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Stabilizer codes for open quantum 
systems
Francisco Revson F. Pereira 1,2,4, Stefano Mancini 1,2* & Giuliano G. La Guardia 3

The Lindblad master equation describes the evolution of a large variety of open quantum systems. An 
important property of some open quantum systems is the existence of decoherence-free subspaces. A 
quantum state from a decoherence-free subspace will evolve unitarily. However, there is no procedural 
and optimal method for constructing a decoherence-free subspace. In this paper, we develop tools 
for constructing decoherence-free stabilizer codes for open quantum systems governed by the 
Lindblad master equation. This is done by pursuing an extension of the stabilizer formalism beyond 
the celebrated group structure of Pauli error operators. We then show how to utilize decoherence-
free stabilizer codes in quantum metrology in order to attain the Heisenberg limit scaling with low 
computational complexity.

The second quantum revolution emerges from the possibility of designing and controlling quantum systems. The 
complexity of controlling quantum systems can be reduced by decreasing the noise due to system-environment 
interaction. This can be achieved by resorting to quantum error-correcting codes. Among them are the stabilizer 
codes1. Several works have extended the original construction method in order to incorporate Hilbert spaces 
and quantum systems with different structures2–10.

Stabilizer codes are often designed for a specific quantum channel, or anyway, their performance varies 
from channel to channel11. Having a dynamical evolution means dealing with time-varying Kraus operators, or 
equivalently, with time-varying quantum channels. Hence, in such a case, it might not be satisfactory to resort 
to the standard stabilizer code construction. In this paper, we consider an open quantum system described by 
the Lindblad master equation. This class of equations is the most general form for the generator of a quantum 
dynamical semigroup. We construct stabilizer codes able to eliminate the dissipator part of the Lindblad master 
equation, thus turning the evolution into unitary. As we show, this is possible since the stabilizer code cor-
responds to a decoherence-free subspace. A state from a decoherence-free subspace will evolve unitarily; i.e., 
the dissipator part of the Lindblad master equation will not contribute to the evolution of the state12. Although 
the stabilizer code constructed is a subspace of the corresponding decoherence-free subspace, an important 
advancement is made here. Applying the stabilizer code construction, we can derive a procedural and optimal 
method, in terms of computational complexity, for constructing the decoherence-free subspace that corresponds 
to the stabilizer code.

In doing so, we will also extend the stabilizer formalism to encompass the sum of error operators, besides 
their traditional composition. In other words, we will extend the formalism beyond the group structure of the 
error set, by considering a vector space structure for it. As a consequence, the standard dual structure of stabilizer 
codes6–10,13–16 will no longer be that of linear block codes in the general case, and the corresponding classical 
codes will be regarded as additive groups rather than vector spaces.

This paper is organized as follows. We initially present some concepts used to elaborate the results in this 
paper. A connection between stabilizer codes and decoherence-free subspaces is made. Next, we demonstrate 
the applicability of the stabilizer codes in the area of quantum metrology. A condition for probing a quantum 
system using stabilizer codes in order to obtain the Heisenberg limit scaling is stated and analyzed. Lastly, we 
suggest future lines of investigation from a coding theory perspective.

Definitions.  In this paper we deal with open quantum systems evolving by means of the Lindblad master 
equation. In order to address noise models that are not commonly considered in the literature of quantum error 
correction, we need to extended some concepts. Let the dynamics of the system’s density operator ρ be given by17
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where LD(ρ) = 1
2

∑M
l=1 �l([Jl , ρJ

†
l ] + [Jlρ, J†l ]) is the decoherence evolution originated from the system-reservoir 

coupling, with M ≤ (2N )2 − 1 where N is the number of qubits forming the system S (whose dimension is 2N ) 
and {Jl}Ml=1 are the Lindblad operators. We call this part of the evolution throughout the paper as the dissipator 
part. A decoherence-free subspace (DFS)12 HDFS of HS is such that all pure states ρ(t) belonging to the set of 
density operators D(HDFS) with support on HDFS satisfy

On the other hand, a subspace HsDFS is called strong decoherence-free subspace (sDFS) if for all pure 
ρ(t) ∈ D(HsDFS) one has LD(ρ(t)) = 0, and ρ2(t) = ρ(t),∀t . All conclusions drawn hereafter for decoherence-
free subspace can be straightforwardly extended to strong decoherence-free subspace.

A stabilizer code Q is a subspace of a N-qubit system described by C2N stabilized by the elements 
of an abelian subgroup S of the error group GN  over N qubits. The subgroup CGN (S) of GN  , given by 
CGN (S) = {E ∈ GN : EF = FE for all F ∈ S}, is called the centralizer of S in GN . The center of GN , denoted by 
Z(GN ) , is the subgroup Z(GN ) = CGN (GN ) . Let S ≤ GN be the stabilizer group of a stabilizer code Q of dimen-
sion greater than one. An error E ∈ GN is detectable by the stabilizer code Q if and only if E is an element of the 
set {sz : s ∈ S and z ∈ Z(GN )} , or E does not belong to the centralizer CGN (S)

6.
A set E of operators on C2 is denoted a nice error basis if it attains three conditions: (a) it contains the identity 

operator, (b) it is closed under the composition of operators, (c)  Tr{A†B} = 0 for distinct elements A,B ∈ E . In 
this paper, we consider the error basis E = {I, σx , σy , σz}, where I is the identity operator and σi , for i = x, y, z , 
are the Pauli matrices. The inner product of two distinct elements A, B in E is given by �A,B� = Tr{A†B}. Clearly, 
E is a nice error basis. Let E N be the error basis constructed as N-fold tensor product of Pauli matrices described 
above. The error set, denoted by GN , is the vector space over C consisting of elements in E N.

