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Stabilizer codes for open quantum
systems

Francisco Revson F. Pereira®%*, Stefano Mancini%?*? & Giuliano G. La Guardia’

The Lindblad master equation describes the evolution of a large variety of open quantum systems. An
important property of some open quantum systems is the existence of decoherence-free subspaces. A
quantum state from a decoherence-free subspace will evolve unitarily. However, there is no procedural
and optimal method for constructing a decoherence-free subspace. In this paper, we develop tools

for constructing decoherence-free stabilizer codes for open quantum systems governed by the
Lindblad master equation. This is done by pursuing an extension of the stabilizer formalism beyond
the celebrated group structure of Pauli error operators. We then show how to utilize decoherence-

free stabilizer codes in quantum metrology in order to attain the Heisenberg limit scaling with low
computational complexity.

The second quantum revolution emerges from the possibility of designing and controlling quantum systems. The
complexity of controlling quantum systems can be reduced by decreasing the noise due to system-environment
interaction. This can be achieved by resorting to quantum error-correcting codes. Among them are the stabilizer
codes'. Several works have extended the original construction method in order to incorporate Hilbert spaces
and quantum systems with different structures®'°.

Stabilizer codes are often designed for a specific quantum channel, or anyway, their performance varies
from channel to channel'!. Having a dynamical evolution means dealing with time-varying Kraus operators, or
equivalently, with time-varying quantum channels. Hence, in such a case, it might not be satisfactory to resort
to the standard stabilizer code construction. In this paper, we consider an open quantum system described by
the Lindblad master equation. This class of equations is the most general form for the generator of a quantum
dynamical semigroup. We construct stabilizer codes able to eliminate the dissipator part of the Lindblad master
equation, thus turning the evolution into unitary. As we show, this is possible since the stabilizer code cor-
responds to a decoherence-free subspace. A state from a decoherence-free subspace will evolve unitarily; i.e.,
the dissipator part of the Lindblad master equation will not contribute to the evolution of the state!?. Although
the stabilizer code constructed is a subspace of the corresponding decoherence-free subspace, an important
advancement is made here. Applying the stabilizer code construction, we can derive a procedural and optimal
method, in terms of computational complexity, for constructing the decoherence-free subspace that corresponds
to the stabilizer code.

In doing so, we will also extend the stabilizer formalism to encompass the sum of error operators, besides
their traditional composition. In other words, we will extend the formalism beyond the group structure of the
error set, by considering a vector space structure for it. As a consequence, the standard dual structure of stabilizer
codes® %1316 will no longer be that of linear block codes in the general case, and the corresponding classical
codes will be regarded as additive groups rather than vector spaces.

This paper is organized as follows. We initially present some concepts used to elaborate the results in this
paper. A connection between stabilizer codes and decoherence-free subspaces is made. Next, we demonstrate
the applicability of the stabilizer codes in the area of quantum metrology. A condition for probing a quantum
system using stabilizer codes in order to obtain the Heisenberg limit scaling is stated and analyzed. Lastly, we
suggest future lines of investigation from a coding theory perspective.

Definitions. In this paper we deal with open quantum systems evolving by means of the Lindblad master
equation. In order to address noise models that are not commonly considered in the literature of quantum error
correction, we need to extended some concepts. Let the dynamics of the system’s density operator p be given by’
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T —i[Hs, p] + Lp(p), (1)
where Lp(p) = % Zl }VAI(U I O ] 1+ Uips ] ]) is the decoherence evolution originated from the system-reservoir
couphnﬁ with M < (2N)?2 lwhere Nis the number of qubits forming the system S (whose dimension is 2Ny
and {J;};Z, are the Lindblad operators. We call this part of the evolution throughout the paper as the dissipator
part. A decoherence—free subspace (DFS)"? # pps of #'s is such that all pure states p(¢) belonging to the set of
density operators D(# prs) with support on S prs satisfy

dTr{p*(t)}

o =0,Vt > 0, with  Tr{p?(0)} = 1. )

On the other hand, a subspace #prs is called strong decoherence-free subspace (sDFS) if for all pure
p(t) € D(H# sprs) one has Lp(p(t)) = 0,and p2(t) = p(t), Vt. All conclusions drawn hereafter for decoherence-
free subspace can be straightforwardly extended to strong decoherence-free subspace.

A stabilizer code 2 is a subspace of a N-qubit system described by C?" stabilized by the elements
of an abelian subgroup S of the error group Gy over N qubits. The subgroup Cg, (S) of Gy, given by
Coy(S) = {E € Gy : EF = FE for all F € S}, is called the centralizer of S in Gy. The center of Gy, denoted by
Z(GN), is the subgroup Z(Gn) = Cgy (Gn). Let S < Gy be the stabilizer group of a stabilizer code 2 of dimen-
sion greater than one. An error E € Gy is detectable by the stabilizer code 2 if and only if E is an element of the
set{sz : s € Sand z € Z(Gn)}, or E does not belong to the centralizer Cg, (S)°.

A set & of operators on C? is denoted a nice error basis if it attains three conditions: (a) it contains the identity
operator, (b) it is closed under the composition of operators, (c) Tr{A"B} = 0 for distinct elements A, B € &. In
this paper, we consider the error basis & = {I, oy, oy, 0z}, where [ is the identity operator and o, fori = x,y, z,
are the Pauli matrices. The inner product of two distinct elements A, B in & is given by (A, B) = Tr{A"B}. Clearly,
& is a nice error basis. Let & N be the error basis constructed as N-fold tensor product of Pauli matrices described
above. The error set, denoted by Gy, is the vector space over C consisting of elements in & .

