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Cell facilitation promotes growth and
survival underdrugpressure inbreast cancer

Rena Emond1,5, Jason I. Griffiths1,5, Vince Kornél Grolmusz1, Aritro Nath 1,
Jinfeng Chen 1, Eric F. Medina1, Rachel S. Sousa2,4, Timothy Synold 1,
Frederick R. Adler 2,3 & Andrea H. Bild 1

The interplay of positive and negative interactions between drug-sensitive and
resistant cells influences the effectiveness of treatment in heterogeneous
cancer cell populations. Here, we study interactions between estrogen
receptor-positive breast cancer cell lineages that are sensitive and resistant to
ribociclib-induced cyclin-dependent kinase 4 and 6 (CDK4/6) inhibition. In
mono- and coculture, we find that sensitive cells grow and compete more
effectively in the absence of treatment. During treatment with ribociclib,
sensitive cells survive and proliferate better when grown together with resis-
tant cells than when grown in monoculture, termed facilitation in ecology.
Molecular, protein, and genomic analyses show that resistant cells increase
metabolism and production of estradiol, a highly active estrogen metabolite,
and increase estrogen signaling in sensitive cells to promote facilitation in
coculture. Adding estradiol in monoculture provides sensitive cells with
increased resistance to therapy and cancels facilitation in coculture. Under
partial inhibition of estrogen signaling through low-dose endocrine therapy,
estradiol supplied by resistant cells facilitates sensitive cell growth. However, a
more complete blockade of estrogen signaling, through higher-dose endo-
crine therapy, diminished the facilitative growth of sensitive cells. Mathema-
tical modeling quantifies the strength of competition and facilitation during
CDK4/6 inhibition and predicts that blocking facilitation has the potential to
control both resistant and sensitive cancer cell populations and inhibit the
emergence of a refractory population during cell cycle therapy.

Breast cancer is the most common cancer worldwide and the second
leading cause of cancer death in American women. The majority
(~80%) of these breast tumors are estrogen receptor-positive (ER+),
and themajority of metastatic patients who die from their cancer have
this breast cancer subtype1–3. In these tumors, estrogen receptor
activity leads to cancer cell proliferation through cyclin-dependent
kinase 4 and 6 (CDK4/6) activation and cell cycle progression4–6. In

order to target both upstream ER and downstream CDK4/6 signaling
for cancer control, the combination of CDK inhibitors with endocrine
therapy has been used successfully in metastatic ER+ breast cancer,
and to a moderate extent in earlier-stage, non-metastatic breast
cancer7–12. However, tumors can develop resistance to both single and
combination endocrine and cell cycle therapy regimens7,8,10–15. Under-
standing the underlying causes of resistance to endocrine and cell
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cycle therapies is a critical area of research for this major cancer sub-
type and cause of death in women.

Cancerous tumors consist of genetically and phenotypically het-
erogeneous cells16. Despite advancements in understanding tumor
heterogeneity, this feature is not used to design cancer treatment
strategies. ER+ breast cancer is often polyclonal and phenotypically
heterogeneous, with co-existing cells of different levels of estrogen
receptor expression and different levels of estrogen addiction17. Het-
erogeneous tumors create three major obstacles to treatment. First,
cells can have different susceptibilities to treatment, meaning that
even a targeted treatment with high efficacy can fail to kill or inhibit a
subset of cancer cells18,19. Second, this differential survival and pro-
liferation can promote the continued evolution of tumor resistance
during drug therapy16,20. Third, heterogeneous cell populations create
the possibility for interactions among cells that can alter responses to
treatment and patient outcomes21–27. In this case, understanding how
subpopulations communicate could help design therapy strategies
that disrupt and/or exploit these interactions for clinical benefit.

This study explores the dynamics of cell interactions, including
cooperation and competition, in ER+ breast cancer. Cooperation takes
multiple forms and seldomexists in isolation fromcompetition28,29.We
investigate facilitation, the widely used ecological term describing
cooperative cases where competitors of one type benefit those of
another under appropriate conditions30. For example, facilitation
emerges amongplants competing forwaterwhenoneplant gains from
water that leaks from the roots of a deeper-rooted neighbor31. This
coincidence of competitive and facilitative interactions requires
detailed mathematical models to disentangle their concurrent effects
and experiments to identify mechanisms.

To investigate the type, strength, and mechanism of cell interac-
tions in heterogeneous cancer populations during treatment, we use
ER+breast cancer cell lineages that are sensitive or resistant to aCDK4/
6 cell cycle inhibitor (ribociclib), a standard therapy used to treat this
cancer. Using mathematical models of population growth and inter-
action, applied to data from mono- and coculture spheroids with
mixtures of sensitive and resistant lineages under diverse treatments,
we find that ribociclib-resistant cells facilitate sensitive cancer cell
growth during cell cycle treatment. Experimental analysis using liquid
chromatography-tandemmass spectrometry (LC-MS/MS) assays show
that resistant cells secrete excess estradiol. Western blot analysis in
resistant cells detects higher levels of aromatase and HSD17β1, key
enzymes in the estrogen biosynthesis pathway, contributing to higher
production of estradiol, which, given the sensitive cells’ high depen-
denceonestrogen for proliferation, leads to their growthpromotion in
coculture. Single-cell RNA-sequencing (scRNAseq) analysis reveals that
during coculture, sensitive cells acquire the traits of resistant cells,
activate oncogenic pathways that drive treatment resistance, and
increase proliferation levels. Examining mono- and coculture growth
trajectories across a broader range of drug doses, we parameterize a
mechanistic model of facilitation. This consumer-resource model
reveals that facilitation impairs cell cycle inhibition therapy during the
rapid cancer population growth phase and predicts that blocking
facilitation can jointly control resistant and sensitive populations.
These studies uncover a mechanism of resistance in which the level of
local estradiol, the active estrogen metabolite, is increased through
production by a subset of cancer cells, leading to cooperative survival
and growth of normally therapy-sensitive cells. By understanding
cooperative interactions like facilitation, we have the potential to
better control co-existing populations within a heterogeneous tumor
and inhibit the emergence of resistant phenotypes.

Results
Sensitive and resistant cell growth and treatment effects
We developed an in vitro model to study ER+ breast cancer cell
interactions under selective drug pressure (see “Methods”). To

generate cell lineages, we applied ribociclib to cell cultures for 6-9
months until tolerance to the drug (resistance) was developed com-
pared to the control drug-sensitive parental lineage not exposed to
treatment32. These resistant and sensitive lineages, derived from
CAMA-1 ER+ breast cancer cell lines, were labeled with lentivirus to
express a fluorescent protein formonitoring eachpopulation’s growth
when cocultured, and cell counts were calculated as a measure of
spheroid area and fluorescence intensity integrated into fitted growth
equations (Supplementary Fig. 1a, b). This procedure was repeated for
two other cell lines, MCF7 and LY2 (an MCF7 cell line resistant to
antiestrogen) (Supplementary Fig. 1c–f)33,34. When grown as 3D
spheroids in monoculture, untreated sensitive CAMA-1 cell popula-
tions grew more quickly than resistant cells. In contrast, while under
both 200 and 400 nM concentrations of ribociclib, resistant cells grew
more quickly than sensitive cells (Fig. 1a, b). CAMA-1 sensitive cell
proliferation was inhibited at higher ribociclib concentrations (200
and 400 nM) whereas resistant cell proliferation was inhibited much
less (Fig. 1c, d). The log fold change of the sensitive cell population
between days 4 and 14 is reduced by a factor of 7.8 by 400nM ribo-
ciclib treatment, and that of the resistant cell population by a factor of
1.25. Similarly, LY2 and MCF7 sensitive cell proliferation decreased
with an increase in ribociclib treatment compared to resistant lineages,
but to a lesser extent in MCF7 (Supplementary Fig. 2a, b, e, f).

Ribociclib tolerance provided by facilitation of sensitive by
resistant cells
To investigate whether cell interactions alter the response to therapy,
we compared the growth of monocultured and cocultured sensitive
and resistant cells treated with different doses of ribociclib over 18
days. We used Lotka–Volterra competition models35 to quantify cell
interactions and to predict the joint effect of treatment and coculture
if one cell type does not alter the drug tolerance of the other. In par-
ticular, we determined the expected effects by estimating the cost of
treatment and the cost of competition and predicted the combined
effect (null model expectation) by multiplying the reductions in the
growth rate and the carrying capacity (see “Methods”). Facilitation is
identified by a positive difference between observed growth in treated
coculture and the expected combined effect from the null model.

Using the competition model, we find that sensitive cells strongly
suppress resistant cells in untreated cocultures, with a competitive
effect 50% larger than that of resistant cells on themselves (scaled to
1.0 in these models). In contrast, resistant cells had almost no detect-
able competitive effect on sensitive cells (Fig. 1e). Facilitation was
measured as the log observed growth relative to expected growth.
Based on the individual effects of ribociclib and coculture, sensitive
cells are expected to grow slightly more slowly in ribociclib-treated
coculture than in treatedmonoculture due to competition. Instead, we
observed markedly increased growth (Fig. 1c) showing facilitation of
sensitive cells by resistant cells (facilitation under 200nM riboci-
clib = 0.973; facilitation under 400nM ribociclib = 2.39) (Fig. 1f). Reci-
procally, resistant cells grew more slowly than expected in treated
coculture due to the increased suppression by the sensitive cells they
facilitate (facilitation under 200nM ribociclib = −0.055; facilitation
under 400 nM ribociclib = −0.227). Despite differences in competitive
interactions, facilitation of sensitive cells was also observed in the
additional ER+ cell lines, MCF7 (facilitation under 2.4µM ribociclib =
0.239; facilitation under 5µM=0.4) and LY2 (facilitation under
3µM=0.659; facilitation under 5µM=0.479), with LY2 more closely
resembling CAMA-1 cell growth and facilitation (Supplementary
Fig. 2c, d, g, h).