Let {|i�}2i=1 be a basis of C2 , and consider the |i�
〈

j
∣

∣ ∈ L (C2) (linear) operator over C2 . The vectorization is 
a bijective linear map from L (C2) to C4 defined as18 vec(|i�

〈

j
∣

∣) := |i�
∣

∣j
〉

. Such a map can be extended to any 
operator space. Several properties can be derived for matrix vectorization. Two operations that we use are com-
position and commutation of operators. For the first, we can exploit the relation

In particular, we have vec(AB) = (A⊗ I)vec(B) . The commutator can be easily obtained from the above relation 
and by the linearity of the vectorization. In particular, we have

Results
The error set in the standard stabilizer formalism is given by a set of operators whose elements obey the usual 
composition of operators. In this paper, operators can also be summed, thus leading to a vector space structure 
for the error set. Notice, however, that to formulate the stabilizer code construction in both approaches (the 
standard one and the one used in this paper) one only needs to utilize the composition of operators, besides the 
commutativity of its elements.

Suppose the evolution of a state ρ(t) is given by the Lindblad master equation with dissipator part described 
by operators from the set J = {Jl : l = 1, . . . ,M} . Assume that there exists a DFS HDFS = span{|ψi�}i=1,...,K 
and that Jl|ψk� = cl|ψk� , for all l = 1, . . . ,M and k = 1, . . . ,K  . We can construct the following stabilizer set 
SDFS := �S1, . . . , SM : Sl = c−1

l Jl , for l = 1, . . . ,M, where Jl ∈ J �. Suppose there exists a nontrivial maximal 
joint +1-eigenspace Q of the abelian group of SDFS . Then, define Hev = HS + i

2

∑M
l=1 �l(c

∗
l Jl − clJ

†
l ) . If it belongs 

to CGN (SDFS) , then Q is a stabilizer code and a decoherence-free subspace (see Subsection Stabilizer Codes and 
Decoherence-Free Subspaces of Methods). We call Q a decoherence-free stabilizer code.

The connection between decoherence-free subspaces and stabilizer codes is expanded in the following two 
subsections. Firstly, errors with a particular structure are considered. This structure simplifies the stabilizer 
formalism and the connection between stabilizers and classical codes. Afterwards, the restriction is relaxed and 
generalized errors are considered.

Decoherence‑free stabilizer codes for tensor‑product noise.  Let N be a positive integer, and E1,E2 
be two errors written as

Let G̃N ⊆ GN be the set containing elements of the form E1,E2 above. Then we define the map

(1)
∂ρ

∂t
= −i[HS, ρ] + LD(ρ),

(2)dTr{ρ2(t)}
dt

= 0,∀t ≥ 0, with Tr{ρ2(0)} = 1.

(3)vec(ABC) = (A⊗ CT )vec(B).

(4)vec([A,B]) = (A⊗ I− I⊗ AT )vec(B).

(5)E1 =
N
⊗

j=1

(

a0jIj + a1jσxj + a2jσyj + a3jσzj

)

,

(6)E2 =
N
⊗

j=1

(

b0jIj + b1jσxj + b2jσyj + b3jσzj

)

.
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by means of the operation

where 

 for j = 1, . . . ,N . On the other hand, let v1, v2 ∈ C
4N be two vectors given, respectively, by

Define the binary operation +ζ as

where c0j , c1j , c2j , and c3j , for j = 1, . . . ,N , are given in Eqs. (9a-9d).
L e t  N  b e  a  p o s i t i v e  i n t e g e r  a n d 

V = {v ∈ C
4N |v = (x0, x1, x2, x3) where x0 = (1, 1, . . . , 1) ∈ C

N and x1, x2, x3 ∈ C
N } be a group under +ζ . 

Then the maps

are symplectic forms over V , where vA = (x0, a1, a2, a3) , vB = (x0, b1, b2, b3) , and j = 1, . . . ,N (see Subsection 
Symplectic form and Additive Codes of Methods).

Now, we have the tools to define the symplectic dual of an +ζ-additive code. Let N be a positive integer and 
C = {c ∈ C

4N |c = (c0, c1, c2, c3), where c0 = (1, 1, . . . , 1) ∈ C
N and c1, c2, c3 ∈ C

N } be an +ζ-additive code. 
The symplectic dual of C is given by

Similarly to previous works on stabilizer codes, we are going to derive a connection between stabilizer codes and 
classical error-correcting codes. This approach enables us to derive algebraic conditions for the construction and 
existence of decoherence-free stabilizer codes. We can use it to show nonexistence of decoherence-free stabilizer 
codes with some specific parameters.

Theorem  1   L e t  VSDFS
= ζ(SDFS) be  a  bas i s  o f  the  +ζ -addit ive  code  o f  the  for m 

C = {c ∈ C
4N |c = (c0, c1, c2, c3) where c0 = (1, 1, . . . , 1) ∈ C

N and c1, c2, c3 ∈ C
N } . Then, a decoherence-free 

stabilizer code Q exists if there exists an +ζ-additive code C over C generated by VSDFS
 such that C ≤ C⊥ζ and 

ζ(Hev) ∈ C⊥ζ .

For further explanation, see “Decoherence-Free Stabilizer Codes for Tensor-Product Noise” and “Symplectic 
form and Additive Codes of Methods” subsections.

As can be noticed in Theorem 1, one needs that C ≤ C⊥ζ for constructing stabilizer codes from classical 
error-correcting codes. Such an expression is required to guarantee that Q ≤ CGN (Q )6.

(7)

ζ : G̃N → C
4N ,

N
⊗

j=1

(

a0jIj + a1jσxj + a2jσyj + a3jσzj

)

�→ (a01, . . . , a0N , a11, . . . , a1N , a21, . . . , a2N , a31, . . . a3N )

(8)ζ(E1E2) =
(

c01, . . . , c0N , c11, . . . , c1N , c21, . . . , c2N , c31, . . . , c3N
)

,

(9a)c0j =a0jb0j + a1jb1j + a2jb2j + a3jb3j ,

(9b)c1j =(a1jb0j + a0jb1j)+ i(a2jb3j − a3jb2j),

(9c)c2j =(a2jb0j + a0jb2j)+ i(a3jb1j − a1jb3j),

(9d)c3j =(a3jb0j + a0jb3j)+ i(a1jb2j − a2jb1j),

(10)v1 =
(

a01, . . . , a0N , a11, . . . , a1N , a21, . . . , a2N , a31, . . . , a3N
)

,

(11)v2 =
(

b01, . . . , b0N , b11, . . . , b1N , b21, . . . , b2N , b31, . . . , b3N
)

.