Let {|z) 1 be a basis of C?, and consider the i) <]L € % (C?) (linear) operator over C2. The vectorization is
a bijective 11near map from % (C?) to C* defined as Vec(|1)<]}) = |i) |]> Such a map can be extended to any
operator space. Several properties can be derived for matrix vectorization. Two operations that we use are com-
position and commutation of operators. For the first, we can exploit the relation

vec(ABC) = (A ® CT)vec(B). (3)

In particular, we have vec(AB) = (A ® I)vec(B). The commutator can be easily obtained from the above relation
and by the linearity of the vectorization. In particular, we have

vec([A,B]) = (A® I —1® AT)vec(B). (4)

Results

The error set in the standard stabilizer formalism is given by a set of operators whose elements obey the usual
composition of operators. In this paper, operators can also be summed, thus leading to a vector space structure
for the error set. Notice, however, that to formulate the stabilizer code construction in both approaches (the
standard one and the one used in this paper) one only needs to utilize the composition of operators, besides the
commutativity of its elements.

Suppose the evolution of a state p (t) is given by the Lindblad master equation with dissipator part described
by operators from the set ;# = {J; : I = 1,..., M}. Assume that there exists a DFS #pps = span{|yi)}i=1,.x
and that Jj|y) = ¢|¥g), for alll =1,. M and k =1,...,K. We can construct the following stabilizer set
SpEs = (S1,...»SmM : S =¢; 7, for l = l , M, where ]1 es) Suppose there exists anontr1v1al maximal
joint+1- elgenspace,Zofthe abelian group ofVDFg Then, define H,, = Hs + Zl VAT — q]l ). If it belongs
to Cgy (Y Drs), then 2 is a stabilizer code and a decoherence-free subspace (see Subsection Stabilizer Codes and
Decoherence-Free Subspaces of Methods). We call 2 a decoherence-free stabilizer code.

The connection between decoherence-free subspaces and stabilizer codes is expanded in the following two
subsections. Firstly, errors with a particular structure are considered. This structure simplifies the stabilizer
formalism and the connection between stabilizers and classical codes. Afterwards, the restriction is relaxed and
generalized errors are considered.

Decoherence-free stabilizer codes for tensor-product noise. Let N be a positive integer, and E;, E»
be two errors written as

N
=) (ﬂoj‘ﬂj + 410y + azj0y; + %‘Uzj)’ (5)
j=1
N
Er =) <b0j]1j + bijosj + byjoy; + b3j“zj)- (6)
j=1

Let Gy C Gy be the set containing elements of the form Ej, E; above. Then we define the map
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¢: Gy — C¥,

(7)
(“OjHj + a1j0xj + azj0y; + a3j(72j> = (4015 - - > AON> @115 - - - > AIN> @215 - - - s B2N> 431, - - - 3N)
j=1
by means of the operation
C(E1Ep) = (€015 -+ +» CON» €115 - -5 CIN> C2Ls +--5 CIN> G315 -+ -5 C3N ), (8)
where
coj =aojboj + aijbij + azjbj + azjbs), (%2)
c1j =(a1jboj + aojb1j) + i(azjbs; — asjby)), (9b)
c2j =(azjboj + aojbyj) + i(asjbyj — ayjbs)), (9¢)
c3j =(asjboj + aojbsj) + i(ayjbaj — azjby)), (9d)
for j =1,...,N. On the other hand, let v, v, € C*N be two vectors given, respectively, by
vi =(do1, ..., GON, @115 -, GINS @215 +- o5 BN, @31 - -» G3N ), (10)
vy =(bot, ---» bon, b, -, bins b, oo, BN b3t o, ban ). (11)
Define the binary operation +, as
Vit Vo= (601> -++5 CON> €115 - -5 CIN> €215 +-+> C2N> €315 - -.> C3N ), (12)
where coj, c1j, ¢2j, and ¢3j, for j = 1,..., N, are given in Egs. (92-9d).

Let N b e a positive integer and
¥ ={v e CWN|v = (x0,%x1,%2,%3) where xg = (1,1,...,1) € CN and x1,x5,x3 € CN} be a group under +;.
Then the maps

. (4N 4N
(g 1€ xCF > C
(13)
(va,vB) > (va,VB)¢,, = (azjbsj — azjby)),
. (4N 4N
()¢ CYxCY > C
(14)
(va,vB) > (Va,VB)¢,, = (asjbyj — a1jbs)),
. (4N 4N
()¢ CYxCY > C
(15)
(va,vB) > (Va, V)¢, = (ajbaj — agjbyj),
are symplectic forms over 7”, where v4 = (x¢, a1, a2, a3), vg = (x0, b1, b2, b3),and j =1, ..., N (see Subsection

Symplectic form and Additive Codes of Methods).

Now, we have the tools to define the symplectic dual of an 4,-additive code. Let N be a positive integer and
C ={ceC¥™|c=(cc1,c2 ¢3), wherecy = (1,1,...,1) € CN and ¢1, ¢2,¢3 € CV} be an +;-additive code.

The symplectic dual of C is given by

cle .= {ce ciN . (c’d>§'(l,j)

=0, foralld e C,1 =1,2,3, andj=1,...,N}.