Mechanisms of facilitation under ribociclib treatment
To determine the mechanisms driving facilitation during ribociclib
treatment, we tested whether resistant cells metabolize ribociclib
more effectively than sensitive cells, reducing the ribociclib
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concentration and allowing an increased proliferation of cocultured
sensitive cells. Using an optimized HPLC/MS method, we found that
the ribociclib concentration was not decreased more in media incu-
bated with resistant spheroids than with sensitive spheroids, and that
ribociclib remained at high doses (Supplementary Fig. 3).

Alternatively, ribociclib-resistant cells may release signaling
molecules that enhance the growth of sensitive cells under drug
treatment. To test this hypothesis, we compared the proliferation of
sensitive cellswhen supplementedwith conditionedmedia transferred
from spheroids of different compositions (100% sensitive, 50%–50%
sensitive/resistant, 100% resistant) with or without treatment (0 or

400nM ribociclib). Conditioned media originating from spheroids
containing resistant cells increased the proliferation of sensitive cells
significantly more than conditioned media produced by sensitive cell
spheroids, with the largest benefit from cells that were themselves
treated (Fig. 2a). This indicates that resistant cells secrete signaling
molecules that provide pro-growth benefits for sensitive cells under
drugpressure. Comparisons of sensitive cell proliferation identified no
effect of exosomal transfer on sensitive cell growth under treatment
(Supplementary Fig. 4).

To identify the molecules secreted by resistant cells that may
promote growth under drug pressure, we measured the
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concentrations of a broad range of growth-promoting factors in the
media of cultured spheroids. Custom multiplex cytokine analysis for
detection of known growth factors (TGFβ 1–3, TGFα, EGF, and FGF2,
FGF21, FGF23) showed no significant increases in levels in cocultured
sensitive and resistant cells compared to sensitive monoculture cells
(Supplementary Fig. 5a, b). However, TGFβ3 was found to be higher in
the media of monoculture-resistant cells under treatment compared
to no treatment, which may be worth future investigation into alter-
native resistance mechanisms. Interestingly, the concentration of
estradiol, a potent estrogen compared to estrone, significantly dif-
fered between resistant and sensitive cell spheroids. We used a liquid
chromatography-tandem mass spectrometry (LC-MS/MS) assay to
detect estrone (Supplementary Fig. 5c) and estradiol concentration
under no treatment or 200nM ribociclib treatment (Fig. 2b; Supple-
mentary Fig. 5c). Estradiol was not detectable in media from 100%
sensitive cell cultures in either treatment; in contrast, samples
from cultures containing resistant cells showed measurable levels of
64 pg/mL when treated with 200 nM ribociclib. Estradiol production
and uptake by resistant and sensitive cells were estimated by fitting a
Michaelis–Menten model35 and accounting for limits of detection
(Fig. 2c, left panel). Resistant cells are estimated to produce approxi-
mately 8 times more estradiol and use only 2.5 times more than sen-
sitive cells (Fig. 2c, right panel), generating a substantial source of the
growth-promoting hormone.

Given the higher estimation of estradiol produced by resis-
tant cells, we investigated the estrogen biosynthesis pathway and
possible differences in the levels of enzymes involved in estradiol
metabolism between sensitive and resistant cells (Fig. 2d). Wes-
tern blot analysis detected higher aromatase levels in resistant
cells compared to sensitive cells (Fig. 2e; Supplementary Fig. 6).
In looking at a subset of the core estradiol metabolism conversion
enzymes, namely HSD17β1 (involved in the conversion of estrone
to estradiol, the more active estrogen metabolite) and HSD17β8
(an oxidative enzyme responsible for inactivating estradiol),
Western blot analysis indicated higher detectable levels of
HSD17β1 in CAMA-1 resistant cells and slightly higher levels of
HSD17β8 in sensitive cells (Fig. 2e). Similarly, levels of HSD17β1
were found to be increased in resistant LY2 and MCF7 cells while
HSD17β8 levels were found to be increased in sensitive LY2 and
MCF7 cells (Supplementary Fig. 6). Furthermore, higher levels of
phosphorylated ER and total protein ER levels were identified in
sensitive cells compared to resistant cells (Fig. 2e; Supplementary
Fig. 6) suggesting a greater activity of and dependence on
estrogen signaling in sensitive cells. Conversely, resistant cells
displayed lower levels of activated and total ER which supports the
notion that localized estradiol is not as necessary or utilized to the
same degree as it is in sensitive cells and that resistant cells may
rely on other growth factor signaling pathways for proliferation

independent of estradiol. Together, these results suggest that
increased levels of estradiol may be driven through multiple
mechanisms involving aromatase and conversion enzymes of the
HSD17β family (Fig. 2d). With an excess of localized estradiol syn-
thesized and supplied by resistant cells, estrogen-dependent sen-
sitive cells can then be facilitated in growth by resistant cells when
cocultured under drug treatment. While LY2, like CAMA-1, exhibited
higher levels of HSD17β1 in resistant cells (Supplementary Fig. 6a), a
smaller distinction was found between sensitive and resistant MCF7
cells (Supplementary Fig. 6b), consistent with the lower facilitation
in MCF7 cells than in LY2 and CAMA-1. Experiments in media
deprived of androgens from charcoal stripped fetal bovine serum
produced total growth inhibition in both resistant and sensitive
cells (Supplementary Fig. 7). These analyses support a model of
facilitation whereby ribociclib-resistant cells produce excess estra-
diol via an androgen synthesis pathway with increased aromatase
and HSD17β1, countering sensitive cells’ inactivation of estradiol via
HSD17β8, and ultimately promoting sensitive cell growth during
treatment through increased estrogen signaling (Fig. 2d, e).

Modulation of estrogen signaling attenuates facilitation
Applying ribociclib treatment to cocultures revealed the facilitation of
sensitive cells by resistant cells. Furthermore, the degree of facilitation
increased with ribociclib in a dose-dependent manner (Fig. 3). Our
experiments indicate that resistant cells facilitate sensitive cells by
increasing the level of local estradiol. To test this mechanism and
assess disruption of facilitation, we added exogenous estrogen path-
way modifiers to cells in monoculture and coculture, both with and
without ribociclib treatment. Estrogen pathway modifiers included
supplemented estradiol (Fig. 3a) and a panel of endocrine therapies
with differing mechanisms of action (Fig. 3b; Supplementary Fig 8;
Supplementary Fig. 9). SERMs (selective estrogen receptor mod-
ulators, like tamoxifen and raloxifene) bind to ER, resulting in an
inactive complex, while SERDs (selective estrogen receptor degraders,
like fulvestrant) disrupt signaling by preventing dimerization and tar-
geting ER for degradation. Aromatase inhibitors (such as letrozole and
exemestane) block the production of estradiol and can be reversible
(temporary enzyme inhibition) or irreversible (promoting enzyme
destruction). We used a range of concentrations in 2D and 3D cultures
to gauge the cell lines’ dose response to drugs of each class. For sim-
plicity, effective concentrations (but not overly detrimental to cell
viability) were chosen for representation. We then measured the
strength of facilitation of sensitive cells with and without the addition
of estrogen pathway modifiers to ribociclib treatment (Fig. 3c, d;
Supplementary Fig. 9b, d, f, h) again by quantifying the logof observed
growth of cells relative to expectedwith a nullmodel that assumes that
the effects of treatments on growth are independent and
multiplicative.

Fig. 1 | Sensitive and resistant cell growth, treatment effects, and ribociclib-
induced facilitation. a CAMA-1 spheroids of 100% monoculture sensitive (venus,
green) or resistant cells (cerulean, blue) cultured in untreated control, 200 nM
ribociclib, and 400nM ribociclib-treatedmedium for 18 days. Images taken on Day
18.bGrowth curves of CAMA-1 untreated and ribociclib-treated (400nM) sensitive
and resistant cell populations. c CAMA-1 spheroids of different cell compositions
(100% sensitive—green, 50% sensitive–50% resistant, 100% resistant—blue) cultured
in untreated, 200nM ribociclib, and 400 nM ribociclib-treatedmedium for 18 days.
Images taken on Day 18. d Box plot of CAMA-1 log fold change of untreated and
ribociclib-treated (400nM) sensitive or resistant cells from day 0 to day 14 in
monoculture and coculture. Box plots with centerline =median, box = 25th–75th
percentile, and whiskers = 5th–95th percentile, outliers = open circles, n = 3 for
each case, tests are two-tailed linear models. In monoculture, sensitive cells have a
significantly higher reduction in growth than resistant cells (p = 6.44e-6 estimated
interaction term between cell type and treatment, coefficient = −0.00565, SE =
0.000544, t = 10.376). Sensitive cells have a significantly lower growth reduction in

coculture than in monoculture (p = 1.20e-7 estimated interaction term between
composition and treatment, coefficient = −0.00422, SE = 0.000242, t = 17.423).
Resistant cells showamoreweakly significant growth reduction incoculture than in
monoculture (p =0.026 estimated interaction term between composition and
treatment, coefficient = −0.00154, SE = 0.000565, t = 2.722). e Box plots of the
competitive effect of sensitive (S) cells on resistant (R) cells and vice versa for
CAMA-1 cells (p = 3.14e-4 with a two-tailed t-test, t = −8.0377, the difference in
means is 1.391with95%confidence interval (−1.824973,−0.957466),n = 5). Boxplots
with centerline =median, box = 25th–75th percentile, and whiskers = 5th–95th
percentile, outliers = open circles, n = 3 for each case, tests are two-tailed.
f Facilitation measured as log observed growth relative to expected growth aver-
aged over all replicates for CAMA-1 cells (p =0.00061 for interaction of cell type
with day using a linearmodel of the log of observed over expected cell number as a
functionof time, coefficient = 0.2125, SE = 0.0566, t = 3.76). Source data provided in
Source Data files fig1ddat.csv and fig1edat.csv.
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We tested two specific predictions:
1. Facilitation of sensitive cells will not be observed in cocultures

treated with supplementary estradiol, as further provision by
resistant cells is surplus.
Estradiol monotherapy improved the growth of sensitive cells in
monoculture, consistentwith sensitive cells being dependent on
estradiol signaling. In estradiol-treated cocultures, the observed
growth of sensitive cells was slightly lower than expected if the
effects of competition with resistant cells and estradiol treat-
ment were independent, indicating cancellation of facilitation
(Fig. 3a, c; Supplementary Fig. 8b, c). This result supports the
hypothesis that estradiol facilitates sensitive cell growth.

