in SBP, DBP
and heart rate during HD, DBP and SBP nadirs over the
last 10 treatments, and IDH event rates over the last 10
treatments. Although some of these variables were assessed as
frequently as every 10 s (e.g. blood flow rate, dialysate flow
rate, ultrafiltration rate, ultrafiltration volume removed, time
on dialysis), data points that aligned with SBP measurements
were used for analysis. Therefore, whenever intradialytic SBP
was measured (approximately every 30 min), a patient’s IDH
risk within the next 15–75min was computed in real time. The
prediction process took less than a minute.

Patients’ demographics were extracted from electronic
health records. Prescribed treatment time, vascular access
type, pre- and post-dialysis weight, and the dialysate sodium
concentration were also evaluated. Laboratory variables were
captured monthly; hemoglobin was measured weekly. In
total, 99 variables were evaluated in the present model
(Supplementary data, Table S1).

Supplementary data, Fig. S1 shows the cloud-based in-
frastructure used for this QIP. Dialysis machine data were
sent in real-time to the cloud-based platform. The data
stream was enriched with patient and historical treatment
data, flowed through streaming analytical processes, and the
data were segmented into windows of time. Features were
calculated for each time window and passed to the ML model.
The model results were then visualized on a dashboard,
plotting intradialytic SBP and predicted probability of IDH
over treatment time. This dashboard could be accessed by
the clinical staff and provide insights into patients who are
predicted to experience IDHduring the ongoing treatment. All
streamed machine data and model results could be stored and
monitored.

Model design and development
Model design, development and evaluation were substan-

tially guided by inputs from healthcare professionals (HCP)
who are experienced in the care ofHDpatients. HCP requested
an actionable 15–75 min prediction time window preceding
IDH. Data from the 15 min before an IDH were not used,
because an alert within such a short timeframe would not
provide sufficient lead time for HCP to respond to a predicted
IDH event. Post-IDH data were not considered by the model.
HCP indicated that a 10% rate of false IDH alarms (=false
positive rate) is clinically and operationally acceptable.

The model was built using the AWS SageMaker develop-
ment platform and was trained and tested on data collected in
the dialysis clinics [19].

To develop the model, we created training (80%) and
test (20%) datasets in two ways, depending on the unit
of randomization. In the session randomization design, we

randomly assigned HD sessions to the respective training and
test sets. In the patient randomization design, we randomly
assigned patients to training and test sets.

We used Python version 3.7.7 (Python Software Foun-
dation, Fredericksburg, VA, USA) to build the ML model
using the XGBoost (ExtremeGradient Boosting) package [20].
Model-specific internal parameters were set to predetermined
default values to cover general use cases and were tuned
for the specific task to obtain optimal performance using a
Bayesian strategy [21]. The number of weak learners was 200,
the learning rate was 0.05 and the maximal depth was 7 for
the final model. The XGBoost used input variables from the
training dataset to construct multiple decision trees, giving
each a random sample, and established a series of thresholds
that split variables to maximize the information gain. Decision
trees were constructed iteratively, and new decision trees were
added to predict prior errors. XGBoost decision trees handle
missing values without imputation, by including their presence
when determining the splits. To show the integrity of the
dataset, the percentage of missing values for each variable was
summarized in Supplementary data, Table S2.

Evaluation of model performance
Evaluation of model performance was based on the defini-

tions of true positive (TP), false positive (FP), true negative
(TN) and false negative (FN) as defined in Fig. 1. The
performance analysis comprised two aspects, one per SBP
measurement (usually multiple SBP measurements per HD
session) and one that considered the entire HD session. This
approach allowed us to look at the model performance from
different angles. For both analyses we assessed sensitivity
(also termed recall) as [TP/(TP+FN)], and specificity as
[TN/(TN+FP)]. For the model performance based on SBP
measurements, we also calculated the area under the receiver
operating characteristics curve (AUROC). To that end, the
rates of TP and FP were computed by the prediction model
across the entire IDH probability spectrum (i.e. zero to
one). Selected IDH prediction thresholds are presented in the
Results section. We considered an AUROC of at least 0.85 as
clinically meaningful. We also calculated the area under the
precision-recall curve (AUPRC). Precision (also called positive
predictive value) is defined as TP/(TP + FP).