(16)

Similarly to previous works on stabilizer codes, we are going to derive a connection between stabilizer codes and
classical error-correcting codes. This approach enables us to derive algebraic conditions for the construction and
existence of decoherence-free stabilizer codes. We can use it to show nonexistence of decoherence-free stabilizer

codes with some specific parameters.

Theorem 1 Let gy, =C((Sprs) be a basis of the + -additive

stabilizer code 2 exists if there exists an +-additive code C over C generated by V"

¢(Hgy) € CLe.

S'DFs

code of the form
C={ceC¥|c=(c,c1,¢2 ¢3) whereco = (1,1,...,1) e CN and ¢1, ¢3, ¢3 € CN}. Then, a decoherence-free

such that C < CLtand

For further explanation, see “Decoherence-Free Stabilizer Codes for Tensor-Product Noise” and “Symplectic

form and Additive Codes of Methods” subsections.

As can be noticed in Theorem 1, one needs that C < C*¢ for constructing stabilizer codes from classical
error-correcting codes. Such an expression is required to guarantee that 2 < Cg, (2 )°.
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Decoherence-free stabilizer codes for general noise. Let.# be a stabilizer group with operators sat-
isfying the structure of the standard stabilizer formalism. Assume that % is the additive group constructed using
the standard stabilizer formalism and %ye. = vec(% ), where the composition of operators in . corresponds
to the respective operation of the additive group. Then 4 = %yec (see subsection Decoherence-Free Stabilizer
Codes for General Noise of Methods).

As explained in the previous subsection, we need to have a symplectic form in order to construct the additive
code related to the stabilizer code and its centralizer. We can use Eq. (4) to construct the symplectic form used
in this subsection. Let A, B € . (C®V) be linear operators. We define the map

( hvec :CN x C?N > ¢
2N
(vec(A),vec(B)) > (vec(A),vec(B))vec = Z[(A RI-I® AT)vec(B)],-.

i=1

(17)

The above map turns out to be a symplectic form over C (see Subsection Symplectic form and Additive Codes
of Methods).

Since (-, -)vec gives a symplectic form, we can define the dual code of an additive code. Furthermore, we can
extend the stabilizer formulation presented in the previous subsection to a larger set of errors. Let C be an +vyec
-additive code. The symplectic dual of Cis given by

Chvee .= {c e CN : (¢,d)yec = 0, foralld € C}. (18)

Theorem 2 LetV gy, = vec(Sprs) be a basis of the +-vec-additive code C. Then, a decoherence-free stabilizer code

9 exists if there exists an +ec-additive code C over C generated by ¥ o1, such thatC < C Lvee gnd vec(H,y) € Clvee,

Notice that Theorem 2 extends the result presented in Theorem 1 for general noise. For further explanation
and discussions, see “Decoherence-Free Stabilizer Codes for General Noise” subsection.

Discussion

Application to Parameter Estimation. Suppose we have a unitary evolution given by U = exp(—iHs),
where Hg = nH is the system Hamiltonian, , is a parameter to be estimated, and H is the generator of U. One
of the goals of quantum metrology is to reduce the error obtained in estimating 7 when compared to classical
strategies. To attain this goal, we use N identical and independent probes, measure them in the channel output,
and average the results. Such scheme has the estimation precision lower bounded by

1

where AA is the standard deviation of the random variable A, and h = ENZI Hj, Hj acting on the j-th probe,
stands for the generator of the unitary evolution U®N. It is shown in Ref.? that there exists a probing state and
a measurement strategy such that

1

Anz ————, 20
N(;LMax - /LMin) ( )

where Apax and Amin are, respectively, the maximum and minimum eigenvalues of h. This is accomplished with
the use of general probe states, which may be entangled states, and local or joint measurements after the unitary
evolution U®N. When the standard deviation (20) scales like 1/N, we say that it attains the Heisenberg limit
(HL) scaling.

A crucial assumption used in the above methodology to attain the HL is that evolution is unitary. For Marko-
vian noise, one alternative approach is to use a quantum error-correcting code to achieve the HL under the
assumption that the system Hamiltonian is not in the spanned space generated by the Lindblad operators?*-2°.
Refs?*? show that lower bounds can be constructed from a simple algebraic condition involving solely the
operators appearing in the quantum master equation. A preliminary protocol considering the requirements that
quantum error-correcting codes must satisfy to achieve HL is also described in Ref.?*. This proposal has been
further extended for general adaptive multi-parameter estimation schemes in the presence of Markovian noise?.
Lastly, Ref.?” gives a semidefinite program for finding optimal ancilla-free sensing codes.

The proposed protocol of this paper is described as follows. The first part is the construction of the stabi-
lizer code from the open quantum system evolution. Let ppax-min be the equally weighted s%perposition of the
eigenvectors relative to the maximum and minimum eigenvalues of > | 19! ® Hs ® 19" . Next, we see
if the stabilizer code contains the state pyax-Min- If s0, then we use it to probe the quantum system. As shown
in the previous section, we are going to have a unitary evolution described by Hs. Therefore, using the optimal
measurement described in Ref.*! over the channel outputs, one obtains the HL scaling. We give a formal descrip-
tion of our protocol below.