(12)v1 +ζ v2 :=
(

c01, . . . , c0N , c11, . . . , c1N , c21, . . . , c2N , c31, . . . , c3N
)

,

(13)
�·, ·�ζ(1,j) : C4N × C

4N → C

(vA, vB) �→ �vA, vB�ζ(1,j) = (a2jb3j − a3jb2j),

(14)
�·, ·�ζ(2,j) : C4N × C

4N → C

(vA, vB) �→ �vA, vB�ζ(2,j) = (a3jb1j − a1jb3j),

(15)
�·, ·�ζ(3,j) : C4N × C

4N → C

(vA, vB) �→ �vA, vB�ζ(3,j) = (a1jb2j − a2jb1j),

(16)C⊥ζ := {c ∈ C
4N : �c, d�ζ(l,j) = 0, for all d ∈ C, l = 1, 2, 3, and j = 1, . . . ,N}.
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Decoherence‑free stabilizer codes for general noise.  Let S be a stabilizer group with operators sat-
isfying the structure of the standard stabilizer formalism. Assume that C is the additive group constructed using 
the standard stabilizer formalism and Cvec = vec(S ) , where the composition of operators in S corresponds 
to the respective operation of the additive group. Then C ≡ Cvec (see subsection Decoherence-Free Stabilizer 
Codes for General Noise of Methods).

As explained in the previous subsection, we need to have a symplectic form in order to construct the additive 
code related to the stabilizer code and its centralizer. We can use Eq. (4) to construct the symplectic form used 
in this subsection. Let A,B ∈ L (C2N ) be linear operators. We define the map

The above map turns out to be a symplectic form over C (see Subsection Symplectic form and Additive Codes 
of Methods).

Since �·, ·�vec gives a symplectic form, we can define the dual code of an additive code. Furthermore, we can 
extend the stabilizer formulation presented in the previous subsection to a larger set of errors. Let C be an +vec

-additive code. The symplectic dual of C is given by

Theorem 2  Let VSDFS
= vec(SDFS) be a basis of the +vec-additive code C. Then, a decoherence-free stabilizer code 

Q exists if there exists an +vec-additive code C over C generated by VSDFS
 such that C ≤ C⊥vec and vec(Hev) ∈ C⊥vec.

Notice that Theorem 2 extends the result presented in Theorem 1 for general noise. For further explanation 
and discussions, see “Decoherence-Free Stabilizer Codes for General Noise” subsection.

Discussion
Application to Parameter Estimation.  Suppose we have a unitary evolution given by U = exp(−iHS) , 
where HS = ηH is the system Hamiltonian, η is a parameter to be estimated, and H is the generator of U. One 
of the goals of quantum metrology is to reduce the error obtained in estimating η when compared to classical 
strategies. To attain this goal, we use N identical and independent probes, measure them in the channel output, 
and average the results. Such scheme has the estimation precision lower bounded by19,20

where �A is the standard deviation of the random variable A, and h =
∑N

j=1 Hj , Hj acting on the j-th probe, 
stands for the generator of the unitary evolution U⊗N . It is shown in Ref.21 that there exists a probing state and 
a measurement strategy such that

where �Max and �Min are, respectively, the maximum and minimum eigenvalues of h. This is accomplished with 
the use of general probe states, which may be entangled states, and local or joint measurements after the unitary 
evolution U⊗N . When the standard deviation (20) scales like 1/N, we say that it attains the Heisenberg limit 
(HL) scaling.

A crucial assumption used in the above methodology to attain the HL is that evolution is unitary. For Marko-
vian noise, one alternative approach is to use a quantum error-correcting code to achieve the HL under the 
assumption that the system Hamiltonian is not in the spanned space generated by the Lindblad operators22–26. 
Refs22,23 show that lower bounds can be constructed from a simple algebraic condition involving solely the 
operators appearing in the quantum master equation. A preliminary protocol considering the requirements that 
quantum error-correcting codes must satisfy to achieve HL is also described in Ref.23. This proposal has been 
further extended for general adaptive multi-parameter estimation schemes in the presence of Markovian noise26. 
Lastly, Ref.25 gives a semidefinite program for finding optimal ancilla-free sensing codes.

The proposed protocol of this paper is described as follows. The first part is the construction of the stabi-
lizer code from the open quantum system evolution. Let ρMax-Min be the equally weighted superposition of the 
eigenvectors relative to the maximum and minimum eigenvalues of 

∑N
i=1 1

⊗i−1
S ⊗HS ⊗ 1

⊗N−i
S  . Next, we see 

if the stabilizer code contains the state ρMax-Min . If so, then we use it to probe the quantum system. As shown 
in the previous section, we are going to have a unitary evolution described by HS . Therefore, using the optimal 
measurement described in Ref.21 over the channel outputs, one obtains the HL scaling. We give a formal descrip-
tion of our protocol below.

The present idea differs from the literature on the use of quantum codes to attain the HL22–24,26 in terms of 
computational complexity. Here, we do not need to implement a decoding process, which is the case of Refs22–25. 
However, this decoder-free approach is not novel in the literature, e.g. Ref.26 proposes a semidefinite program 
design to identify the optimal quantum error-correcting protocol, without the necessity for a decoding algo-
rithm, to achieve the best estimation precision in cases where the Heisenberg scaling is attainable. The quantum 

(17)

�·, ·�vec : C2N × C
2N → C

(vec(A), vec(B)) �→ �vec(A), vec(B)�vec =
2N
∑

i=1

[(A⊗ I− I⊗ AT )vec(B)]i .

(18)C⊥vec := {c ∈ C
2N : �c, d�vec = 0, for all d ∈ C}.

