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Abstract

BACKGROUND: There is an unmet need for fully automated image prescription of the liver to 

enable efficient, reproducible MRI.

PURPOSE: To develop and evaluate AI-based liver image prescription.

STUDY TYPE: prospective.

POPULATION: 570 female/469 male patients(age:56±17yrs) with 72%/8%/20% assigned 

randomly for training/validation/testing; 2 female/4male healthy volunteers(age:31±6yrs).

FIELD STRENGTH/SEQUENCE: 1.5T, 3.0T; spin echo, gradient echo, bSSFP.

Correspondence: Diego Hernando, PhD, Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 
Address: Wisconsin Institutes for Medical Research, Rm 2474, 1111 Highland Ave, Madison, WI 53705, dhernando@wisc.edu, 
Phone: 608-265-7590, Twitter: @dherarr. 

Data sharing statement: Data generated or analyzed during the study are available from the corresponding author by request [and 
signing a data use agreement].

HHS Public Access
Author manuscript
J Magn Reson Imaging. Author manuscript; available in PMC 2024 August 01.

Published in final edited form as:
J Magn Reson Imaging. 2023 August ; 58(2): 429–441. doi:10.1002/jmri.28564.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ASSESSMENT: A total of 1,039 three-plane localizer acquisitions (26,929 slices) from 

consecutive clinical liver MRI examinations were retrieved retrospectively and annotated by six 

radiologists. The localizer images and manual annotations were used to train an object-detection 

convolutional neural network (YOLOv3) to detect multiple object classes (liver, torso, arms) 

across localizer image orientations and to output corresponding 2D bounding boxes. Whole-liver 

image prescription in standard orientations was obtained based on these bounding boxes. 2D 

detection performance was evaluated on test datasets by calculating intersection over union (IoU) 

between manual and automated labeling. 3D prescription accuracy was calculated by measuring 

the boundary mismatch in each dimension and percentage of manual volume covered by AI 

prescription. The automated prescription was implemented on a 3T MR system and evaluated 

prospectively on healthy volunteers.

STATISTICAL TESTS: Paired t-tests (threshold=0.05) were conducted to evaluate significance 

of performance difference between trained networks.

RESULTS: In 208 testing datasets, the proposed method with full network had excellent 

agreement with manual annotations, with median IoU>0.91 (interquartile range<0.09) across 

all seven classes. The automated 3D prescription was accurate, with shifts<2.3cm in superior/

inferior dimension for 3D axial prescription for 99.5% of test datasets, comparable to radiologists’ 

inter-reader reproducibility. The full network had significantly superior performance than the 

tiny network for 3D axial prescription in patients. Automated prescription performed well across 

SSFSE, GRE, and bSSFP sequences in the prospective study.

DATA CONCLUSION: AI-based automated liver image prescription demonstrated promising 

performance across the patients, pathologies, and field strengths studied.
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INTRODUCTION

In abdominal MRI, patient experience and cost correlate closely with exam time(1). 

Recent technical advances have the potential to enable MRI of the abdomen with 

enhanced efficiency. For example, abbreviated MRI protocols have demonstrated excellent 

performance for the detection of abdominal lesions as well as diffuse liver disease(1, 2). 

Further, motion-robust free-breathing quantitative MRI methods are being developed to 

enable quantification of various imaging biomarkers without the need for breathholds(3–5). 

These developments may enable fully automated, single button-push focused exams of 

the liver with multiple advantages in terms of patient throughput, imaging volume, staff 

training and time, accessibility, and clinical workflow. However, single button-push exams 

require fully automated prescription of the liver. For these reasons, the current manual image 

prescription remains a bottleneck for rapid, high-value MRI of the abdomen. Automated 

prescription may reduce non-value-added preparatory time and improve the reproducibility 

of image prescription within and across sites(6, 7).

Previous efforts towards automated scan prescription in the liver have relied on traditional 

image processing tools, such as active shape models, to detect the upper and lower edges of 
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the liver(8, 9). In Goto et al, the upper edge of the liver was detected automatically using 

an active shape model, and the lower edge was detected using a probabilistic estimate based 

on automatically-derived statistics of the signal within the liver(8). Although promising, this 

previous method requires a specialized volumetric, breath-held localizer scan, is limited to 

prescription of axial series, has been tested in limited numbers of healthy volunteers (n = 24) 

and simulated deformed livers (n = 7).