The present idea differs from the literature on the use of quantum codes to attain the H
computational complexity. Here, we do not need to implement a decoding process, which is the case of Refs
However, this decoder-free approach is not novel in the literature, e.g. Ref.?® proposes a semidefinite program
design to identify the optimal quantum error-correcting protocol, without the necessity for a decoding algo-
rithm, to achieve the best estimation precision in cases where the Heisenberg scaling is attainable. The quantum

12272426 in terms of

22-25

Scientific Reports |

(2023) 13:10540 | https://doi.org/10.1038/s41598-023-37434-0 nature portfolio



www.nature.com/scientificreports/

state will not change by the environmental noise since it belongs to the DFS. Therefore, there is no error to be
detected or corrected. Removing the decoder from the picture, we have a reduced number of operations to be
implemented and a faster probing strategy.

Consider a quantum system with evolution given by the Lindblad master equation with Lindblad operators
{1}. Let & be a stabilizer set constructed from the Lindblad operators. Let |{/max) and [¥/min) be eigenvectors
of the system Hamiltonian Hg with maximum and minimum eigenvalues, respectively. Then, Heisenberg limit
scaling is achievable if

1
[P ) = 5 W)+ Wi *) 1)

belongs to the stabilizer code for any N > N*, where N* € N. This is a clear application of the formulation con-
structed in the previous section and the methodology of achieving the Heisenberg scaling from Ref.?!. In fact,
since }w(N ) ) belongs to the stabilizer code, then it also belongs to the DFS, hence its evolution is unitary and the
technique of Ref.?! can be applied.

We use the above formulation in the example below to show the achievability of the HL scaling. The proposed
protocol relies on ppMax-min s a codeword of the DFS stabilizer code. The existence of a DFS stabilizer code is
equivalent to the commutativity between the Lindblad operators and the system Hamiltonian. This is satisfied
whenever we have environments acting locally on each subsystem. Therefore, we expect that the proposed pro-
tocol can be applied to most of the relevant physical systems.

Example Consider a quantum system with the dynamics governed by

% = —ilHs, pl+ 2@ pJ" =110 = pI")), (22)
where
sterC(JI@Haz@oz), (23)
and
Hg = y(sfj%)z(ox ® o), (24)

with s = sinh(r), ¢ = cosh(r), and r is the (real) squeezing parameter. The stabilizer set constructed from the dis-
sipator partis givenby ¥ = (I® [+ 0, ® 0;)" : i = 0, 1). Consider an eigenvector with maximum eigenvalue
and an eigenvector with minimum eigenvalue of the operator Hs. Such a pair is

L L
V2 V2

Suppose we are going to probe the system N times with the state

[¥Max) = —=(100) +[11))  and  [Ymin) = —=(|00) — [11)). (25)

PMax-Min = ’WN)><’!’<N)’ = %(W/Max)@)N + |1/fM‘m>®N> ((1/1Max|®N + (1/fMin|®N>- (26)

It is possible to see that |1//(N)> is a codeword of the stabilizer code 2, since S|¥Max) = |¥Max) and
S|Y¥Min) = |¥min)» for all S € . Now, the achievability of the HL scaling can be seen in two ways. Firstly from
the above discussion, where state membership in the stabilizer code is verified in the quantum or classical realms
using the tools presented previously in this paper. Secondly from Eq. (22), where we have that the dissipator part
does not contribute to the evolution since

2] pvax-MinJ T — T T pax-Min — OMax-MinJ T = 20Max-Min — AMax-Min — OMax-Min = 0. (27)

Concluding remarks. In this work we have constructed stabilizer codes for open quantum systems gov-
erned by the Lindblad master equation. To achieve this goal, we had to go beyond the tools that exist for stabi-
lizer codes in the literature. As an important step, we have extended the formulation of stabilizer codes under
the influence of errors forming a group to those forming a vector space. Using stabilizer codes as tools, we were
able to determine conditions under which decoherence-free subspaces exist.

Observe that we have not been the first to identify a connection between stabilizer codes and decoherence-free
subspaces. However, differently from previous works?’, we give a direct algebraic relation between the Lindblad
operators, DFSs, and stabilizer codes. It is shown in Ref.*” that DFSs are a specific class of quantum error correct-
ing codes, but no constructive method to derive the stabilizer set from the Lindblad operators was shown. Fur-
thermore, as was shown in previous sections, we extended the stabilizer description to classical error-correcting
codes defined over the complex number field. More precisely, the standard theory of quantum error-correcting
codes contains quantum codes derived from classical codes, i.e., linear codes defined over finite fields. In this
new context, we consider classical codes defined over C, the complex field which has characteristic zero, and
this fact modifies completely the techniques to be applied in the constructions of our results. To the best of the
author’s knowledge, this is the first work presenting such a formulation. In particular, there are DFS that have a
stabilizer code as a subspace. This inclusion may or may not be proper. However, dealing with stabilizer codes
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can produce results that we could not obtain otherwise. In fact, one can find encoding methods for stabilizer
codes that are procedural and optimum algorithms for creating the corresponding code space. Additionally, set
membership can be optimally implemented by decoding methods. Later in the paper we constructed an algo-
rithm for quantum metrology that uses set membership as one of the important steps. Therefore, dealing with
decoherence-free stabilizer code instead of the whole decoherence-free subspace is computationally relevant
for several applications.