Further, without ribociclib selective pressure, competition from
sensitive cells blocked resistant cell growth and the facilitation
of sensitive cells.
Under combination therapy, the addition of estradiol with
ribociclib also canceled the facilitation of sensitive cells by
resistant cells observed when treated with ribociclib alone
(Fig. 3a, d, Supplementary Fig. 8c, e).We sawnodose-dependent
response, likely due to the saturation of the estradiol-binding
capacity of sensitive cells, as local estradiol from resistant cells
will then be redundant.
Overall, the results indicate that complete estradiol deprivation
halts sensitive cell proliferation (Supplementary Fig. 7) and that
excess estradiol supplementation cancels sensitive cell facilita-
tion due to a saturation of estradiol binding capacity.

2. Facilitation of sensitive cells will be observed in cocultures treated
with partial estrogen signal-blocking endocrine therapies as
estradiol from resistant cells maintains ER pathway activity.
However if this pathway is more completely inhibited, we expect
cancellation of facilitation.

We observed that some endocrine therapies produce partial
blockage of estrogen signaling and resistant cell growth in our system
(perhaps due to cross-resistance mechanisms), including fulvestrant
(Fig. 3b–d; Supplementary Fig. 8d) and letrozole (Supplementary Fig. 9a,
b). Under these therapies, resistant cells facilitated sensitive cell growth
in coculture compared to monoculture. This result supports the
hypothesis that without effectively disrupting the ER pathway, the
facilitation of sensitive by resistant cells will persist. In contrast, endo-
crine therapies that more completely block estrogen signaling and
proliferation of resistant cells in our system, such as exemestane (Sup-
plementary Fig. 9c, d), tamoxifen (Supplementary Fig. 9e, f), and
raloxifene (Supplementary Fig. 9g, h), effectively inhibited facilitation.
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(control) in monoculture, untreated sensitive and resistant CAMA-1 cells. Western
Blots were performed in triplicates with consistent findings. Source data provided
in Source Data file.
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Fig. 3 | Modifying endocrine signaling pathways affects spheroid growth and
facilitation. a CAMA-1 spheroids of different cell compositions (100% sensitive—
green, 50% sensitive–50% resistant, 100% resistant—blue) cultured in untreated,
400 nM ribociclib, 0.1 nM estradiol, or combination 400 nM ribociclib with 0.1 nM
estradiol-treatedmedium for 18 days; images takenonday 18.bCAMA-1 spheroids
of different cell compositions (100% sensitive—green, 50% sensitive–50% resis-
tant, 100% resistant—blue) cultured in untreated, 400nM ribociclib, 1 nM or 3 nM
fulvestrant, or combination 400nM ribociclib with 1 nM or 3 nM fulvestrant
treatedmedium for 18 days; images taken on day 18. c Facilitation of sensitive cells
across monotherapy treatments (over days 11, 14, and 18). Box plots with center-
line =median, box = 25th–75th percentile, and whiskers = 5th–95th percentile. For
each treatment, two-tailed t-tests assessed the deviation (arrows) of observed
growth in coculture from the expected combined effect of treatment and cocul-
turing produced by the nullmodel (dashed line: zero facilitation) (sample size = 27
for 200 nM ribociclib, 18 for 400nM ribociclib, 9 for other treatments). All dif-
ferences from zero facilitation are significant (ribociclib 200nM, p = 3.8e-12,
t = 12.05, mean =0.783, 95% CI = 0.649:0.917; ribociclib 400 nM, p = 1.2e-05,
t = 6.09, mean = 2.736, 95% CI = 1.788:3.684; Estradiol 0.1 nM, p =0.0186, t = 2.95,

mean = −0.010, 95% CI = −0.179:−0.022; fulvestrant 1 nM, p = 6.8e-08, t = 18.75,
mean = 1.307, 95% CI = 1.146:1.468; fulvestrant 3 nM, p = 1.2e-06, t = 13.01, mean =
2.443, 95% CI = 2.010:2.876). Facilitation increased with dose of ribociclib (linear
model, p = 4.7e-06, coefficient = 0.0098, SE = 0.00187, t = 5.23) and fulvestrant
(p = 3.5e-5, coefficient = 0.568, SE = 0.100, t = 5.67). d Facilitation of sensitive cells
under combination treatments across days 11, 14, and 18. Box plots with center-
line =median, box = 25th–75th percentile, and whiskers = 5th–95th percentile.
Two-sided ANOVA compared facilitationmeasured under ribociclibmonotherapy
and under estrogen-modulating combination treatments. Combination with
0.1 nM estradiol significantly reduced facilitation (p = 3.8e-05, t = 5.51, estimate =
2.478, 95% CI = 1.530:3.427), although some facilitation remained (T-test of
deviation from zero facilitation (dashed line): p = 6.319e-07, t = 14.07, mean =
0.258, 95% CI = 0.215:0.300). Facilitation was unchanged by combination with
low-dose fulvestrant (1 nM) but increased by combination with higher-dose ful-
vestrant (3 nM) (p = 0.0086, t = 2.866, estimate = 1.720, 95% CI = 0.480:2.960).
Sample size = 18 for 400 nM ribociclib and 9 for other treatments. Source data
provided in Source Data files fig3cdat.csv and fig3ddat.csv.
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While each drug class inhibits ER signaling, the differing degree of
facilitation under treatment with an AI, SERM, or SERD reflects their
differing abilities to block resistant cell provision of estradiol to sti-
mulate sensitive cell receptors. In our in vitro system, cells resistant to
ribociclib are also cross-resistant to the SERD, fulvestrant. However,
SERMs are more damaging to resistant cell growth while also pre-
venting estradiol from binding to the estrogen receptors of sensitive
cells which leads to the cancellation of facilitation. Cells resistant to
ribociclib are also more resistant to the AI, letrozole, compared to
exemestane, a more potent and non-reversible steroidal AI. Similarly,
exemestane is also effective at inhibiting resistant cell growth, dis-
rupting estrogen production, and blocking facilitation.

Together, these results show that resistant cells can facilitate
sensitive cell growth under partial blockage of ER signaling by pro-
viding supplementary estradiol signals. However, endocrine therapies
that more completely block estradiol production or receipt of estra-
diol by sensitive cells block facilitation. The degree to which facilita-
tion may be blocked is dependent on the resistant cells’ level of
sensitivity to each modifier and, as a result, to what extent estradiol
production or estrogen signaling is disrupted.

Coculture results in a shift of sensitive cells to a more resistant
cell state as revealed by scRNAseq
We hypothesized that hormone communications from resistant to
sensitive cells activate proliferative pathways of sensitive cells when
cocultured during ribociclib treatment resulting in a more resistant
phenotype.We performed scRNAseq on sensitive and resistant CAMA-
1 cells grown in spheroids after 11 days of treatment, both in mono-
culture and coculture with initially equal proportions. Following
quality control filtering and normalization of the scRNAseq profiles
(see “Methods”), we performed UMAP dimension reduction to com-
pare the phenotypic similarity of cells across the transcriptome.
Monoculture-sensitive and resistant lineages formed separate clusters,
indicating that they are phenotypically distinct, with a shift of sensitive
cells toward resistant cells seen when grown in coculture (Fig. 4a). We
next calculated the cell cycle phase of each cell using canonical mar-
kers (Fig. 4b) and found a striking increase in the proportion of cycling
sensitive cells in coculture compared to sensitive cells inmonoculture.
This analysis revealed that resistant cells facilitated the cell cycle
progression of sensitive cells under drug pressure.

Wenext investigated the keypathwayphenotypes acquired by the
sensitive cells in coculture compared to monoculture using single
sample gene set enrichment analysis. We found a highly significant
increase in the KEGG and REACTOME cell cycle pathway enrichment
scores (both p < 0.00001), supporting the cell cycle phase analysis
results (Fig. 4c). Differential expression analysis confirmed that both
proliferation and estrogen signaling gene expression was elevated in
sensitive cells when cocultured compared to cells in monoculture
(Supplementary Fig. 10).

Gene expression signatures indicative of estrogen signaling acti-
vation, including ESR1 targets (p = 3.1 × 10−111) and estradiol response
(p = 1.9 × 10−153), were also elevated in sensitive coculture cells (Fig. 4d).
Finally, differential expression of estradiol production enzymes were
detected between resistant and sensitive cells with increased levels of
HSD17β1 in resistant cells whileHSD17β8was elevated in sensitive cells
(Fig. 4e), with low/non-detectable aromatase expression.