(19)�η�h ≥
1

2
,

(20)�η ≥
1

N(�Max − �Min)
,
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state will not change by the environmental noise since it belongs to the DFS. Therefore, there is no error to be 
detected or corrected. Removing the decoder from the picture, we have a reduced number of operations to be 
implemented and a faster probing strategy.

Consider a quantum system with evolution given by the Lindblad master equation with Lindblad operators 
{Jl} . Let S be a stabilizer set constructed from the Lindblad operators. Let |ψmax� and |ψmin� be eigenvectors 
of the system Hamiltonian HS with maximum and minimum eigenvalues, respectively. Then, Heisenberg limit 
scaling is achievable if

belongs to the stabilizer code for any N > N∗ , where N∗ ∈ N . This is a clear application of the formulation con-
structed in the previous section and the methodology of achieving the Heisenberg scaling from Ref.21. In fact, 
since 

∣

∣ψ(N)
〉

 belongs to the stabilizer code, then it also belongs to the DFS, hence its evolution is unitary and the 
technique of Ref.21 can be applied.

We use the above formulation in the example below to show the achievability of the HL scaling. The proposed 
protocol relies on ρMax-Min as a codeword of the DFS stabilizer code. The existence of a DFS stabilizer code is 
equivalent to the commutativity between the Lindblad operators and the system Hamiltonian. This is satisfied 
whenever we have environments acting locally on each subsystem. Therefore, we expect that the proposed pro-
tocol can be applied to most of the relevant physical systems.

Example  Consider a quantum system with the dynamics governed by

where

and

with s = sinh(r) , c = cosh(r) , and r is the (real) squeezing parameter. The stabilizer set constructed from the dis-
sipator part is given by S = �(I⊗ I+ σz ⊗ σz)

i : i = 0, 1� . Consider an eigenvector with maximum eigenvalue 
and an eigenvector with minimum eigenvalue of the operator HS . Such a pair is

Suppose we are going to probe the system N times with the state

It is possible to see that 
∣

∣ψ(N)
〉

 is a codeword of the stabilizer code Q , since S|ψMax� = |ψMax� and 
S|ψMin� = |ψMin� , for all S ∈ S . Now, the achievability of the HL scaling can be seen in two ways. Firstly from 
the above discussion, where state membership in the stabilizer code is verified in the quantum or classical realms 
using the tools presented previously in this paper. Secondly from Eq. (22), where we have that the dissipator part 
does not contribute to the evolution since

Concluding remarks.  In this work we have constructed stabilizer codes for open quantum systems gov-
erned by the Lindblad master equation. To achieve this goal, we had to go beyond the tools that exist for stabi-
lizer codes in the literature. As an important step, we have extended the formulation of stabilizer codes under 
the influence of errors forming a group to those forming a vector space. Using stabilizer codes as tools, we were 
able to determine conditions under which decoherence-free subspaces exist.

Observe that we have not been the first to identify a connection between stabilizer codes and decoherence-free 
subspaces. However, differently from previous works27, we give a direct algebraic relation between the Lindblad 
operators, DFSs, and stabilizer codes. It is shown in Ref.27 that DFSs are a specific class of quantum error correct-
ing codes, but no constructive method to derive the stabilizer set from the Lindblad operators was shown. Fur-
thermore, as was shown in previous sections, we extended the stabilizer description to classical error-correcting 
codes defined over the complex number field. More precisely, the standard theory of quantum error-correcting 
codes contains quantum codes derived from classical codes, i.e., linear codes defined over finite fields. In this 
new context, we consider classical codes defined over C , the complex field which has characteristic zero, and 
this fact modifies completely the techniques to be applied in the constructions of our results. To the best of the 
author’s knowledge, this is the first work presenting such a formulation. In particular, there are DFS that have a 
stabilizer code as a subspace. This inclusion may or may not be proper. However, dealing with stabilizer codes 

(21)
∣

∣

∣
ψ(N)

〉

=
1√
2
(|ψmax�⊗N + |ψmin�⊗N )

(22)
∂ρ

∂t
= −i[HS, ρ] +

γ

2
(2JρJ† − J†Jρ − ρJ†J),

(23)J =
s + c

2
(I⊗ I+ σz ⊗ σz),

(24)HS =
γ (s + c)2

4
(σx ⊗ σx),

(25)|ψMax� =
1√
2
(|00� + |11�) and |ψMin� =

1√
2
(|00� − |11�).

(26)ρMax-Min =
∣

∣

∣
ψ(N)

〉〈

ψ(N)
∣

∣

∣
=

1

2

(

|ψMax�⊗N + |ψMin�⊗N
)(

�ψMax|⊗N + �ψMin|⊗N
)

.

(27)2JρMax-MinJ
† − J†JρMax-Min − ρMax-MinJ

†J = 2ρMax-Min − ρMax-Min − ρMax-Min = 0.
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can produce results that we could not obtain otherwise. In fact, one can find encoding methods for stabilizer 
codes that are procedural and optimum algorithms for creating the corresponding code space. Additionally, set 
membership can be optimally implemented by decoding methods. Later in the paper we constructed an algo-
rithm for quantum metrology that uses set membership as one of the important steps. Therefore, dealing with 
decoherence-free stabilizer code instead of the whole decoherence-free subspace is computationally relevant 
for several applications.