We also conducted a patient-level analysis of the model’s
performance. For the respective analysis of model sensitivity,
only patientswith IDHeventswere included, because only they
contribute TP and FN predictions. Conversely, for the analysis
of model specificity, patients who experienced IDH during all
treatments had to be excluded because they did not contribute
TN and FP results.

In addition to these performance indices, we constructed
calibration plots. To that end, we plotted the probability of
IDH as predicted by the model versus the true IDH event rate.
To increase insights from the calibration plots, we used two
binning methods, one with 10 equal bin widths and one with
equal sample size per bin (200 bins).

Shapley values were calculated using the SHAP Python
package (Python Software Foundation) to determine a
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Figure 1: Evaluation of model performance. The performance analysis comprised two aspects, one per SBP measurement (usually multiple SBP
measurements per HD session) and one that considered the entire HD session. Evaluation of model performance was based on the definitions
of TP, FP, TN and FN.

particular feature’s contribution to the outcome [22, 23].
The SHAP (SHapley Additive exPlanations) value method
assigns each feature an importance value for a particular
prediction. Shapley values are calculated for each variable and
each observation, representing a measure of effect (positive
or negative value) of the observed value on each individual
prediction. SHAP methods withhold and include individual
inputs in all possible combinations, and compare differences
between withheld and included data, to compute the mean
value of all possible differences for attributing the feature
importance. SHAPvalues are output as log-odds,meaning they
are additive explanations of feature importance. Therefore,
positive SHAP values increase the predicted probability of
IDH, whereas negative SHAP values decrease the probability
of IDH. We calculated the overall feature importance for
individual variables in the model with the SHAP value method
using the mean absolute values for each variable across all
observations.

RESULTS
Patient characteristics
We studied 693 in-centerHDpatients during 42656 dialysis

sessions. Their mean age was 60.5 ± 16.1 years. Most patients
were males (58.2%), 47.8% were white and 40.1% had diabetes

(Table 1). Of the 693 patients, approximately 80% experienced
at least one IDH episode (Supplementary data, Fig. S2). About
16.2% of all HD sessions were complicated by IDH. A total of
355693 intradialytic SBP were recorded. About 4% of all SBP
measurements fell within the window of 75–15 min before an
IDH event (Table 2).

Model development, performance and top features
All variables used in the predictionmodel and percentage of

missing values for each variable are shown in Supplementary
data, Tables S1 and S2, respectively.

Session randomization design
Here we randomized 42 656HD sessions to training (34124

sessions) and test (8532 sessions) sets. Supplementary data,
Table S3 shows descriptive characteristics of selected model
input variables for the entire patient population (N = 42 656),
the training (N = 34 124) and the test datasets (N = 8532),
respectively. In the test sample, an AUROC of 0.887 [95%
confidence interval (CI) 0.881–0.892] was achieved (Fig. 2A).
The AUPRC was 0.334 (Supplementary data, Fig. S3).

The performance analysis per SBP measurement is shown
in Table 3. Based on discussions with HCP, a false positive
rate of 10% was deemed acceptable. Therefore, we choose
an IHD probability of ≥0.09 as the threshold for classifying
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Table 1: Patient baseline demographics (N = 693 patients).

Variable

Age, years [mean (SD)] 60.5 (16.1)
Dialysis vintage, years [mean (SD)] 3.8 (4.6)
Male [N (%)] 403 (58.2)
Race [N (%)]
Black 140 (20.2)
White 331 (47.8)
Other 222 (32.0)

Hispanic [N (%)] 101 (15.9)
Comorbidities [N (%)]
Chronic obstructive pulmonary disease 44 (6.3)
Diabetes 278 (40.1)
HIV/AIDS 27 (3.9)
Hyperparathyroidism 648 (93.5)
Myocardial infarction 34 (4.9)
Peripheral vascular disease 38 (5.5)
Ischaemic heart disease 4 (0.5)
Hepatitis 55 (7.9)

Vascular access type (%)
Arteriovenous fistula 57.5
Arteriovenous graft 10.7
Catheter 31.8

SD, standard deviation; HIV/AIDS, human immunodeficiency virus/acquired immuno-
deficiency syndrome.