Measuring the impacts of growth factor-mediated facilitation
To test whether our proposed facilitation mechanisms can predict the
growth of sensitive and resistant cells under a broad range of condi-
tions, we constructed stage-structured consumer-resource models
that describe the production and uptake of estradiol, separate cell
division and death, and include functional forms for the effects of
ribociclib and estradiol (Fig. 5a) (detailed in “Methods” and Supple-
mentary Information). To parameterize these mechanistic models, we

performed mono- and coculture experiments across a wider range of
ribociclib drug doses (Fig. 5b). The estimated parameters quantify
three expected changes in resistant cells: (1) Reduced growth inhibi-
tion by ribociclib, (2) Reduced growth and competition effect, (3)
Increased production of the facilitation factor estradiol (Fig. 5c).
Finally, we use the parameterized models to test whether facilitation-
blocking therapy can reduce the growth of cancer cell populations
(Fig. 5d) and to identify the phase of spheroid growth and drug doses
under which facilitation is most impactful (Fig. 5e).

We used Bayesian inference to identify the biological rates (indi-
cated in Fig. 5a and detailed in “Methods”) under which the model
most accurately predicts spheroid growth trajectories of mono-
cultures and cocultures of both sensitive and resistant cells across
eight doses of ribociclib. Supporting our hypothesis that facilitation
played a key role in promoting spheroid growth, we found that the
model of estradiol-mediated facilitation accurately describes the
growth of resistant, sensitive, and coculture spheroids across all drug
doses (Fig. 5b), explains the frequently observed lag in initial spheroid
growth and the delayed shrinkage of spheroids at high drug doses
after an initial growth phase.

We verified that models of alternative mechanisms of cell inter-
action could not produce the diversity of spheroid growth trajectories
observed across drug doses and compositions. Alternative models
included direct competition for resources and phenotypic plasticity in
which cells transition from a naive to a resistant state either in
response to drug induction or via random switching (detailed model
comparisons provided in Supplementary Information). We performed
a formal probabilistic model comparison of the non-nested set of
model hypotheses using Watanabe–Akaike information criterion
(WAIC). The facilitation model greatly outperformed models of com-
petition or phenotypic plasticity (Supplementary Fig. 11). This analysis
guarded against model overfitting and supports the estradiol-
mediated facilitation hypothesis.

The fitted model of estradiol-mediated facilitation quantifies how
biological processes differed between resistant and sensitive cells
(Fig. 5c). Given our hypothesis that sensitive cell growth under ribociclib
treatment is promoted by estradiol released by ribociclib-resistant cells,
we expected to measure higher estradiol production rates in resistant
cells. The net production of estradiol (γ) by resistant cells was estimated
tobe approximately twice that of sensitive cells, consistentwith the ratio
of production/use estimated directly (8.0/2.5 = 3.2, Fig. 2c). Under the
hypothesis that resistance is costly, we also expected sensitive cells to be
competitively dominant over resistant cells. In agreement, resistant cells
were found to be approximately 60% as competitive (α), consistent with
the 1.5 times higher competitive effect of sensitive cells (Fig. 1e). In
further support of the cost of resistance, in the absence of treatment,
the less competitive resistant cells had a baseline division rate (r) that
was 50% of sensitive cells despite a lower quiescence rate (λ). However,
theywere far less sensitive to the cell cycle inhibitory effects of ribociclib
(k), allowing their spheroids to continue to grow at high doses. This
indicates that resistant cells evolved a slower-growing, longer-lived cell
strategy as well as bypassing the G1-S phase cell cycle blockade of
ribociclib.

We use this parameterized model to explore the impact of ther-
apeutically blocking facilitation on the growth of sensitive and resis-
tant cocultured populations. To do so, we reduced the binding of
estradiol to its cellular receptor (μ) by differing degrees to reflect
exposure to different doses of an ER-blocking drug such as fulvestrant.
In the absence of facilitationblocking, the facilitationmodel accurately
predicts the final resistant and sensitive cell population size (Fig. 5d;
points show observed final cell counts at day 21, black line + yellow
overlay shows model predictions under the experimental conditions).
However, facilitation needed to be reduced by more than 50% before
substantial reductions in spheroid growth were predicted, suggesting
that resistant cells produce sufficiently large amounts of estradiol to
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saturate the growth benefits of facilitation. At lower ribociclib doses
(<500 nM), facilitation blocking caused amore severe reduction in the
abundance of sensitive than resistant cells, suggesting that resistance
could be promoted under these circumstances. This result shows that
facilitation targeting treatments will have dose-dependent con-
sequences on the evolution of resistance that will require a quantita-
tive understanding of underlying molecular mechanisms.

Finally, to investigate our hypothesis that facilitation is a key
process promoting sensitive cell proliferation, we used the fitted

model to assess the importance of facilitation relative to resource
competition in determining sensitive cell proliferation throughout
treatment with various ribociclib dosages. To do this, we decomposed
the model-inferred rate of G1/S phase entry into the contributions of
facilitation and competitionprocesses (Fig. 5e). Across ribociclib doses
(<600 nM), facilitation was many times more important than compe-
titionduring the period after the accumulation of sufficient population
size to generate high levels of estradiol but prior to the spheroid
reaching maximal density and becoming regulated by resource

Cell lines

Proliferation signatures

Estrogen signaling signatures

Cell cycle phasea b

c

d

e HSD17�1 HSD17�8

Fig. 4 | RNA sequencing reveals transcriptomic differences betweenmono- and
cocultured sensitive and resistant cells. a UMAP of scRNAseq profiles from 6292
resistant (coculture), 7557 resistant (monoculture), 2059 sensitive (coculture) and
3329 sensitive (monoculture) CAMA-1 cells. b Cell phenotypic heterogeneity
visualized using UMAP and colored according to cell phase estimated using the
scRNAseq profiles of CAMA-1 cells. Stacked bar plots on the right show proportion
of cellswithin eachphase of the cell cycle.cRidgedensity plots showing thedensity
of ssGSEA enrichment scores for cell cycle pathways across different cell lines. The
white vertical line indicates the median of the distribution, with FDR adjusted
p-value from the non-parametric (two-sided) Wilcoxon rank-sum test between
sensitivemonoculture vs. sensitive coculture indicated to the right.dRidge density

plots showing the density of ssGSEA enrichment scores for estrogen signaling
response pathways across different cell lines. The white vertical line indicates the
median of the distribution, with FDR adjusted p-value from the non-parametric
(two-sided) Wilcoxon rank-sum test between sensitive monoculture vs. sensitive
coculture indicated to the right. e Dot plots showing gene expression levels mea-
sured in ribociclib-resistant and sensitive cells using bulk RNAseq. Each colored dot
indicates one independent biological replicate (n = 3 for sensitive and n = 3 for
resistant cells), with the graydot andbars indicatingmean and standarddeviations.
The p-values indicate the significanceof the difference inmeans from the two-sided
Welch’s t-test. Source data provided in Source Data file.
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limitation. Atmoderate ribociclib doses (200–600nM), the facilitation
window shifts later into the treatment, as resistant cell abundances
increase more slowly, and the window also extends for a longer
duration. At the highest ribociclib doses (>600nM), the window of
facilitation closes completely because the proliferation of resistant
facilitating cells is increasingly controlled (Fig. 5e). Coculture spheroid
size then shrinks during treatment, as the small resistant population
alone cannot maintain estradiol levels to overcome treatment. This
mechanism of facilitation predicts and quantitatively explains the
observed initial lag in spheroid growth and delayed spheroid shrink-
age, following a growth phase, at high ribociclib doses (Fig. 5b). The
closure of the facilitationwindow at high ribociclib doses is driven by a
lack of resistant facilitating cells, not driven by increasing competition
(lower cancer cell abundancesmakemore resources available per cell).

Overall, the results support our experimental findings that strong
inhibition of ER signaling is needed to overcome the facilitation of
sensitive cells. However, blocking facilitation has the potential to
control both resistant and sensitive cancer cell growth, inhibiting the
emergence of a refractory population during cell cycle therapy.

Discussion
We developed in vitro model systems to investigate how inter-
actions between cancer lineages impact the growth of hetero-
geneous ER+ breast cancer populations. We found that cells
sensitive to ribociclib (a CDK4/6 cell cycle inhibitor) grow faster
in untreated monoculture and outcompete resistant cells in
coculture. However, in the presence of ribociclib, resistant cells

facilitate the growth of sensitive cells by producing local estra-
diol, a potent estrogen metabolite, resulting in an upregulation of
estrogen signaling and proliferation. Although resistant cells were
developed by long-term growth with ribociclib, they also
acquired cross-resistance to endocrine therapy and also facilitate
the growth of sensitive cell populations in the presence of ER
antagonists unless there is a complete inhibition of estrogen
signaling at higher doses with effective drugs.

Analysis of scRNAseq data of resistant and sensitive cell popula-
tions uncovered somepotentialmechanismsof cross-resistance to cell
cycle andendocrine therapies.We foundan increase in theMYC, EGFR,
and TGFβ receptor signaling pathway activity in resistant cells (Sup-
plementary Table 1). These pathways have been found to underlie
resistance to both endocrine and cell cycle therapies in independent
studies36–42. Patterns of cross-resistance and cell–cell interactions
complicate patient treatment even beyond the challenge of the evo-
lution of resistance.

We use mathematical models to quantify competitive and facil-
itative interactions and to predict how different conditions will alter
facilitation. Mathematicalmodels that include facilitation improve our
ability to describe the growth of heterogeneous cancer populations.
These models predict that blocking facilitation has the potential to
control both resistant and sensitive cell populations and inhibit the
emergence of a refractory population, prolonging the benefits of
ribociclib. This result may explain why ribociclib is more effective
when combined with antiestrogen therapy than as monotherapy for
some patients43–45.