It is worth noting that the methodology taken to develop the symplectic dual and decoherence-free stabilizer 
codes can be tailored to general noise. Suppose we wish to extend the formulation of to operators of the form

where L is the number of terms in the sum describing the operator E, and N is the number of physical systems. A 
naive approach would be to map operators to matrices where, for a fixed l, the elements alij , for i = 0, 1, 2, 3 and 
j = 1, . . . ,N , correspond to the l-th row of the respective matrix. There are some problems with this strategy. 
First of all, one should impose an ordering over the terms in the sum going from l = 1, . . . , L as a way to make a 
uniquely correspondence between each term in the sum and a row in the matrix. Secondly, the composition of 
errors could result in a sum of matrices giving a matrix with more rows than the original matrices that are being 
summed; e.g., suppose we have E1 with L1 terms in the sum and E2 with L2 terms in the sum, then E1 ◦ E2 can 
produce up to L1 × L2 terms. This can be solved since there is a maximum L′ of terms with which any operator 
can be described. Third, and more importantly, the above representation is not unique. To see this, consider the 
operator

which can also be written as

The issue of uniqueness in representing an operator and, consequently, its matrix representation may be solved 
by introducing equivalence classes over matrix spaces similar to the equivalence classes utilized in the defini-
tion of tensor product of vector spaces28. Even though this problem may be solved, the formulation seems not 
straightforward. Therefore, we have used matrix vectorization to avoid all these complications.

This paper suggests future lines of investigation from a coding theory perspective. Firstly, constructing code 
parameter bounds by connecting physical constraints over Lindblad operators to the stabilizer code parameters. A 
quantification of goodness for decoherence-free subspaces can be obtained from this topic. One could also show 
the nonexistence of decoherence-free subspaces, which could lead to a more effective approach to investigating 
open quantum systems. Secondly, identifying decoherence-free subspaces as stabilizer codes generates the pos-
sibility to classify some evolutions of open quantum systems. One approach is connecting some evolutions to 
families of classical codes. Lastly, because of the novel approach presented, we expect quantum evolutions with 
decoherence-free stabilizer codes leading to classical codes that have not been discovered yet.

As an application of our formulation, we presented a novel algebraic method for attaining the Heisenberg limit 
scaling is using of stabilizer codes. Explanations of tools and codes created in the paper are illustrated through 
an example. The algebraic approach developed to attain the Heisenberg limit scaling paves the way to attack this 
quantum metrology problem by reservoir engineering. Finally, we would like to point out that our formalism 
applies also to Lindbladian operators coming from microscopic (Hamiltonian) dynamics, although the realiz-
ability of decoherence-free stabilizer codes will of course then depend on such dynamics, and will, eventually, 
be related to the existence of dark states.

Methods
Stabilizer codes and decoherence‑free subspaces.  Now, we are going to describe in detail the error 
basis and error vector space used throughout the paper. A set E of operators on C2 is denoted a nice error basis 
if it attains three conditions: (a) it contains the identity operator, (b) it is closed under the composition of opera-
tors, (c) Tr{A†B} = 0 for distinct elements A,B ∈ E . In this paper, we consider the error basis

where I is the identity operator and σi , for i = x, y, z , are the Pauli matrices. The inner product of two distinct 
elements A, B in E is given by

Clearly, E is a nice error basis. Additionally, we have that if E1 and E2 are nice error bases, then 
E 2 = {E1 ⊗ E2 : E1 ∈ E1,E2 ∈ E2} is a nice error basis as well. Let E N be the error basis constructed as N-fold 
tensor product of the Pauli matrices shown in Eq. (31). The error group, denoted by GN , is the vector space over 
C consisting of the elements in E N.

The symplectic forms introduced in the Results section are based on the commutation relation obtained for 
the type of errors that we are considering in this paper. In particular, let A = a0I+ a1σx + a2σy + a3σz and 
B = b0I+ b1σx + b2σy + b3σz be two elements generated by E . Then

(28)E =
L

∑

l=1

N
⊗

j=1

(al0jIj + al1jσxj + al2jσyj + al3jσzj),

(29)A = (I+ σx + σz)⊗ σy + σz ⊗ σx ,

(30)A = (I+ σx)⊗ σy + σz ⊗ (σx + σy).

(31)E = {I, σx , σy , σz},

(32)�A,B� = Tr{A†B}.
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It follows from the commutation relations of the Pauli operators [σi , σj] = 2iǫijkσk , for i, j, k = x, y, z.

Proposition 3  (12, Theorem 4, Proposition 5, Theorem 6) Let the time evolution be given by the Markovian open 
system dynamics. Then, the space P = span{|ψi�}i=1,...,K is a DFS for all time t if and only if Jl|ψk� = cl|ψk� , for 
all l = 1, . . . ,M and k = 1, . . . ,K  , and the commutator [Hev , Jl] has eigenvalues equal to zero for all |ψk� ∈ P , 
and l = 1, . . . ,M . Here

Suppose the evolution of a state ρ(t) is given by the Lindblad master equation with the dissipator part 
described by operators from the set J = {Jl : l = 1, . . . ,M} . Assume the existence of a DFS satisfying the 
assumptions of Proposition 3. Then we can construct the following stabilizer set:

Suppose Q is the joint eigenspace with eigenvalue +1 for every element in SDFS ; i.e., SDFS stabilizes Q . If 
[Si , Sj] = 0 , for all i, j = 1, . . . ,M , then SDFS is an abelian group. Furthermore, if the system Hamiltonian Hev 
belongs to the centralizer CGN (SDFS) , then we can conclude from Proposition 3 that Q is DFS. Similar argu-
ments can be used for sDFS where the stabilizer group is given by SsDFS and the commutativity condition is 
imposed over HS.

To show this result, notice that the claim that Q is a stabilizer code of SDFS follows from the fact that Q is the 
nontrivial maximal +1-eigenspace of SDFS . Secondly, for any |ψ� ∈ Q and Sl ∈ SDFS we have

Since HS + i
2

∑M
l=1 �l(c

∗
l Jl − clJ

†
l ) belongs to CGN (SDFS) , then the commutator of HS + i

2

∑M
l=1 �l(c

∗
l Jl − clJ

†
l ) 

with any element in SDFS has eigenvalue equal to zero. Therefore, from Eq. (36) and Proposition 3, we have that 
Q is also a decoherence-free subspace.

Decoherence‑free stabilizer codes for tensor‑product noise.  Considering the +ζ operation defined 
in Eq. (12) as the sum operation of the additive codes, we derive some constraint over the coordinates of the 
elements in these codes.