It is worth noting that the methodology taken to develop the symplectic dual and decoherence-free stabilizer
codes can be tailored to general noise. Suppose we wish to extend the formulation of to operators of the form

E= Z (aéjﬂj + alljaxj + alzjoyj + aéjazj), (28)
I=1 j=1

where L is the number of terms in the sum describing the operator E, and N is the number of physical systems. A
naive approach would be to map operators to matrices where, for a fixed , the elements af-, fori =0,1,2,3and
j=1,...,N, correspond to the [-th row of the respective matrix. There are some problems with this strategy.
First of all, one should impose an ordering over the terms in the sum going from/ = 1,..., L asa way to make a
uniquely correspondence between each term in the sum and a row in the matrix. Secondly, the composition of
errors could result in a sum of matrices giving a matrix with more rows than the original matrices that are being
summed; e.g., suppose we have E; with L; terms in the sum and E, with L, terms in the sum, then E; o E; can
produce up to L; x L, terms. This can be solved since there is a maximum L’ of terms with which any operator
can be described. Third, and more importantly, the above representation is not unique. To see this, consider the
operator

A= ({+o0x+0;) ®0y+0; ® 0y, (29)
which can also be written as
A= I+ 0y) ®0y+0; Q (0x + 0y). (30)

The issue of uniqueness in representing an operator and, consequently, its matrix representation may be solved
by introducing equivalence classes over matrix spaces similar to the equivalence classes utilized in the defini-
tion of tensor product of vector spaces®. Even though this problem may be solved, the formulation seems not
straightforward. Therefore, we have used matrix vectorization to avoid all these complications.

This paper suggests future lines of investigation from a coding theory perspective. Firstly, constructing code
parameter bounds by connecting physical constraints over Lindblad operators to the stabilizer code parameters. A
quantification of goodness for decoherence-free subspaces can be obtained from this topic. One could also show
the nonexistence of decoherence-free subspaces, which could lead to a more effective approach to investigating
open quantum systems. Secondly, identifying decoherence-free subspaces as stabilizer codes generates the pos-
sibility to classify some evolutions of open quantum systems. One approach is connecting some evolutions to
families of classical codes. Lastly, because of the novel approach presented, we expect quantum evolutions with
decoherence-free stabilizer codes leading to classical codes that have not been discovered yet.

As an application of our formulation, we presented a novel algebraic method for attaining the Heisenberg limit
scaling is using of stabilizer codes. Explanations of tools and codes created in the paper are illustrated through
an example. The algebraic approach developed to attain the Heisenberg limit scaling paves the way to attack this
quantum metrology problem by reservoir engineering. Finally, we would like to point out that our formalism
applies also to Lindbladian operators coming from microscopic (Hamiltonian) dynamics, although the realiz-
ability of decoherence-free stabilizer codes will of course then depend on such dynamics, and will, eventually,
be related to the existence of dark states.

Methods

Stabilizer codes and decoherence-free subspaces. Now, we are going to describe in detail the error
basis and error vector space used throughout the paper. A set & of operators on C? is denoted a nice error basis
if it attains three conditions: (a) it contains the identity operator, (b) it is closed under the composition of opera-
tors, (c) Tr{ATB } = 0 for distinct elements A, B € &. In this paper, we consider the error basis

& ={L,0x,0y,0}, (31)

where [ is the identity operator and o, for i = x, y, z, are the Pauli matrices. The inner product of two distinct
elements A, Bin & is given by

(A,B) = Tr{A'B}. (32)

Clearly, & is a nice error basis. Additionally, we have that if &, and &, are nice error bases, then
& %2 =1{E, ®E,: E € &1,E, € & }isanice error basis as well. Let & Y be the error basis constructed as N-fold
tensor product of the Pauli matrices shown in Eq. (31). The error group, denoted by Gy, is the vector space over
C consisting of the elements in & V.

The symplectic forms introduced in the Results section are based on the commutation relation obtained for
the type of errors that we are considering in this paper. In particular, let A = aoll + aj0y + a20y + aso; and
B = byl + b10x + ba0y + b30, be two elements generated by &. Then
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[A,B] = Zi((a2b3 — baaz)ox + (azby — bzar)oy + (a1bs — blaz)C’z)« (33)

It follows from the commutation relations of the Pauli operators [0;, 0] = 2i€;k0y, for i, j, k = x, y, z.

Proposition 3 ('2, Theorem 4, Proposition 5, Theorem 6) Let the time evolution be given by the Markovian open
system dynamics. Then, the space # = span{|y;)}i=1,. x is a DFS for all time t if and only if J}|Yk) = clyk), for
alll=1,...,Mandk =1,...,K, and the commutator [H,y, J;] has eigenvalues equal to zero for all | ) € 2,
andl=1,...,M. Here

. M
1
Hey = Hs + ; Aet T —al). (34)

Suppose the evolution of a state p(¢) is given by the Lindblad master equation with the dissipator part
described by operators from the set # = {J; : I =1,..., M}. Assume the existence of a DFS satisfying the
assumptions of Proposition 3. Then we can construct the following stabilizer set:

Fprs 1= (St,....,Sm : Sy=¢; '], forl = 1,..., M, whereJ; € 7). (35)

Suppose 2 is the joint eigenspace with eigenvalue +1 for every element in %prs; i.e., S prs stabilizes 2. If
[Si,Sj] =0, foralli,j = 1,..., M, then #pgs is an abelian group. Furthermore, if the system Hamiltonian H,,
belongs to the centralizer Cg, (4 prs), then we can conclude from Proposition 3 that 2 is DFS. Similar argu-
ments can be used for sDFS where the stabilizer group is given by #sprs and the commutativity condition is
imposed over Hg.