1500

1000

500

0

2000

Ribociclib
dose (nM )

12

10

8

6

12

10

8

6

A
b
u
n
d
a
n
c
e
 (

ln
)

Day
0 5 10 15 20 0 5 10 15 20

Monoculture Coculture

R
esistant

Se nsitive

Estrogen receptor
antagonism (%)

0

20

40

80

60

F
in

a
l 

a
b

u
n

d
a
n

c
e

100000

10000

1000

Ribociclib dose (nM )
0 005 0001 0051 2000 150010005000 2000

Resistant Sensitive

Day
0 5 10 15 20

R
ib

o
c
ic

li
b

d
o
se

 (
n
M

)

1000

600

200

0

2000 Facilitation
relative to

competition

25

15
10

0
5

20

Competition

effect

Division 

(baseline)

Facilitation 

contribution

Quiescence

(baseline)

Drug 

sensitivity

Resistant cell performance 
(relative to sensitive cells)

0.25 0.5 1 2

P
ro

c
e
ss

400

a b c

d e

R

R

 

cells

∅

S

∅

Sensitive
cells

s

Facilitation factor

ℎ

∅

s

s s

ks

s

XR

ZS

Resistant μ

Fig. 5 | Measuring the strength and role of facilitation during treatment.
a Structure of mechanistic stage-structured differential equation model of facil-
itation fitted to data. This describes the abundance of resistant (red) and sensitive
(green) cells that compete (circle-headed arrows) and facilitate one another by
producing facilitation factors (E; estradiol; blue) used by both cell types to promote
division. Cancer cells transition through proliferative (P), quiescent (Z), and then
senescent (X) stages. Proliferative cells enter the G1/S cell cycle checkpoint at a rate
depending on competitor abundance and facilitation factor concentration. Cells
entering the G1/S checkpoint either divide or enter the quiescent state. Cell cycle
inhibitor therapy increases the cell fraction entering the quiescent stage.
b Spheroid growth of sensitive and resistant cells (rows), alone or in coculture
(columns) and across ribociclib doses (color). Observed cell counts (points) are
predicted by the facilitation model (lines) across doses and cell compositions.
Model uncertainty captured by 95% high credibility intervals (shaded regions).
c Quantification of resistant cells’ abilities, relative to sensitive cells, to facilitate
neighboring cell growth, compete for resources, divide or quiesce in the absenceof

therapy, and their drug sensitivity. Violin plots show ranges of relative performance
yielding spheroid trajectories consistent with observations (shaded region =
Bayesian posterior parameter distributions; HMC samples = 3000). The vertical
dashed line indicates the equal performance of cell types. d Predicted impact of
blocking facilitation on sensitive and resistant cell growth in coculture, across drug
dose. Observed (points) and model predicted (thick black bordered lines) final
spheroid size shown across ribociclib doses without facilitation blocking (0% ER
antagonism). Thinner lines show the predicted size achievable by reducing facil-
itation (brighter lines = greater facilitation levels). The horizontal line indicates
initial abundance. e The role of facilitation, relative to competition, on cocultured
sensitive spheroid proliferation over time (x-axis) and across drug doses (y-axis).
Coloration shows the relative contribution of facilitation to sensitive cells G1/S
phase entry (GSensitive) at specific moments of treatment (brighter coloration =
greater importance of facilitation). The bright band shows the facilitation window
(cell abundance increasing but carrying capacity not reached). Source data pro-
vided in Source Data file.

Article https://doi.org/10.1038/s41467-023-39242-6

Nature Communications |         (2023) 14:3851 9



The dynamical models highlight that the contribution of
facilitation to proliferation and cancer population growth shifts
during the growth of cancer. As cell abundance increases,
facilitation-driven growth diminishes as carrying capacity is
reached, due to an increase in resource competition. This shift
suggests that competitive ability may be more essential at later
stages in disease progression, while facilitation may be more
important in earlier stages. Future studies may also integrate
local spatial effects in our measurements and modeling to
account for any impact on cell–cell interactions.

Mathematical modeling46–48 and experimental49–51 research
proposes that tumor growth and progression may be promoted
by cooperation among diverse cell populations by sharing
resources or products through mechanisms including
neoangiogenesis46 and growth factor production51. Our results
support the concept that cancer cell facilitation may impact
heterogeneous tumor growth during treatment in ER+ breast
cancer. No current therapy is directed specifically at cooperative
cancer cell interactions. However, as tumors are often comprised
of multiple subclonal populations, interactions between cells may
provide targets for long-term treatment strategies. Given that
facilitation can increase both persistence and biomass relative to
simpler systems with resource competition only52,53, it is likely to
be frequent in heterogeneous cancer populations. As we gain
capabilities to measure the growth of heterogeneous subclone
populations during treatment, we may tailor strategies to control
faster-growing yet drug-sensitive cells while preventing the
dominance of refractory cells through competition with more fit
subclones.

This study describes facilitation through an increase of local
estradiol concentration by resistant cells that stimulates the
proliferation of sensitive cells during selective pressure. It is
known that estrogen biosynthesis and metabolism can be upre-
gulated in cancer cells54–56. It remains unknown whether resistant
cells in our system acquired mutations to increase estradiol levels
or if changes are epigenetic. The increase of active estrogen is
important given that the majority of breast cancers are hormone
receptor-positive and resistance to hormone therapy is common
in late-stage breast cancer patients57–59. In patients with increased
levels of estradiol, potential treatment strategies include blocking
the enzymes that synthesize estradiol in resistant cells or mod-
ulating the level or type of endocrine therapy given to a patient.
Targeting the diffusible facilitation factor has been proposed to
be a more evolutionarily stable treatment strategy than targeting
the cancer cell receptors or cell intrinsic signaling pathways60, as
the production of a public good provides little benefit to the
producing cell, weakening the fitness advantage of the resistance
trait. This effect lessens the selection pressure for resistance and
if sufficiently costly could robustly halt the evolution of this
phenotype. An important next step is to study these mechanisms
in other settings such as endocrine-resistant specific cell lines and
patient tumors, and to better understand the presence and
impact of cell cooperation in response to therapy and outcomes.

In conclusion, our data indicate that the facilitation within het-
erogeneous cancer cell populations shapes the dynamics of resistance
and growth of cancer cell populations. We show that local production
of a highly active estrogen, estradiol, by resistant cells facilitates the
growth of sensitive cells in the presence of drug treatment, and con-
veys resistance to anti-proliferative effects of cell cycle inhibition in
sensitive cells. We use mathematical models to measure these pro-
cesses and show that blocking this facilitation could promote the
response of the entire cancer population, reducing selection for
refractory resistant states. This work provides support for the devel-
opment of strategies to modulate facilitation to create robust and
durable cancer control.

Methods
Cell lines and reagents
The previously authenticated estrogen receptor-positive (ER+)
CAMA-1 breast cancer cell lines (ATCC,Cat #HTB-21)weremaintained
in DMEM+10% FBS+1% antibiotic–antimycotic solution. The
ribociclib-resistant CAMA-1 cell line creation (ribociclib-resistant
CAMA-1) was previously reported32. Briefly, cells were cultured and
continuously treated with ribociclib (Selleck Chemicals, Cat. No:
S7440) at 1 µM for 1 month. Following the initial 1 µM ribociclib
treatment, cells were treated with 250 nM for 4 months to develop
resistance. Maintenance of ribociclib-resistant CAMA-1 cells con-
tinued in complete culture medium + 250 nM ribociclib. Resistance
against ribociclibwas detected by the alterationof the dose–response
curve measured using CellTiterGlo Chemiluminescent Kit (Promega
Corporation, Cat. No.: G7573).

Lentiviral labeling of sensitive and resistant cells
Using lentiviruses incorporating distinct fluorescent proteins, we
labeled CAMA-1 parental sensitive cells (venus; LeGO-V2) and
ribociclib-resistant cells (cerulean; LeGO-Cer2). LeGO-V2 and LeGO-
Cer2 vectors were provided by Boris Fehse (Addgene plasmids #27340
and#27338). Lentiviruseswith fluorescent proteinswere created using
Lipofectamine 3000 reagent (Thermo Fisher Scientific) following the
manufacturer’s protocol. CAMA-1 sensitive and resistant cell lines were
transduced with lentivirus using reverse transduction. Briefly, 1mL of
polybrene-containing cell suspension of 200,000 cells was plated in a
well of a 6-well plate. Previously, 0.5mL of viral aliquot had been dis-
pensed in plate. Following 48 hof incubation at 37 °Cwith 5%CO2, cells
were washed and given fresh regular culture medium. To select for
fluorescence-activated cells, fluorescently labeled cells were flow-
sorted after further subculture of transduced cells to attain homo-
genously labeled cell populations.