Let C be an +ζ-additive code. If v1 = (a0, a1, a2, a3) and v2 = (b0, b1, b2, b3) are elements in C, then 

 and the following system of equations must also be satisfied 

 for pairwise distinct l, i, k ∈ {1, 2, 3} and each j = 1, . . . ,N.
To show this result, observe that the set of conditions presented in Eq. (37) follows by imposing commutativity 

of +ζ in Eq. (12). To derive the conditions in Eq. (38), notice that Eq. (37) can be written as 

 which has a nontrivial solution if and only if a1ja2ja3j = 0 . Substituting this condition in Eq. (39) and imposing 
nontriviality to the solution again, we obtain a2ij = −a2kj and alj = 0 for pairwise distinct l, i, k ∈ {1, 2, 3} . Notice 
that for each j, we have independent conditions.

We have presented some intuitions on how to relate operators and vectors (some constraints on the coordi-
nates of the vectors have been presented). However, we need to develop further tools and properties to derive 
a stabilizer formalism connecting stabilizer and additive codes. In particular, three points are covered in the 
following subsection. Firstly, we demonstrate that the map �·, ·�ζ is a symplectic form. Using this fact, we show 
that the map ζ is an isomorphism between abelian sets of operators and additive codes. Lastly, we introduce 
symplectic dual codes and the stabilizer formalism connecting quantum stabilizer codes with +ζ-additive codes.

(33)[A,B] = 2i
(

(a2b3 − b2a3)σx + (a3b1 − b3a1)σy + (a1b2 − b1a2)σz

)

.

(34)Hev = HS +
i

2

M
∑

l=1

�l(c
∗
l Jl − clJ

†
l ).

(35)SDFS := �S1, . . . , SM : Sl = c−1
l Jl , for l = 1, . . . ,M, where Jl ∈ J �.

(36)Jl|ψ� = clSl|ψ� = cl|ψ�.

(37a)a2jb3j =a3jb2j ,

(37b)a3jb1j =a1jb3j ,

(37c)a1jb2j =a2jb1j ,

(38a)alj =0,

(38b)aij =± iakj ,

(39a)a2jb3j − a3jb2j =0,

(39b)a3jb1j − a1jb3j =0,

(39c)a1jb2j − a2jb1j =0,
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Symplectic form and additive codes.  A symplectic form connects the centralizer of a stabilizer group 
to the dual code of the classical code corresponding to the stabilizer group. Symplectic forms can be defined 
over vector spaces or groups. In the following we consider a symplectic form over groups. Thus, the dual code 
obtained is an additive code.

A symplectic form over an additive group G to a field F is a function

such that 

 for all g1, g2, g3 ∈ G.
For the operation in Eqs. (13-15) to be a symplectic form, the first point we need to show is that the image of 

ζ equipped with a proper additive operation forms an additive group.
We claim that the set V = ζ(CGN (S )) , where S is a stabilizer group, equipped with +ζ operation from 

Eq (12) is an additive group. Indeed, let vA, vB, vC ∈ V , then the following axioms are satisfied: 

1.	 V is closed under +ζ;
2.	 vA +ζ vB = vB +ζ vA;
3.	 (vA +ζ vB)+ζ vC = vA +ζ (vB +ζ vC);
4.	 there exists an element vI such that vA +ζ vI = vA;
5.	 For each vA ∈ V , there exists an element vB ∈ V such that vA +ζ vB = vI = vB +ζ vA.

The first point is clearly true. For the second point, we have that V is the image of ζ over CGN (S ) . From Eq. (33), 
we have 

 for j = 1, . . . ,N  , where alj and bpj are the coordinates of the vectors vA and vB , respectively, for l, p = 1, 2, 3 . 
Thus, we can see from Eq. (12) that +ζ is abelian. For the third point, let vD = vA +ζ vB and vE = vB +ζ vC , 
where each coordinate is given by 

 and 

 for j = 1, . . . ,N . Then, the result of the sum vF = vD + vC can be described by 

(40)
f : G × G → F

(g1, g2) �→ f (g1, g2),

(41a)f (g1 + g2, g3) =f (g1, g3)+ f (g2, g3),

(41b)f (g1, g2) =− f (g2, g1),

(41c)f (g1, g1) =0,

(42a)a2jb3j − a3jb2j =0,

(42b)a3jb1j − a1jb3j =0,

(42c)a1jb2j − a2jb1j =0,

(43a)d0j =a0jb0j + a1jb1j + a2jb2j + a3jb3j ,

(43b)d1j =a1jb0j + a0jb1j ,

(43c)d2j =a2jb0j + a0jb2j ,

(43d)d3j =a3jb0j + a0jb3j ,

(44a)e0j =b0jc0j + b1jc1j + b2jc2j + b3jc3j ,

(44b)e1j =b1jc0j + b0jc1j ,

(44c)e2j =b2jc0j + b0jc2j ,

(44d)e3j =b3jc0j + b0jc3j ,

(45a)
f0j =(a0jb0j + a1jb1j + a2jb2j + a3jb3j)c0j + (a1jb0j + a0jb1j)c1j

+ (a2jb0j + a0jb2j)c2j + (a3jb0j + a0jb3j)c3j ,
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 Similarly, it follows that the sum vF ′ = vA + vE is equal to 

 Rearranging the terms in Eq. (46) and utilizing the relation from Eq. (42), we see that fij = f ′ij for i = 0, 1, 2, 3 and 
j = 1, . . . ,N . Therefore, we have proven Property 3. From the definition of +ζ and the relation from Eq. (42), we 
have that the identity element exists. In particular, the identity element is given by vI = (1N , 0N , 0N , 0N ) , where 
1N and 0N are N-dimensional vectors with all coordinates equal to 1 and 0, respectively. The same approach can 
be used to show Property 5.