To show this result, notice that the claim that 2 is a stabilizer code of % pgs follows from the fact that 2 is the
nontrivial maximal 4-1-eigenspace of % prs. Secondly, for any|¢) € 2and §; € ¥ prs we have

I = aSilv) = aly). (36)

Since Hg + % Zf\il (e — cl];r) belongs to Cg, (¥ prs), then the commutator of Hs + % Z?; A — cl]lT)
with any element in .#prs has eigenvalue equal to zero. Therefore, from Eq. (36) and Proposition 3, we have that
2 is also a decoherence-free subspace.

Decoherence-free stabilizer codes for tensor-product noise.  Considering the + operation defined
in Eq. (12) as the sum operation of the additive codes, we derive some constraint over the coordinates of the
elements in these codes.

Let Cbe an +;-additive code. If vi = (ao, a1, a2, a3) and v, = (b, b1, by, b3) are elements in C, then

arjbsj =as;by;, (37a)
asjbyj =ayjbsj, (37b)
a1jbyj =azjbyj, (37¢)

and the following system of equations must also be satisfied

aj =0, (38a)

aij = =% ia;, (38D)

for pairwise distinct ], i,k € {1,2,3}and each j = 1,...,N.
To show this result, observe that the set of conditions presented in Eq. (37) follows by imposing commutativity
of +;in Eq. (12). To derive the conditions in Eq. (38), notice that Eq. (37) can be written as

ajbsj — asjbyj =0, (39a)
asjbyj — a1jbs;j =0, (39b)
alijj — azjlﬁj =0, (39¢)

which has a nontrivial solution if and only if ajjazja3; = 0. Substituting this condition in Eq. (39) and imposing
nontriviality to the solution again, we obtain aj; = —aij and a;j =0 for pairwise distinct [, 4, k € {1, 2, 3}. Notice
that for each j, we have independent conditions.

We have presented some intuitions on how to relate operators and vectors (some constraints on the coordi-
nates of the vectors have been presented). However, we need to develop further tools and properties to derive
a stabilizer formalism connecting stabilizer and additive codes. In particular, three points are covered in the
following subsection. Firstly, we demonstrate that the map (-, -); is a symplectic form. Using this fact, we show
that the map ¢ is an isomorphism between abelian sets of operators and additive codes. Lastly, we introduce
symplectic dual codes and the stabilizer formalism connecting quantum stabilizer codes with +;-additive codes.
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Symplectic form and additive codes. A symplectic form connects the centralizer of a stabilizer group
to the dual code of the classical code corresponding to the stabilizer group. Symplectic forms can be defined
over vector spaces or groups. In the following we consider a symplectic form over groups. Thus, the dual code
obtained is an additive code.

A symplectic form over an additive group % to a field Fis a function

f:9 x9% —F

(81,82 = f(g1,£), (40)
such that
f(gl +g2>g3) :f(glag3) +f(g2,g3)’ (41a)
fg,8) = —f(g80), (41b)
f(g1,81) =0, (41¢)

forall g1,92,93 € 9.

For the operation in Egs. (13-15) to be a symplectic form, the first point we need to show is that the image of
¢ equipped with a proper additive operation forms an additive group.

We claim that the set ¥~ = ¢£(Cgy (¥”)), where . is a stabilizer group, equipped with 4, operation from
Eq (12) is an additive group. Indeed, let v4, v, v¢ € 77, then the following axioms are satisfied:

7" is closed under +;

vA +¢ VB = VB +¢ Vas

(va +¢ vB) +¢ ve = va +¢ (VB +¢ Vo)

there exists an element vy such that vy +; v = va;

For each vy € /7, there exists an element vg € ¥~ such that v4 +; vg = v = v +; va.

Al

The first point is clearly true. For the second point, we have that 7" is the image of ¢ over Cg,, (¥ ). From Eq. (33),
we have

aibsj — asjby; =0, (42a)
a3jb1j — aljb3j =0, (42b)
ayjbaj — azjbyj =0, (42¢)
for j =1,..., N, where aj; and by; are the coordinates of the vectors v4 and v, respectively, for ,p = 1,2, 3.

Thus, we can see from Eq. (12) that 4 is abelian. For the third point, let vp = v4 4+; vgand vg = v +; vc,
where each coordinate is given by

doj =aojboj + aijbyj + azjbaj + asjbs), (43a)
dyj =ayjbo; + aojbyj, (43b)
daj =azjboj + aojbyj, (43¢)
dsj =asjboj + ao;bs), (43d)
and
eoj =bojcoj + bijcij + bajcaj + bjcs)s (44a)
e1j =bijcoj + bojcijs (44b)
ezj =bajcoj + bojcyj, (44¢)
e3j =bsjcoj + bojcsjs (44d)

for j =1,...,N. Then, the result of the sum vr = vp + v can be described by

Joj =(aojboj + a1jbij + azjba; + asjbsj)co; + (arjboj + aobij)ey (450)
a
+ (azjboj + aojbaj)caj + (asjboj + aojbsj)csj,
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Sfij =(a1jboj + aojbij)coj + (agjboj + aijbyj + azjbaj + asjbsj)cyjs (45b)
f2j =(azjboj + aojbaj)coj + (aojboj + arjbij + azjbaj + asjbsj)cyj, (45¢)
f3j =(asjboj + agjbsj)coj + (aojboj + a1jb1j + azjbaj + asjbsj)cs;. (45d)