Table 2: Characteristics of HD sessions with respect to IDH and BP.

Variable All
Training
data

Test
data

HD sessions [N (% of total)] 42 656
(100)

34 124
(80)

8532
(20)

HD sessions with IDH [N (% of HD
sessions)]

6922
(16.2)

5548
(16.3)

1374
(16.1)

BP measurements [N (% of total)] 355 693
(100)

284 268
(79.9)

71 425
(20.1)

BP measurements in the window of
75–15 min before IDH [N (% of BP
measurements)]

14 452
(4.06)

11 544
(4.06)

2908
(4.07)

predictions. With this probability threshold, a sensitivity
and specificity of 0.65 and 0.90, respectively, were attained
(Table 3). Model performance was also assessed considering
the entire HD session. The resulting sensitivities and specifici-
ties with respect to three selected IDH probability thresholds
(0.09; 0.15; 0.2) are shown in Table 4. Using a threshold
of ≥0.09, sensitivity and specificity were 0.734 and 0.780,
respectively.

We also assessed themodel performance at the patient level.
For the patient-level sensitivity analysis, we had to exclude 288
patients (44%) from the test dataset because these patients did
not experience any IDH and thus contributed neither TP nor
FN results. The mean patient-level sensitivity in the remaining
360 patients was 0.48. Only 2 of the 648 patients in the test
dataset experienced IDH during every session. These two
patients were not considered for the computation of specificity,
as they contributed—by definition—neither TNnor FP results.
The mean specificity calculated from the remainder of 646
patients is 0.86. In addition, a subgroup analysis in the 288
patients without any IDH resulted in amean specificity of 0.96.

A

B

C

Figure 2: (A) AUROC. The true positive rate is shown on the y-axis,
equal to sensitivity. The false positive rate on the x-axis is calculated
as 1 – specificity. The 95% CIs of the AUROC are 0.881–0.892. (B)
Calibration plot with equal bin width. Probability calibration plot
shows the predicted probability against observed events. (C)
Calibration plot with equal number of samples per bin (200 bins in
total). Here, instead of equal bin-width, we set the bin width based
on the number of samples to account for the data distribution (most
probabilities are under 0.5).
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Figure 3: Top 10 predictors for IDH in the ML model. (A) Mean absolute SHAP values. (B) The SHAP summary plot shows the degree of each
measurement’s positive or negative effect on the prediction (x-axis). Warmer colors represent higher observed values for that measurement;
cooler colors indicate lower values. For example, the higher (warmer color) the “most recent SBP,” the more the negative impact it has on the
model (less chance of IDH).

Table 3: Sensitivity, specificity and precision as a function of IDH
probability thresholds.

IDH probability
threshold Sensitivity Specificity Precision

0.00 1.00 0.00 0.05
0.05 0.79 0.82 0.16
0.09 0.65 0.90 0.22
0.1 0.62 0.91 0.23
0.15 0.50 0.95 0.30
0.2 0.38 0.97 0.35
0.3 0.25 0.99 0.47
0.4 0.16 0.99 0.56
0.5 0.10 1.00 0.62
0.6 0.06 1.00 0.73
0.7 0.02 1.00 0.81
0.8 0.01 1.00 0.94

This analysis considered individual SBP measurements.

Table 4: Descriptive statistics and sensitivity, specificity and precision as a
function of IDH probability thresholds.

Descriptives IDH probability thresholds

N 0.09 0.15 0.20

Patients 648
HD sessions 8532
HD sessions with IDH 1374
HD sessions without IDH 7158
Correctly predicted sessions
with IDH (TP)

1009 797 646

Falsely predicted sessions
with IDH (FP)

1574 901 550

Correctly predicted sessions
without IDH (TN)

5584 6257 6608

Falsely predicted sessions
without IDH (FN)

365 577 728

Sensitivity 0.734 0.580 0.470
Specificity 0.780 0.874 0.923
Precision 0.391 0.469 0.540

This analysis considered entire HD sessions.