Artificial intelligence (AI) methods have enabled automated image prescription in the brain, 

spine, heart, and kidney, with the potential to improve workflow, efficiency, and prescription 

accuracy and consistency(6, 10–16). AI has been used to address the persistent challenge 

of accurately localizing intervertebral discs (IVD) during MR examinations of the lumbar 

spine in a consistent and time-efficient manner(12). Furthermore, a cardiac MRI prescription 

method has recently been implemented, which substantially reduces examination time by 

automating real-time localization(11, 14). However, automated prescription of the liver 

remains an important unmet need.

Therefore, the purpose of this study was to develop and implement an AI-based fully 

automated prescription method for liver MRI.

MATERIALS AND METHODS

The overall workflow of the development and validation of the proposed automated 

prescription method is shown in Figure 1. In an IRB-approved study, the retrospective study 

was conducted with a waiver of informed consent and the prospective study was performed 

with informed consent with IRB approval.

Data and image processing:

In this IRB-approved study, consecutive clinical abdominal MRI exams acquired between 

9/23/2008 and 12/17/2019 at the University of Wisconsin Hospitals and Clinics were 

retrieved retrospectively, with a waiver of informed consent. The clinical MRI examinations 

were performed to confirm, exclude, or follow-up a wide variety of abdominal disorders. 

Patients with their BMI recorded within 30 days of one of their scans were included. 

Only one exam was included for any one patient in this study; the first exam of the 

patient was included in case of multiple eligible exams. The included exams were chosen 

randomly for manual annotation and model training and testing. The scanner models used 

for the exams were Discovery MR750, Discovery MR750w, SIGNA Architect, SIGNA 

PET/MR and SIGNA Premier at 3T, and Optima MR450w, SIGNA, SIGNA Artist, SIGNA 

HDx and SIGNA HDxt at 1.5T. The scanners used in this study were all manufactured 

by GE Healthcare (Waukesha, WI). At the institution of this study, all abdominal MRI 

examinations start with a three-plane localizer series based on spin-echo or gradient-echo 

acquisitions. From each exam, the (first) localizer series was retrieved for annotation, 

curation, and analysis. This series includes multiple abdominal images (21–30 total) in 

the axial, coronal, and sagittal orientations to allow for prescription of subsequent MR 

sequences. For manual labeling and automated inference, each individual localizer image 

slice was read in MATLAB (2021a, Mathworks, Natick, MA). These acquired localizer 

images typically have spatially heterogeneous intensity due to the receive coil sensitivity 

Geng et al. Page 3

J Magn Reson Imaging. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



profiles, where the subcutaneous fat and other areas near the receive coils are much brighter 

than the liver. To increase contrast around the liver, the intensity values of each image were 

normalized to 0 to 1 and values between 0 and 0.2 were mapped to values between 0 and 

1 (with values larger than 0.2 saturated to 1). Each resulting normalized image was written 

as a .png file as the input format to the labeling software and neural network(17). A 80–20 

split was used for AI model training and testing in accordance with common practice and 

to provide sufficient data for training while reserving a meaningful subset for testing. Out 

of the training set, the ratio between data used for parameter training and for validation of 

training performance was 9:1. Thus, the data partitioning across training/validation/testing 

was 72%−8%−20% of the total dataset.

Manual image annotation and intra- and inter-reader reproducibility:

The Radiological Society of North America (RSNA) Medical Imaging Resource Community 

(MIRC) Clinical Trials Processor (CTP) was used to perform image de-identification. 

Performance of manual image annotation of all three-plane localizer datasets was distributed 

among six board-certified abdominal radiologists (J.S., N.P., T.H.O., E.M.L., M.I., and 

S.B.R.) on the Python platform LabelImg(18, 19). Seven classes of labels were annotated 

using bounding boxes that span the liver, torso, and arms in specific image orientations 

(axial: liver, torso, and arms; coronal: liver and torso; sagittal: liver and torso; Figure 1) 

to enable liver image prescription in any orthogonal orientation. The torso and the arms 

are needed for coronal prescription to avoid phase wrap in the R/L dimension, while the 

torso is needed for sagittal prescription in the A/P and S/I dimensions. Arms and torso 

were annotated at the level of the liver in the superior/inferior dimension. In addition, 

50 exams were randomly selected for intra- and inter-reader reproducibility studies. One 

radiologist (J.S.) labeled the same dataset twice after a month-long delay to assess intra-

reader reproducibility. Two radiologists (J.S. and N.P.) labeled the same datasets to assess 

inter-reader reproducibility.