Similarly, it follows that the sum v = v4 + vgis equal to

Joj =a0j(bojcoj + bijcrj + bajcaj + bjcsj) + aj(bijcoj + bojci))

+ azj(bajcoj + bojczj) + asj(bsjcoj + bojes))s (462)
fij =arj(bojcoj + bujerj + bajcaj + bajesy) + aoj(brjcoj + bojyy), (46b)
fz,j =ayj(bojcoj + bijcyj + bajcaj + bsjesj) + agj(bajcoj + bojca)), (46¢)
f3/j =azj(bojcoj + brjc1j + bajcaj + bsjcsj) + aoj(bsjcoj + bojcs)). (46d)

Rearranging the terms in Eq. (46) and utilizing the relation from Eq. (42), we see that ﬁj = fl; fori =0,1,2,3and
j=1,...,N. Therefore, we have proven Property 3. From the definition of 4-; and the relation from Eq. (42), we
have that the identity element exists. In particular, the identity element is given by v; = (1n, On, On, On), where
1y and Oy are N-dimensional vectors with all coordinates equal to 1 and 0, respectively. The same approach can
be used to show Property 5.

Now, we can use the previous algebraic structure to show that the expression given in Egs. (13-15) is a
symplectic form. Let v4 = (x0, a1, a2, a3),vp = (%9, b1, b2, b3), and vc = (x9,¢1,¢2,¢3) € 7. From the clear
relationship between Egs. (13-15), we only need to show that one of these functions is a symplectic form. Then,

(va +¢ vB, Ve, = (aajxoj + Xojbaj)esj — (azjxoj + aojxsj)ca
= (apjc3j — asjezj)xoj + (bajcsj — bsjeaj)xo; (47)
= <VA> VC>{(1J) + <VB> vC){(])j))
where j = 1,..., N and we have used the fact that xo = (1, 1,...,1). It is also possible to see that
(VA VB¢ =aojbsj — asjby;
= — (a3jbyj — azjbs)) (48)

=—{(vB,vadzy

and (v4, vadeqy, = 0. Thus, we have shown that (-, Veay is in fact, a symplectic form.

Similar to previous works on stabilizer codes, we are going to derive a connection between stabilizer codes
and classical error-correcting codes. This approach enables us to derive algebraic conditions for the construction
and existence of decoherence-free stabilizer codes. We can use it to show the nonexistence of decoherence-free
stabilizer codes with some specific parameters.

Theorem 4 Let Vg, =((Sprs) be a basis of the +;-additive code of the form
C={ceC¥|c=(c,c1,¢2 ¢3) whereco = (1,1,...,1) € CN and ¢1, ¢3, ¢3 € CN}. Then, a decoherence-free
stabilizer code 2 exists if there exists an +-additive code C over C generated by ¥ g, such that C < C*¢ and
{(Hey) € C.

Indeed, since C < CL¢, then for all S, S; € ¥prs we have[Sy, S2] = 0. This implies the existence of a maxi-
mum joint eigenspace of all operators in & pgs. Let us denote it by 2. In particular, 2 is a stabilizer code with the
stabilizer given by % prs. On the other hand, the hypothesis { (H,,) € Ct¢leads to[H,,, S;] = 0 for any S; € Sprs.
Therefore, the eigenvalue of the commutator of H,, with any operator in % pgs is equal to zero. Using Proposi-
tion 3, we have that 2 is also a decoherence-free subspace.

Decoherence-free stabilizer codes for general noise. Let A, B € # (C?M) be operators. We define
the sum of the vectors vec(A) and vec(B) by

vec(A) +vec vec(B) = (A ® I)vec(B). (49)

If A commutes with B, then it is clear that vec(A) +vyec vec(B) = vec(B) +vec vec(A). Note that +yec is not the
traditional sum of vectors, which always commutes.

We utilize this relationship to show that the result from the previous subsection and the standard stabilizer
formalism can be derived from the formulation presented below. Furthermore, the vectorization of the commuta-
tor between two operators is used later to construct the symplectic form and the dual code of the additive code.
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Let & be a stabilizer set with operators satisfying the structure of the previous subsection. Assume that
Cr = (S )and Gyec = vec(S ), where the composition of operators in . corresponds to the respective opera-
tion of the additive group. Then €; = @ye..

In fact, consider a quantum system with N=1. An operator E can be written as
E = e[ + €110 + €210 + €310 or E = ¢(]0)(0] + ef;10) (1] + e]y[1) (0] + e1;11)(1], where e;, i = 0,1,2,3,
and e},q, p»q = 0, 1, satisty the relations

ego =¢o1 + €31, (50a)
eél =ey] — ey, (50b)
e%o =eq; + ez, (50c¢)
e}, =eo1 — e31, (50d)
and
eor =(egy + €11)/2, (51a)
en =(eg; + e1o)/2, (51b)
el =(e%0 — eél)/Zi, (51¢)
e31 =(e$0 —el)/2. (51d)