Mono- and coculture 3D spheroid experiments
The 18- to 21-day experiments were initiated with fluorescently labeled
sensitive and resistant cell lines in different compositions. For CAMA-1
spheroid experiments, as earlier reported32, 2000 cells were plated in
different proportions (100% CAMA-1 sensitive, 50% CAMA-1
sensitive–50% CAMA-1 resistant, 100% CAMA-1 resistant) in 96-well
round-bottom ultra-low attachment spheroid microplate (Corning,
Cat. No.: 4520). After 24 h, spheroids were washed and a freshmedium
including treatment drugs was applied. Spheroids were treated for a
total of 18–21 days with imaging and media change performed every
fourth and seventh day of the week. Spheroids were treated with the
following drug therapies at specified doses described in “Results” and
Figs. 1 and 4: ribociclib (Selleck Chemicals, Cat. No: S7440), estradiol
(Peprotech, Cat. No: 5022822), fulvestrant (Selleck Chemicals, Cat. No:
S1191). Imaging was performed using Cytation 5 imager (Biotek
Instruments) recording signal intensity from brightfield, YFP (for
Venus fluorescence), and CFP 450/440 (for Cerulean fluorescence)
channels. Raw data processing and image analysis were performed
using Gen5 3.05 and 3.10 software (Biotek Instruments). Briefly, the
stitching of 2 × 2 montage images and Z-projection of six layers using
focus stacking was performed on raw images followed by spheroid
area analysis. Toquantify growthunder these conditions, wemeasured
fluorescence intensity and growth of the spheroid area over the total
time of the experiment. For cell count calculations, a standard curve
was created by measuring the area of spheroids 24 h after plating at
different cell numbers. A resulting equation by fitting a curve to the
data was performed by GraphPad Prism 7.02 software (second-order
polynomial–quadratic–curve fit used). The whole spheroid area and
fluorescence intensity measurements of each population were inte-
grated into the fitted equation, and cell counts for each population
were produced from fluorescence intensities relative to spheroid size.
All coculture experiments were performed in triplicates.
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Cell number quantification
ForCAMA-1 cells, cell numberswere quantified asdescribedpreviously
by Grolmusz et al.32. In brief, the relationship of area to cell counts
follows a nonlinear curve (Supplementary Fig. 1a), and sensitive and
resistant CAMA-1 cells have similar relationships of area to fluores-
cence (Supplementary Fig. 1b). Cell numbers were estimated by
inverting the nonlinear function, with proportions of the two cell types
estimated by the normalized relative fluorescence of each wavelength.

To estimate cell numbers for MCF7/LY2 cells, we measured cell
numbers and spheroid area for a range of initial fractions of sensitive
(S) and resistant (R) cells and fit to a Michaelis–Menten function
withmaximum value A and half-saturation constant K (Supplementary
Fig. 1c). The relationship differsdependingon the proportionof S cells.
Parameters are K = 2.753 × 105, A = 1.094 × 107 with pure R cells and
K = 2.119 × 105 and A = 5.459 × 106 with pure S cells, and K = 2.330 × 105

and A = 7.546e6 × 105 with mixed cultures (Supplementary Fig. 1c:
dashed red curve).

To correct for possible differences in per cell fluorescence, we
regressed the fluorescence of pure cultures against the known num-
bers of S and R cells (Supplementary Fig. 1d). We find a slope of
8.04 × 104 for S cells and 1.349 × 105 for R cells and thus estimate that
each R cell produces 1.677 times as much fluorescence. To find the
numbers of S and R cells in coculture from the area and the fluores-
cence,wefind the total cells by inverting the relationship between cells
and area, and the proportion of each cell type from the fraction of
fluorescence, with R cells reduced by the weighting factor of 1.677.

To estimate cell numbers for MCF7 cells, we followed the same
procedure, findingMichaelis–Menten fits (Supplementary Fig. 1e) with
parameters K = 1.772 × 105, A = 9.061 × 106 with pure R cells and
K = 5.315 × 105 and A = 1.138 × 107 when there are any S cells in the cul-
ture. We correct for fluorescence in the same way (Supplementary
Fig. 1f), finding a slope of 8.36 × 104 for S cells and 2.029 × 105 for R
cells, and thus estimate that each R cell produces 2.426 times asmuch
fluorescence.

Liquid chromatography-tandem mass spectrometry (LC-
MS/MS)
Media samples taken on day 21 from 3D spheroid experiments, treated
with or without ribociclib (experimental setup previously described in
“Results” and “Methods”—“Mono- and coculture 3D spheroid experi-
ments”), and plated in different compositions (100% sensitive, 50%
sensitive–50% resistant, and 100% resistant) were spun down at 300g
and frozen at −80 °C. Samples were then prepared by the Analytical
Pharmacology Core of City of HopeNationalMedical Center for LC-MS/
MS for estrone andestradiol detection. LC-MS/MS systemconsistedof a
Shimadzu Prominence HPLC system interfaced to an AB SCIEXQTRAP®
5500 system (Foster City, CA, USA). HPLC separation was achieved
using an XSELECT CSH Phenyl-Hexyl 3.5 µm, 2.1 × 150mm analytical
column (Waters). The column temperature was maintained at
50 °C, and the flow rate was 0.38mL/min. The mobile phase consisted
of A (Water: 1000ml + 60 µL 30% NH4OH) and B (Methanol:
1000mL+60 µL 30% NH4OH). The following gradient program was
used: 55% B (0.01min), 70% B (0.01–4.0min), 100% B (5.5min), 30%B
(8.5min). The total run timewas 8.5min. The auto-injector temperature
was maintained at 15 °C. The atmospheric pressure chemical ionization
(APCI) source of the mass spectrometer was operated in negative ion
modewith ion source gas (55), curtain gas (20), collision gas (High), and
nebulizer current −4.0. The entrance potential was set to −10V.
Declusteringpotential (DP)was−110, collision energy (CE), andcollision
cell exit potential (CXP) was optimized to −50V, −21V for Estrone,
−160V, −50V, −17V for Estrone IS (internal standard), −210V, −58V, −19V
for Estradiol, and −205V, −52V, −13V for Estradiol IS respectively. The
source temperature was 400 °C. A solvent delay program was used
from0 to 3.5min and from 6.5 to 8.5min tominimize themobile phase
flow to the source. Analyst software version 1.5.1 was used for data

acquisition and processing. Atmospheric pressure chemical ionization
of Estrone, Estrone D4, Estradiol, and Estradiol D5 produced abundant
protonatedmolecular ions (MH-) atm/z 268.980, 272.983, 270.969, and
275.981 respectively. Fragmentation of these compounds was induced
under collision-induced dissociation conditions. The pre-
cursor→product ion combinations at m/z 268.980→145.200 for Estrone
and 272.983→147.100 for Estrone IS. 270.969→182.800 and
275.981→147.000 for Estradiol and Estradiol IS were used in multiple-
reaction monitoring mode for quantitation. Under optimized assay
conditions, the retention times for Estrone, Estrone IS and Estradiol,
Estradiol IS were 4.89, and 4.60min, respectively.

Sequencing and bioinformatic analysis
For bulk RNA sequencing, parental sensitive CAMA-1 and CAMA-
1_ribociclib_resistant cell lines were plated at 500,000 cells/well in a
6-well plate in triplicates. Twenty-four hours after plating 1 µMribociclib
or vehicle (dimethyl sulfoxide, DMSO) treatment was applied for 12 h,
after which cells were trypsinized, washed and the pellet was frozen at
−80 °C for subsequentRNA isolation. RNAwas isolatedusing theRNeasy
Plus Mini Kit (Qiagen, Cat. No.: 74136) following the manufacturer’s
protocol. RNA-seq libraries were prepared using Illumina TruSeq
Stranded Total RNA library Prep Ribo-zero Gold following the manu-
facturer’s protocol. Libraries were sequenced with biological triplicates
on an Illumina NovaSeq6000 instrument with 2×150 paired-end reads
resulting in an average of 25 million reads per sample. Samples were
aligned to the human reference genome (hg19) using the STAR (v2.7.0)
aligner. Transcripts were quantified by RSEM (v1.3.1) and library read
depth was normalized with edgeR (v3.40.2) using TMM normalization.
Log2 CPM transformed counts were used for ssGSEA pathways analysis
using the R packages GSVA (v1.30.0)61. Genes with at least a twofold
change in expressionwith FDR≤0.05 after a two-sidedWelch t-testwere
considered statistically significant. Signature scores were generated
using the Molecular Signatures Database (v6) Hallmark signature sets.
Pathway enrichment with global p-value <0.05 and FDR<0.25 were
considered statistically significant. Differentially expressed genes were
also subjected to pathway analysis regarding the Biocarta pathways
using DAVID Bioinformatics Resources. In this analysis, an FDR-
corrected p-value <0.05 was considered statistically significant.

For single-cell RNA sequencing, spheroids of different composi-
tions (100% sensitive, 50% sensitive–50% resistant, 100% resistant)
were initiated from Venus-labeled and mCherry-labeled CAMA-1_ribo-
ciclib_resistant cells and were subjected to 1 µM ribociclib treatment.
After 11 days, spheroids were harvested, washed and cell suspensions
were viably frozen for further processing. Once thawed, cells were
centrifuged at 300×g and washed twice with 37 °C pre-warmed 1x PBS,
pH 7.4 (Gibco, Cat #10010) + 0.04% Nuclease-Free Bovine Serum
Albumin (BSA, EMD Millipore, Cat # 12661525mL). Cells were resus-
pended to a target concentration of 1000 cells/µL, concentrations
were confirmed using trypan blue staining and counted on a hemo-
cytometer. scRNAseq was performed on resuspended cells using the
10X Genomics Chromium Single Cell 3’ GEM, Library & Gel Bead Kit v3
(10X Genomics, Cat # 1000075) according to manufacturer instruc-
tions at a target of 10,000 cells per sample. Each samplewas barcoded
with a unique i7 Index during library preparation using the Chromium
i7 Multiplex Kit (10X Genomics, Cat# 120262) to allow sample multi-
plexing during sequencing. Libraries were sequenced by Fulgent
Genetics, on an Illumina HiSeq X instrument with 2×150 paired-end
reads and a read depth of 10,000 reads per cell; additional sequencing
was performed to increase readdepth to a total depth of 50,000 reads
per cell. Sequence readswere processedwithCellRanger v3.0.2using a
reference genome (GRChg37). A gene-barcode matrix was generated
for each sample containing counts of unique molecular identifiers
(UMIs) for each gene in each barcode (cell). The matrix was processed
with Seurat v3.1.1.902362 to identify cell populations. A series of filters
were applied to the data before performing clustering. First, high-
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quality cells were retained by using the following filters in Seurat:
subset = nFeature_RNA < 7000& nFeature_RNA > 3000& nCount_RNA
> 2000 & nCount_RNA < 60000 & percent.mt < 30. Second, doublet
cells were predicted with scrublet (threshold = 0.25)63 and the pre-
dicted doublets were removed from further analysis. Third, cells
expressing mCherry or mVenus were retained by using cells having
two or more UMI counts of either mCherry or mVenus. The filtered
UMI count matrix was normalized with method “LogNormalize” and
“scale.factor=10000”. The top variable 2000geneswere identified and
were used to perform Principal Component Analysis (PCA) and clus-
tering in Seurat. Cell clusters were visualized using Uniform Manifold
Approximation and Projection (UMAP). Differential expressed genes
between cell populations were identified using MAST64 as imple-
mented in Seurat using FindMarkers function (abs(foldchange) >= 0.2
& Adjust p-value <= 0.05). Genes were ranked based on fold change.
Pathway analyses were performed on 50 hallmark signatures (MSigDB,
hallmark)65 and 4725 curated pathway signatures (MSigDB, c2) using
single samples gene set enrichment analysis implemented in the R
package GSVA61. Significant differential pathway activity was identified
using the Wilcoxon rank-sum test.