Figure 2B and C shows calibration plots. Our model is
reliable and very likely to return the true probability of an
IDH event. The Shapley values (Fig. 3) indicate that the input
variables most predictive of IDH within the next 15–75 min
were the “most recent SBP,” “IDH rate during the last 10
treatments,” “mean nadir SBP during the last 10 treatments,”

“blood flow rate,” “treatment time,” “ultrafiltration rate,”
“lowest SBP during the previous treatment,” “fluid removed,”
“mean nadir DBP during the last 10 treatments,” and “most
recent DBP”.

Patient randomization design
Here we randomized patients to training (554 patients;

33816 sessions) and test (139 patients; 8840 sessions) sets.
The model performance was materially identical to the session
randomization design [AUROC of 0.876 (95% CI 0.870–
0.882)] (Supplementary data, Fig. S4).

Prediction examples
Figure 4A depicts an example dashboard for a patient

having IDH, with an SBP of 70 mmHg, at 100 min into
treatment. This was the fifth assessment of BP during the
session. The dashboard displays a low prediction probability
for the first two SBP measurements, then a higher-than-
threshold prediction probability at both SBP measurements
before the occurrence of IDH.

Figure 4B shows a patient with stable SBP and without
IDH. The prediction probability associated was well below the
threshold of ≥0.09.

DISCUSSION
Predicting IDH in HD patients is challenging due to the
numerous patient- and treatment-related factors that affect
IDH risk. Clinically, prediction is only useful if it predicts
an IDH event for a given patient during an ongoing dialysis
treatment. Our analysis shows that IDH can be predicted using
real-time dialysis data and ML algorithms during an ongoing
dialysis session. Our model was developed and validated
on 42656 HD sessions from a large and diverse patient
cohort. It achieved AUROCs of 0.887 (95% CI 0.881–0.892)
(session randomization design) and 0.876 (95% CI 0.870–
0.882) (patient randomization design), both numbers are
significantly greater than 0.85. The model’s high performance
in the testing dataset suggests that the tool may potentially
assist clinicians in intervening proactively and in real-time in
patients at risk for IDH.

Although previous studies have evaluated the ability of
ML models to predict IDH, most did not consider the
impact of time-varying factors, such as blood pressure (BP)
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Figure 4: Two examples demonstrating a patient with (A; left panel) and without (B; right panel) IDH. (A) An example of SBP (top row) and
IDH probability (bottom row) in a patient who experienced IDH. The model predicted the probability of IDH throughout HD with each SBP
measurement (approximately every 30 min during a regular HD treatment); the model was trained to predict IDH 15–75 min before the event.
An IDH probability ≥0.09 was set as IDH alert threshold (dashed horizonal lines in the lower panels). Data after the IDH event were not
considered. (B) An example of SBP and predicted IDH probability in a patient who did not experience IDH; the IDH probability remained
below the IDH alert threshold throughout the treatment.

[11–14]. For example, Barbieri et al. developed an AI model
to guide the management of BP, fluid volume and dialysis
dose in chronic HD patients [11]. Their multiple endpoint
model predicted Kt/V, fluid volume removal, BP and heart rate,
based on patient characteristics, prior hemodynamic responses
and dialysis prescriptions. While the model predicted post-
dialysis weight and Kt/V accurately, the authors reported that
modeling minimum SBP was more difficult, possibly due to
measurement errors by machine sensors or to the natural
variations in the physiology of hemodynamic reactions.

A more recent deep learning (recurrent neural network)
model developed by Lee et al. to predict the real-time risk of
IDH using a timestamp-bearing dataset appeared to perform
better than previous models [12]. The model predicted IDH,
defined as intradialytic SBP <90 mmHg within 1 h, with
an AUROC of 0.94 (95% CI 0.94–0.94). According to the
authors, the improved performance of their model could be
attributed to the fact that it considered the impact of patients’
vital signs and HD settings, which vary over time and are
known to affect the risk of IDH [12, 24, 25]. In addition,
the results of the analysis’ feature set–ablation analysis and
feature ranking analysis, both of which confirmed the value of
considering real-time changes in vital signs and HD settings,
supported the inclusion of these data in the IDH prediction
model [12].