Now, we can use the previous algebraic structure to show that the expression given in Eqs. (13-15) is a 
symplectic form. Let vA = (x0, a1, a2, a3), vB = (x0, b1, b2, b3), and vC = (x0, c1, c2, c3) ∈ V . From the clear 
relationship between Eqs. (13-15), we only need to show that one of these functions is a symplectic form. Then,

where j = 1, . . . ,N and we have used the fact that x0 = (1, 1, . . . , 1) . It is also possible to see that

and �vA, vA�ζ(1,j) = 0 . Thus, we have shown that �·, ·�ζ(1,j) is, in fact, a symplectic form.
Similar to previous works on stabilizer codes, we are going to derive a connection between stabilizer codes 

and classical error-correcting codes. This approach enables us to derive algebraic conditions for the construction 
and existence of decoherence-free stabilizer codes. We can use it to show the nonexistence of decoherence-free 
stabilizer codes with some specific parameters.

Theorem  4   L e t  VSDFS
= ζ(SDFS) be  a  bas i s  o f  the  +ζ -addit ive  code  o f  the  for m 

C = {c ∈ C
4N |c = (c0, c1, c2, c3) where c0 = (1, 1, . . . , 1) ∈ C

N and c1, c2, c3 ∈ C
N } . Then, a decoherence-free 

stabilizer code Q exists if there exists an +ζ-additive code C over C generated by VSDFS
 such that C ≤ C⊥ζ and 

ζ(Hev) ∈ C⊥ζ.

Indeed, since C ≤ C⊥ζ , then for all S1, S2 ∈ SDFS we have [S1, S2] = 0 . This implies the existence of a maxi-
mum joint eigenspace of all operators in SDFS . Let us denote it by Q . In particular, Q is a stabilizer code with the 
stabilizer given by SDFS . On the other hand, the hypothesis ζ(Hev) ∈ C⊥ζ leads to [Hev , Si] = 0 for any Si ∈ SDFS . 
Therefore, the eigenvalue of the commutator of Hev with any operator in SDFS is equal to zero. Using Proposi-
tion 3, we have that Q is also a decoherence-free subspace.

Decoherence‑free stabilizer codes for general noise.  Let A,B ∈ L (C2N ) be operators. We define 
the sum of the vectors vec(A) and vec(B) by

If A commutes with B, then it is clear that vec(A)+vec vec(B) = vec(B)+vec vec(A) . Note that +vec is not the 
traditional sum of vectors, which always commutes.

We utilize this relationship to show that the result from the previous subsection and the standard stabilizer 
formalism can be derived from the formulation presented below. Furthermore, the vectorization of the commuta-
tor between two operators is used later to construct the symplectic form and the dual code of the additive code.

(45b)f1j =(a1jb0j + a0jb1j)c0j + (a0jb0j + a1jb1j + a2jb2j + a3jb3j)c1j ,

(45c)f2j =(a2jb0j + a0jb2j)c0j + (a0jb0j + a1jb1j + a2jb2j + a3jb3j)c2j ,

(45d)f3j =(a3jb0j + a0jb3j)c0j + (a0jb0j + a1jb1j + a2jb2j + a3jb3j)c3j .

(46a)
f ′0j =a0j(b0jc0j + b1jc1j + b2jc2j + b3jc3j)+ a1j(b1jc0j + b0jc1j)

+ a2j(b2jc0j + b0jc2j)+ a3j(b3jc0j + b0jc3j),

(46b)f ′1j =a1j(b0jc0j + b1jc1j + b2jc2j + b3jc3j)+ a0j(b1jc0j + b0jc1j),

(46c)f ′2j =a2j(b0jc0j + b1jc1j + b2jc2j + b3jc3j)+ a0j(b2jc0j + b0jc2j),

(46d)f ′3j =a3j(b0jc0j + b1jc1j + b2jc2j + b3jc3j)+ a0j(b3jc0j + b0jc3j).

(47)

�vA +ζ vB, vC�ζ(1,j) = (a2jx0j + x0jb2j)c3j − (a3jx0j + a0jx3j)c2j

= (a2jc3j − a3jc2j)x0j + (b2jc3j − b3jc2j)x0j

= �vA, vC�ζ(1,j) + �vB, vC�ζ(1,j) ,

(48)

�vA, vB�ζ(1,j) =a2jb3j − a3jb2j

=− (a3jb2j − a2jb3j)

=− �vB, vA�ζ(1,j) ,

(49)vec(A)+vec vec(B) = (A⊗ I)vec(B).
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Let S be a stabilizer set with operators satisfying the structure of the previous subsection. Assume that 
Cζ = ζ(S ) and Cvec = vec(S ) , where the composition of operators in S corresponds to the respective opera-
tion of the additive group. Then Cζ ≡ Cvec.

In fact,  consider a quantum system with N = 1 .  An operator E  can be written as 
E = e01I+ e11σx + e21σy + e31σz or E = e100|0��0| + e101|0��1| + e110|1��0| + e111|1��1| , where ei1 , i = 0, 1, 2, 3 , 
and e1pq , p, q = 0, 1 , satisfy the relations 

 and 

 Extending these relations to any positive integer N, taking into account that the relations are independent from 
one to another qubit, we obtain 

 and 

 for l = 1, . . . ,N.Thus, it is clear that one can describe a vector in the vec formulation in terms of the coordinates 
of the vector in the ζ formulation. In order to show that these two formulations are equivalent, we need to show 
that the additive operation in one formulation can be described by the vectors in the other formulation. Let

Then,

(50a)e100 =e01 + e31,

(50b)e101 =e11 − ie21,

(50c)e110 =e11 + ie21,

(50d)e111 =e01 − e31,

(51a)e01 =(e100 + e111)/2,

(51b)e11 =(e101 + e110)/2,

(51c)e21 =(e110 − e101)/2i,

(51d)e31 =(e100 − e111)/2.

(52a)el00 =e0l + e3l ,

(52b)el01 =e1l − ie2l ,

(52c)el10 =e1l + ie2l ,

(52d)el11 =e0l − e3l ,

(53a)e0l =(el00 + el11)/2,

(53b)e1l =(el01 + el10)/2,

(53c)e2l =(el10 − el01)/2i,

(53d)e3l =(el00 − el11)/2.