Western blot analysis
Lysates of CAMA-1 cells were separated by SDS-polyacrylamide gel
electrophoresis and proteins were transferred electrophoretically to a
polyvinylidene difluoride membrane using Invitrogen iBlot 2 device
and Invitrogen iBlot Transfer Stacks. Membranes were blocked with
Tris-buffered saline with 0.05% tween 20 (TTBS) and 5% BSA for 1 h at
room temperature. After washing with TTBS, membranes were then
probed with anti-aromatase (Invitrogen, MA5-32628, 1:7000 dilution,
overnight 4 °C), anti-HSD17β1 polyclonal antibody (Abnova,
H00003292-M03A, 1:1000 dilution, overnight 4 °C; R&D systems,
MAB7178, 1:2000 dilution, overnight 4 °C), anti-HSD17β8 polyclonal
antibody (Proteintech, 16752-1-AP, 1:1000 dilution, overnight 4 °C),
anti-ER (Cell Signaling, 8644S, 1:3000 dilution, overnight 4 °C), anti-
phospho-ER (Cell Signaling, 2511S, 1:500 dilution, overnight 4 °C) and
anti-β-actin monoclonal antibody (Santa Cruz Biotechnology, sc-
47778, 1:500 dilution, 1 h room temperature) and detected using
SuperSignal West Pico PLUS Chemiluminescent Substrate (Thermo
Scientific) with anti-rabbit (GE Healthcare NA9341ML) or anti-mouse
(GE Healthcare NXA9311ML) peroxidase-linked secondary antibody
(1:6000 dilution). The molecular weight was determined using a pre-
stained protein marker (BioRad). Western blots were performed in
triplicates. Uncropped and unprocessed images are found in the
source data file provided with this paper.

Estradiol production and uptake analysis
To estimate the production and use of estradiol by sensitive and
resistant cells, we compared the fits of three functions, each based on
Michaelis–Menten kinetics, by minimizing the least squares difference
from the observed estradiol concentrations across cultures with
varying resistant and sensitive cell abundances. The full model
includes separate production and uptake rates for each cell type. We
estimate the production parameters ρR and ρS and the uptake para-
meters aR and aS, whereR and S represent themeasured cell numbers,
with the function:

f 4 =
ρRR+ρSS

1 +aRR+aSS
ð1Þ

We examined simpler models with fewer parameters. To test a
model without production by sensitive cells, we set ρS =0, giving:

f 3 =
ρRR

1 +aRR+aSS
: ð2Þ

Because uptake by cells is large comparedwith background usage
(scaled to 1 in each of thesemodels), we tested a simplifiedmodel with
background usage set to zero. Without that term, the model is over-
parameterized, and we scale aR = 1. In this case, aS represents per cell
uptake by sensitive cells relative to resistant cells, and the function
simplifies to:

f 2 =
ρRR+ρSS
R+aSS

: ð3Þ

During model fitting, we eliminated one outlier (Sample F8). We
used the reported lower limit of detection of LLOD=62.5 and set all
measured values of 0 to LLOD/2. Neglecting this adjustment leads to
significantly worse fits.

Model f 3 provided a poor fit. The best fit withmodel f 4 estimated
ρR =83:58, ρS = 10:11, aR =0:864, aS =0:345 and had a residual sum of
squares of 7321.1. The best-fit parameters ofmodel f 2 yielded the same
residual sum of squares, with estimates ρR =96:79, ρS = 11:71,
aS =0:400. Due to the equally good fit with one fewer parameter, we
choose this as our final model.

To find confidence limits, we used the residual sum of squares to
estimate the variance and convert the least squares into a likelihood.
For each parameter, we identified the range of values with log like-
lihood within 2 of the maximum. With model f 2, we found limits
ρR 2 91:49,102:08½ �, ρS 2 9:88,13:54½ �, aS 2 ½0:355,0:460�:

Mathematical modeling—FACT analysis
Facilitation analysis through combination therapy. The FACT algo-
rithm breaks into six steps, which we outline here before describing in
detail. Modifiers refer to estrogen pathway-modifying treatments,
including estradiol itself and three ER antagonists: fulvestrant,
tamoxifen, and raloxifene. In each step, we build on the parameters
from earlier steps as a null model and ensure that parameters are
identifiable.

Algorithm steps:
1. Fit growth and carrying capacity for each cell type in mono-

culture with no treatment.
2. Treatment effects: Using the carrying capacity in the absence

of treatment, find the effects of ribociclib ormodifier treatment on cell
growth anddeath rates (“treatment cost arrow” in Fig. 1e).Wemake the
assumption that carrying capacity is unchanged to focus on the pri-
mary effects of treatment on growth.

3. Synergy: From growth with combined ribociclib and modifier
treatment, compare observed growth with that expected under a null
model without interaction.

4. Competitive effect: Using the carrying capacities and growth
in sensitive and resistant cells in monoculture from Step 1, estimate
competition coefficients between the two cell types in coculture
(“competition cost” arrow in Fig. 1e).

5. Facilitation: Using the carrying capacities, growth, and death
rates of single cell types with or without ribociclib from Steps 1 and 2,
and the competition coefficients in the absenceof treatment fromStep
3, quantify facilitation as deviations of growth from predicted under a
null model (“facilitation arrow” in Fig. 1e, the difference between
observed growth and the null model). To quantify facilitation in the
presence of a modifier we follow the same steps but with modifier
treatment.

6. Facilitation modification: Using the growth of cells in com-
petition with ribociclib (Step 5) and the direct effects of the modifier
(Step 2), quantify whether the modifier enhances or reduces
facilitation.

Mathematicalmethods.Wefit eachmodelwith least squares, using all
three replicates and the observed mean on day 4 for the initial con-
dition. We exclude the measurements before day 4 because the cells
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often show a lag before beginning their growth. Models that include a
lag require additional parameters and did not provide improved fits or
additional insight66.

1. Fit growth and carrying capacity to single-cell data in the
absence of treatment. We use the logistic model, as defined by the
differential equations for sensitive and resistant cells

dS
dt

= rS 1� S
KS

� �
S

dR
dt

= rR 1� R
KR

� �
R ð4Þ

to estimate rS, rR, KS, and KR as the growth rates and carrying
capacities of sensitive (S) cells and resistant (R) cells.

2. Treatment andmodifier effects:Using the carrying capacity in
the absence of treatment we estimate growth with treatment (rST, rRT)
as shown, and with modifier (rSM, rRM) with the model

dS
dt

= rST 1� S
KS

� �
S

dR
dt

= rRT 1� R
KR

� �
R ð5Þ

3. Synergy: To quantify how ribociclib interacts with modifiers in
monoculture, we fit the logistic model using carrying capacities from
Step 1, and compare the estimated growth rSwith the null model (with
a similar form for rR):

rSð
rST
rS

ÞðrSM
rS

Þ ð6Þ

4. Estimate competition coefficients: Using the estimates of the
growth rates and carrying capacities from Step 1, we fit untreated
coculture data to a Lotka-Volterra competition model with competi-
tion coefficients αSR and αRS.

dS
dt

= rS 1� S+αSRR
KS

� �
S

dR
dt

= rR 1� αRSS +R
KR

� �
R ð7Þ

5. Estimate facilitation: We estimate the strength of facilitation
as the deviation between log observed and expected growth. To find
expected growth, we use the estimates of the growth rates in mono-
culture with treatment, carrying capacities from the untreated
monoculture, and the competition coefficients from the untreated
cocultures. We numerically solve the differential Eq. (7) with these
parameters and compare with the observed growth by taking the log
of the ratio of predicted and observed.

6. Facilitationmodification: If the presenceof the other cell type
enhances growth in the presence of ribociclib, a modifier could cancel
or enhance this effect. To quantify this, we use the growth parameter
from step 4 in the presence of ribociclib and account for the direct
effects of the modifier as in step 2.