Extending these relations to any positive integer N, taking into account that the relations are independent from
one to another qubit, we obtain

ef)o =eq; + €31, (52a)
ehy =e1 — e, (52b)
el =il + iey, (52¢)
ey =eor — €31, (52d)
and
€ol =(660 + 8111)/2: (53a)
en =(ehy +elp)/2, (53b)
ex1 =(ely — €h))/2i, (53¢)
ex1 =(epy — €1)/2. (53d)
forl = 1,...,N.Thus, it is clear that one can describe a vector in the vec formulation in terms of the coordinates

of the vector in the ¢ formulation. In order to show that these two formulations are equivalent, we need to show
that the additive operation in one formulation can be described by the vectors in the other formulation. Let

A=Y > alal i) (i - lin) (v

i1 iNSJN

’ (54)

B :Z Z b[11171 “'bg,rN|P1>(T1|'“ |PN><rN|- (55)

P11 PNSTN

Then,
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vec(AB) = Z Z SPRE erN(A|p1 }PN Mlry) - lry)

P11 PNSIN

Z Z ( Z aillplbllml" INPNbPNVN>Ii1)'”|iN))|r1)'H|rN> (56)

JIN The-ofN Plr--oPN

Z Z [(Z @ip,bpiry) <Z AN By 1)+ ix D) -+ ).
We can describe each coordinate by

N N
vec(AB)iy,...in.n. - (Z allPl Pm (Z Linpn bPNfN (57)

From Eq. (52), denoting Zi,..__iy,rs..rn = (sz s pm (ZPN f:\]]prf)\]N,N) we obtain

vec(AB)o,is,...in,0r2rn =L(@01 + a31) (b1 + b31) + (a11 — iaz1) (b1y + ib21)1 iy, insrarys (582)
vec(AB)o,iy,....in L, ory =L(a01 4 a31)(b11 — iba1) + (a11 — ia21) (bor — b31)14is, inyrasrn> (58D)
VeC(AB)1j,...in.0rp..ory =L(a11 + ia21) (bo1 + b31) + (@01 — a31) (b11 + iba1)] iy, inuryrerys (58€)

vec(AB)1,iy,..in,Lryory =L(a@11 + ia21) (b11 — iba1) + (ao1 — a31) (bo1 — b3) 14y, inrayrn- (58d)

Expanding 4;,,...iy.r,...ry i terms of a;; and b;;, we see that vec(AB) can be computed from the vector representa-
tion given in Eq. (7). Similarly, Eq. (53) can be applied in order to describe ¢ (AB) in terms of vec(A) and vec(B).
Let.% be a stabilizer group with operators satisfying the structure of the standard stabilizer formalism. Assume
that % is the additive group constructed using the standard stabilizer formalism and @yec = vec( ), where the
composition of operators in ¥’ corresponds to the respective operation of the additive group. Then ¢ = Bvec.
To show this result, consider the single qubit N = 1case. Let A = X(a)Z(b), fora, b € Z,. Then we can write

A = Apl0){0] 4+ Ap1|0) (1] + A1ol1) (O] + A11|1)(1], (59)

where Agg = 1 — a, Ag; = (—1)%a, A1g = a, A;1 = (—=1)?(1 — a). These equalities are clearly invertible. Now,
consider the case where N > 1. The coordinates of vec(AB) are given by

1 N N
VeC(AB)i,..in.riary =(Z ailpl p1r1 (Z inpn prrN

(60)
_ABlll n’ ABf\;{er
Then we can see that
ABly =(1—d)(1 — (-1 + (- da, (61a)
AB)y =(1 — ) (~DH 4 (1 — (—)) (=D alal, (61b)
ABjy =(1 — (=1)')d, + (—1%hd,(1 — ), (610)
B}, =a| (~)! 4 (1= (D)) (DR - ), (61d)

Since the above equalities are invertible, we have that both formulations are equivalent.

As explained in the previous section, we need to have a symplectic form to construct the additive code
related to the stabilizer code and its centralizer. We can use Eq. (4) to construct the symplectic form used in this
subsection.

The map from Eq. (17) is a symplectic form over C. Indeed, let A,B,C € & (C*N) be operators. First of all,
we see that

2N
(vec(A) + vec(B),vec(C))vec = Z([(A +B)RQI—-1® (A+ B)T]vec(C)),-
i=1

2N 2N 62)
=) [A®I-1®ANvec(©)li + ) [(BOL-1® B )vec(O)l;
i=1 i=1

=(vec(A), vec(C))vec + (vec(B), vec(C))vec

The second point follows from
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2N

(vec(A), vec(B))vec = »_[vec([A, B]);

i=1
2N
- Z[Vec(AB) — vec(BA)];
i=1
2N (63)
= _ Z(vec(BA) — vec(AB));
i=1
2N

=_ Z[VGC([B,A])]Z'
i=1

= — (vec(B), vec(A))vec-

We used the linearity of the vectorization in the second equality. The last point follows by expanding an operator
A in an eigenbasis and computing(A QI -1 ® AT)vec(A).

Since (-, -)vec gives a symplectic form, Eq. (18) is indeed the dual code of an additive code. Furthermore, we
can extend the stabilizer formulation presented in the previous subsection to a larger set of errors.

Theorem5 LetV gp,s = vec(Sprs) be a basis of the 4-vec-additive code C. Then, a decoherence-free stabilizer code
9 exists if there exists an +yec-additive code C over C generated by ¥V~ o, such that C < C Lvee gnd vec(H,y) € Clvee,

This result follows the same reasoning used in the previous subsection.
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