(54)A =
∑

i1,j1

· · ·
∑

iN ,jN

a1i1j1 · · · a
N
iN jN

|i1�
〈

j1
∣

∣ · · · |iN �
〈

jN
∣

∣,

(55)B =
∑

p1,r1

· · ·
∑

pN ,rN

b1p1r1 · · · b
N
pN rN

∣

∣p1
〉

�r1| · · ·
∣

∣pN
〉

�rN |.
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We can describe each coordinate by

From Eq. (52), denoting �i2,...,iN ,r2,...,rN = (
∑

p2
a2i2p2b

2
p2r2

) · · · (
∑

pN
aNiNpN b

N
pN rN

) , we obtain 

 Expanding �i2,...,iN ,r2,...,rN in terms of aij and bij , we see that vec(AB) can be computed from the vector representa-
tion given in Eq. (7). Similarly, Eq. (53) can be applied in order to describe ζ(AB) in terms of vec(A) and vec(B).

Let S be a stabilizer group with operators satisfying the structure of the standard stabilizer formalism. Assume 
that C is the additive group constructed using the standard stabilizer formalism and Cvec = vec(S ) , where the 
composition of operators in S corresponds to the respective operation of the additive group. Then C ≡ Cvec.

To show this result, consider the single qubit N = 1 case. Let A = X(a)Z(b) , for a, b ∈ Z2 . Then we can write

where A00 = 1− a , A01 = (−1)ba , A10 = a , A11 = (−1)b(1− a) . These equalities are clearly invertible. Now, 
consider the case where N > 1 . The coordinates of vec(AB) are given by

Then we can see that 

 Since the above equalities are invertible, we have that both formulations are equivalent.
As explained in the previous section, we need to have a symplectic form to construct the additive code 

related to the stabilizer code and its centralizer. We can use Eq. (4) to construct the symplectic form used in this 
subsection.

The map from Eq. (17) is a symplectic form over C . Indeed, let A,B,C ∈ L (C2N ) be operators. First of all, 
we see that

The second point follows from

(56)

vec(AB) =
∑

p1,r1

· · ·
∑

pN ,rN

b1p1r1 · · · b
N
pN rN

(A
∣

∣p1
〉

· · ·
∣

∣pN
〉

)|r1� · · · |rN �

=
∑

i1,...,iN

∑

r1,...,rN

(

∑

p1,...,pN

a1i1p1b
1
p1r1

· · · aNiNpN b
N
pN rN

)

|i1� · · · |iN �)|r1� · · · |rN �

=
∑

i1,...,iN

∑

r1,...,rN

[

(
∑

p1

a1i1p1b
1
p1r1

) · · · (
∑

pN

aNiNpN b
N
pN rN

)

]

|i1� · · · |iN �)|r1� · · · |rN �.

(57)vec(AB)i1,...,iN ,r1,...,rN = (
∑

p1

a1i1p1b
1
p1r1

) · · · (
∑

pN

aNiNpN b
N
pN rN

).

(58a)vec(AB)0,i2,...,iN ,0,r2,...,rN =[(a01 + a31)(b01 + b31)+ (a11 − ia21)(b11 + ib21)]�i2,...,iN ,r2,...,rN ,

(58b)vec(AB)0,i2,...,iN ,1,r2,...,rN =[(a01 + a31)(b11 − ib21)+ (a11 − ia21)(b01 − b31)]�i2,...,iN ,r2,...,rN ,

(58c)vec(AB)1,i2,...,iN ,0,r2,...,rN =[(a11 + ia21)(b01 + b31)+ (a01 − a31)(b11 + ib21)]�i2,...,iN ,r2,...,rN ,

(58d)vec(AB)1,i2,...,iN ,1,r2,...,rN =[(a11 + ia21)(b11 − ib21)+ (a01 − a31)(b01 − b31)]�i2,...,iN ,r2,...,rN .

(59)A = A00|0��0| + A01|0��1| + A10|1��0| + A11|1��1|,

(60)
vec(AB)i1,...,iN ,r1,...,rN =(

∑

p1

a1i1p1b
1
p1r1

) · · · (
∑

pN

aNiNpN b
N
pN rN

)

=AB1i1r1 · · ·AB
N
iN rN

.

(61a)AB
j
00 =(1− a

j
1)(1− (−1)b

j
1)+ (−1)b

j
1a

j
2a

j
1,

(61b)AB
j
01 =(1− a

j
1)(−1)b

j
1+b

j
2 + (1− (−1)b

j
1)(−1)b

j
2a

j
2a

j
1,

(61c)AB
j
10 =(1− (−1)b

j
1)a

j
1 + (−1)b

j
1a

j
2(1− a

j
1),

(61d)AB
j
11 =a

j
1(−1)b

j
1+b

j
2 + (1− (−1)b

j
1)(−1)b

j
2(1− a

j
1)a

j
2.

(62)

�vec(A)+ vec(B), vec(C)�vec =
2N
∑

i=1

([(A+ B)⊗ I− I⊗ (A+ B)T ]vec(C))i

=
2N
∑

i=1

[(A⊗ I− I⊗ AT )vec(C)]i +
2N
∑

i=1

[(B⊗ I− I⊗ BT )vec(C)]i

=�vec(A), vec(C)�vec + �vec(B), vec(C)�vec.
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We used the linearity of the vectorization in the second equality. The last point follows by expanding an operator 
A in an eigenbasis and computing (A⊗ I− I⊗ AT )vec(A).

Since �·, ·�vec gives a symplectic form, Eq. (18) is indeed the dual code of an additive code. Furthermore, we 
can extend the stabilizer formulation presented in the previous subsection to a larger set of errors.

Theorem 5  Let VSDFS
= vec(SDFS) be a basis of the +vec-additive code C. Then, a decoherence-free stabilizer code 

Q exists if there exists an +vec-additive code C over C generated by VSDFS
 such that C ≤ C⊥vec and vec(Hev) ∈ C⊥vec.

This result follows the same reasoning used in the previous subsection.
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