For any real-time prediction, a stable and sophisticated IT
infrastructure is essential. A proof-of-concept analysis of real-
time data on intradialytic relative blood volume (RBV) using
ML confirmed that a cloud-based framework can be used to
predict intradialytic RBV changes [26].

The XGBoostmodel is a robust choice well suited to general
ML problems. The model is typically excellent at identifying
and modeling complex feature interactions and performs well
on tabular data. Although the given model is very accurate,
experimentation with other algorithms that natively model
time lag dependencies (e.g. recurrent neural network, long
short-term memory networks, gated recurrent units) may
provide some benefit in the future. In addition, although
modeling as a binary classifier simplifies the problem, we
may also consider predicting IDH risk directly. In the present
model, whereas SBP during the current and previous treat-
ments had the highest SHAP values, the relative importance of
blood flow rate as an important contributor to the model was
somewhat unexpected. Recent literature showed no relation
between blood flow rate and hemodynamics during HD [27,
28]. In a sub-analysis of the Hemodialysis (HEMO) study,
an increased incidence of IDH was observed among patients
randomized to higher Kt/V targets resulting from increased
blood flow, dialysate flow, dialyzer surface area and, if needed,
session length [29]. The authors of this study hypothesized that
rapid shifts in osmolality explain this observation. Whereas
it should be recognized that ML models cannot provide
mechanistic explanations for observed associations, the results
of our programmight provide rationale for future intervention
studies assessing the effects of lowering blood flow rate in
patients with impending IDH.

The true value of IDH prediction tools depends on the
ability of clinicians to promptly intervene to prevent IDH.
After evaluating our results, we had extensive discussions with
clinical practitioners (i.e. nephrologists and nursing staff) who
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indicated that a 10% false positive rate (90% specificity) is an
operationally reasonable number while still having a decent
sensitivity of 65%.The probability thresholdwas set to≥0.09 to
avoid too many false alarms. Our prediction tool records data
in real time and sends them to the cloud, where the ML algo-
rithm computes the probability of IDH. Based on the IDH risk,
alerts are generated and reported to the dashboard. Our system
and other similar tools that may provide real-time prediction
represent a valuable advance in the preemptivemanagement of
IDH. Preventive interventions include, e.g. adjustments of the
dialysis prescription (such as lowering ultrafiltration rate), the
patient’s position and fluid administration [6].

While predicting IDH during an ongoing HD session is
highly relevant clinically, there is also interest in analyzing the
model’s performance on a patient level. For the patient-level
analysis of model sensitivity, note that we had to exclude 288
patients (44%) because they did not experience an IDH and
thus—by definition—contributed neither TP nor FN results.
To better understand and quantitate the model sensitivity on
a patient level, a larger population needs to be studied. This
would also inform an important aspect of the model’s patient-
level usefulness in clinical practice. In contrast, for the patient-
level specificity analysis only the two patients (0.3%) who
experienced IDH during all sessions had to be excluded, so the
patient number does not impact this analysis.

One limitation of our approach is the post hoc analysis
of routinely collected data. Also, we did not calculate a
specific sample size for our research; instead, we used a large
convenience sample. An additional limitation relates to general
drawbacks ofMLmodels, including the fact that it is difficult to
understand how the model arrives at its prediction or how any
individual factor influences its results [12]. Because the model
was created based on a specific US dataset, its design may need
to be adjusted to populations with different demographic, clin-
ical or dialysis treatment characteristics. Another shortcoming
is the lack of oral medication information in our dataset.

In conclusion, cloud-based ML enables real-time intradi-
alytic IDH prediction. If and to what degree this predictive
information facilitates the timely deployment of preventive in-
terventions and translates into lower IDH rates and improved
patient outcomes warrants prospective studies.
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