Facilitation analysis by combination therapy—mechan-
istic model
Facilitation factor production, flux, and utilization. To describe the
mechanisms of facilitation between resistant (R) and sensitive (S)
cells, we model the intracellular concentration of the facilitation
factor (E) in single cells of each cell type (ES, ER = intracellular

concentration within a single sensitive or resistant cell respectively)
and the flux of this factor between cell types via the shared extra-
cellular environment (EE). We describe the intracellular production
of this factor by sensitive and resistant cells at rate ρS and ρR and the
receptor binding for utilization as a growth-promoting signal at rate
μS and μR. Facilitation factors diffuse between cell types and the
extracellular environment at rate η. Finally, we describe the influx (σE

sources = renewedmedium in vitro and endocrine signaling from the
ovaries in vivo) anddecay (δE) of facilitation factors from the external
environment. This leads to the following set of differential equations
describing cellular and environmental concentrations of facilitation
factors:

dES
dt

=ρS +η EE � ES
� �� μSES

dER
dt

= ρR +η EE � ER
� �� μRER

dEE
dt

=σE +ηS ES � EE
� �

+ηR ER � EE
� �� δEEE: ð8Þ

The equilibrium of this system is:

E*E =
σE +ρSS

η
η+μS

+ ρRR
η

η+μR

ηS μS
η+μS

+ηR μR
η+μR

+δE

E*S =
ρS +ηE

*
E

η+μS

E*R =
ρR +ηE

*
E

η+μR
, ð9Þ

showing that the intra- and extracellular concentrations depend
on the net balance between facilitation factor sources (locally through
production by cancer cells (ρ) and net diffusion into the medium (η)
and externally (σE) through the renewal of medium in vitro or via
endocrine supply in vivo) and sinks (intracellular (μ) and extracellular
(δE) decay/sequestration). We assume that intracellular dynamics
operate on a faster time scale and thus place the values for E*S and E*R in
quasi-steady state in terms of the more slowly changing external
concentration E*E and cell numbers S and R67. Inhibitors of the pro-
duction of facilitation factors will reduce the intra and extracellular
inputs to E (σ and ρ). In contrast, drugs targeting facilitation factor
receptorswill reduce the binding of intracellular factors, reducingμ by
some factor.

Coupling facilitation factor dynamics with cancer coculture
spheroid growth. The cellular level description of facilitation was next
scaled to describe the populations of resistant and sensitive cells
competing and facilitating in coculture spheroids over time. The
resistant and sensitive cells are described as transitioning between
proliferative (PR, PS), quiescent (ZR, ZS), and senescent (XR,XS) states.

Resource competition between all cells is described by

α P, Z, Xð Þ= 1� P
i2fS,Rg

Pi + Zi + Xi
Ki

, where competitive ability of each cell

type (i 2 fS,Rg) is determined by the carrying capacity parameter Ki.
Proliferative cells enter the G1/S phase cell cycle checkpoint at a

baseline rate (r), which is reduced by resource competition and
increased by facilitation factor availability (E). This beneficial facilita-
tion factor effect saturates at high concentrations when uptake and
binding become rate limited (c). The proliferation rate of resistant and
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sensitive cells will be related to the binding of intracellular available
facilitation factors ðμiEiÞ. The G1/S phase entry of cells of type i based
on competition and the internal concentration of facilitation factors
therefore follows:

Gi = rið1 +
μiEi

1 + cμiEi
Þα P, Z, Xð Þ: ð10Þ

After entering the cell cycle checkpoint, cells undertake the
decision to divide or enter a quiescent state, based on the balance of
key regulatory cell cycle promoters and inhibitors. In addition to a
baseline quiescence rate (λi), cells are promoted to enter the quiescent
state by the cell cycle inhibitor ribociclib (x), which inactivates the key
regulators of the G1/S phase cell cycle checkpoint (CDK4/6), blocking
cell cycle progression. We describe the effect of ribociclib in inhibiting
cell cycle progression and driving cells into a quiescent state as
increasing with drug concentration following:

qi xð Þ= x
ki + x

: ð11Þ

No additional quiescence is induced in the absence of treatment
(qi xð Þ=0), complete cell cycle arrest is achieved at very high levels of
ribociclib (qi xð Þ= 1), and half-maximal cell cycle arrest is achieved at a
doseki for cell type i. Differences in this parameter between resistant
and sensitive cells describe innate resistance to the drug that
emerged through selection. When cells enter the G1/S phase check-
point (at rate Gi) they undertake a binary decision to either i) quiesce
at a rateGiqi xð Þ, which increases with the dose of ribociclib, or ii)
divide if they do not quiesce (at rate Gi 1� qi xð Þ� �

). Following quies-
cence, we describe the transition of cells into a senescent state at rate
φi before cell death occurs at rate δi.

Combining these models of competition, facilitation, cell cycle
progression, arrest, and cell death yields the following spheroid
population model, describing the abundance of proliferative, quies-
cent, and senescent resistant and sensitive cells in coculture spheroids
over time. The dynamics of the extracellular facilitation factor con-
centration in the spheroid population model is governed by the bal-
ance between net secretion by proliferative and quiescent cells
(resistant = γR and sensitive = γS) and its decay (δE), giving:

dPi

dt
= ðGi 1� qi xð Þ� �� Giqi xð Þ � λiÞPi

dZi

dt
= ðGiqi xð Þ+ λiÞPi � φiZi

dXi

dt
= φiZi � δiXi

dEE
dt

=
X

γi Pi + Zi

� �� �
� δEEE: ð12Þ

Resistant and sensitive cell coculture spheroid growth and facil-
itation across drug doses. Resistant and sensitive cells were fluores-
cently labeled as previously described in “Methods” (“Lentiviral
labeling of sensitive and resistant cells”) and replicate populations
(n = 3) were plated either in monoculture or in 50:50 initial coculture.
Cancer spheroids were grown in 3D culture for 21 days with imaging
performed at 3- to 4-day intervals and the abundance of each cell type
was enumerated as described previously in “Methods” (“Mono- and
coculture spheroid experiments”). To explore the consequence of
cell–cell interactions of drug response, the replicated mono- and
coculture time course experiments were conducted under eight
ribociclib concentrations within the EC20–50 range (0, 100, 200, 400,
600, 800, 1000, 2000 nM). Spheroid analysis and cell counts were

performed as described previously in “Methods” (“Mono- and cocul-
ture spheroid experiments”).

Measuring the strength of competitive and facilitative interactions
between subclones and vital cellular rates. We measured the
strength of competitive and facilitative interactions between sub-
clones, the drug impacts on cell cycle arrest, and the vital cellular
rates of proliferation, quiescence, and senescence, by fitting the
spheroid population model to the experimental data described
above. Given the initial spheroid size and composition and the
ribociclib concentration, the spheroid populationmodel projects the
abundance of sensitive and resistant cells throughout the experi-
ment based on a given combination of biological rates. A lognormal
distributionmeasurement model was used to evaluate the likelihood
of each spheroid abundance observation and weakly informative
Bayesian priors were used in all cases (Supplementary Information;
Supplementary Table 2). The biological rates of each process in the
spheroid population model were inferred with uncertainty, using
Bayesian inference and a Hamiltonian Monte Carlo algorithm in
STAN68 (“Methods” and Bayesian inference report detailed in Sup-
plementary Information; Supplementary Fig. 12–16). Biological rates
were identified that yield themost accurate model predictions of the
observed spheroid growth trajectories and composition over time
and across all drug doses (Supplementary Fig. 16). The HMC algo-
rithm efficiently samples the posterior distribution, describing the
likely biological rates given the model, using derivatives of the
probability density function. As a result, the inference approach
jointly and efficiently: (1) identifies the most probable range of sub-
clone interaction strengths (competition and facilitation), (2) pre-
dicts the cellular composition and estradiol concentration
throughout the experiments and (3) provides a probabilistic mea-
surement of the likelihood of the hypothesis encoded by the model
given the available data.

To quantify the relative contribution of facilitation versus com-
petition to sensitive cell proliferation, we decomposed the output of
their G1/S phase entry function (GSensitive) into contributions from
competition (α(P, Z, X)) and facilitation ( μiEi

1 + cμiEi
) processes. We cal-

culated these two components across time and under the observed
range of ribociclib treatment doses, using the posterior means of
parameter estimates and the estimated cell abundances. The effect
of facilitation relative to competition on sensitive cell proliferation
was thenmeasured using the ratio of the facilitation-and competition
components.

Model predictions of final spheroid size when modulating the
strength of facilitation. To explore the consequences of blocking
facilitation, we analyzed the impact on resistant and sensitive cell
abundances of reducing the rate of receptor binding with facilitation
factors (e.g., estradiol). The most likely values of the receptor binding
parameters of each cell type (μS and μR) were reduced by a factor ζ
(between 0 and 80% reduction). Using themodel and holding all other
parameters constant at their inferred posterior means, the predicted
abundanceof sensitive and resistant cells after 21 days of coculturewas
forecasted, assuming continuous facilitation blocking throughout this
period.

Statistics and reproducibility. No data were excluded from the ana-
lyses. Experiments were randomized, controlled, and replicated in
triplicate for each treatment. The observed consistency of spheroid
growth trajectories across replicate experiments was used to deter-
mine the sufficiency of sample size. Investigators were not blinded to
allocation during experiments, but outcomes were qualitatively
assessed using automated imaging protocols and software. Statistical
tests are all two-sided and multiple comparison p-value corrections
were applied using an FDR correction.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
For bulk sequencing analysis, reads were aligned to the human refer-
ence genome 19 (hg19). For the single-cell sequencing analysis,
sequence reads were processed using a reference genome (GRChg37).
Raw RNA-seq data are available under accession codes GSE143944
(CAMA-1 bulk RNA-Seq—[https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE143944]) and GSE193278 (CAMA-1 scRNA-Seq—
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE193278]).
All original experimental datasets produced and involved in the results
and conclusions are made available at https://github.com/
U54Bioinformatics/FacilitationRibociclibBreast. Source data are pro-
vided with this paper.

Code availability
The custom code used in analyses, mathematical modeling and to
produce Figs. 1–5 is available on GitHub at: https://github.com/
U54Bioinformatics/FacilitationRibociclibBreast.
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