Training:

A deep convolutional neural network (CNN) based on a You Only Look Once (YOLOv3) 

architecture was trained for detection, localization, and classification of the aforementioned 

bounding boxes(20, 21). The network input includes a single image from the three-plane 

localizer acquisition. The YOLOv3 feature extractor, called Darknet-53 includes 106 layers, 

and contains skip connections and 3 prediction heads, each processing the image at a 

different down-sampling rate of 32, 16 and 8, respectively. Detection can thus be achieved at 

three different scales. The network detects each of the 7 classes of labeled objects described 

above with a confidence level (0–100%), and outputs the coordinates of the corresponding 

bounding boxes. Training and validation involved 72% and 8% of all patient datasets 

respectively (randomly chosen). Different training dataset sizes (5%−100% of all training 

datasets) were used to evaluate the effect of training size on network performance using 

5-fold cross validation. Reflection (horizontally and/or vertically) was used to augment the 

training set by four-fold.

Additionally, a shallower network based on a lightweight variant of YOLOv3, YOLOv3-

tiny, was trained to enable real-time scanner implementation(22). The tiny network includes 
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only 15 layers, and is able to predict bounding boxes 3x faster when implemented on 

a scanner with CPUs and no GPUs. This shallower network was trained using data 

augmentation methods: reflections, translation, scaling, and contrast modifications.

Termination of training for both kinds of networks relied on mean average precision (mAP), 

a common metric to evaluate performance of object localization in multi-class datasets(23).

3D image prescription:

The trained network predicts each bounding box from each test image with a confidence 

level (0–100%) on its classification label. For each image, the bounding box with the 

highest confidence level was extracted for each of the liver- and torso-labeled boxes while 

the top 2 arms-labeled boxes with the highest confidence level were extracted for the 

arms. Based on the extracted bounding boxes for each image (from either the manual or 

automated annotations), image prescription for whole-liver acquisition in each orientation 

was calculated as the minimum 3D bounding box needed to cover all the labeled 2D 

bounding boxes in the required volume (Supplementary Video S1). Different illustrative 

examples of 3D prescription along different orientations were considered in this work: 

3D axial prescription covers the torso in the anterior/posterior (A/P) and right/left (R/L) 

dimensions and the liver in superior/inferior (S/I); 3D coronal prescription covers the torso 

and the arms in the R/L dimension and at the level of the liver in S/I and the liver in A/P; 3D 

sagittal prescription covers the torso in the A/P and S/I dimensions and the liver in R/L. 3D 

prescriptions from manual annotation were calculated in a similar fashion.

Evaluation:

The performance of automated 2D object detection for each of the seven classes of labels 

was measured by mis-classification rate and intersection over union (IoU, the area of the 

intersection between the manual and automated bounding boxes divided by the area of their 

union), as intermediate evaluation metrics. To evaluate the performance of the subsequent 

automated 3D prescription, the mismatch with the manual prescription for each of the 

six edges of the 3D prescribed bounding box (right, left, anterior, posterior, superior, and 

inferior) was calculated on the remaining 20% of all patients (randomly chosen). The 

localizer images, where the S/I shift between manual labeling and AI predictions in 3D 

axial prescription was larger than 2 cm, were analyzed by a radiologist (J.S.) for subjective 

evaluation of the causes of errors. Furthermore, the percentage of the 3D volume from 

manual labeling that was covered by the AI-based prescription was reported as the overlap 

between AI and manual labeling. The performance of the proposed method was evaluated 

across patients, pathologies, field strengths and sequences with varying training sizes, full 

and tiny architectures, with and without data augmentation schemes, and against inter-reader 

reproducibility results. In this work, the ability to detect the liver’s S/I edges was given 

particular focus because the S/I edges are expected to be essential to detect for automated 

prescription of subsequent axial series (which are common in liver imaging).

Online implementation and prospective study:

The automated prescription was implemented for axial prescription on a clinical 3T 

MR system (MR750, GE Healthcare, Waukesha, WI), and evaluated prospectively on 
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healthy volunteers using different localizer pulse sequences (single-shot fast spin-echo, 

SSFSE; gradient-echo, GRE; balanced steady-state free-precession, bSSFP) and acquisition 

parameters. To run the neural networks for prediction during the scan, the trained network 

weights were converted into TensorFlow, and Python scripts for image pre-processing were 

integrated into a GE Healthcare investigational automated workflow testing platform(24). 

Using this platform, after selecting the localizer and the organ to prescribe to, with a single 

button push DICOM images were passed to the platform and processed (image intensity 

normalized from the highest intensity pixel and scaled to 0–255), the coordinates of the 

prescribed field of view were generated and returned, and the scan prescription was updated. 

In this implementation, the in-plane field-of-view size remained fixed as determined by 

the user, while the center of FOV and the prescribed volume and the number of axial 

slices were determined automatically. Once the automated prescriptions were determined, 

operators (R.G. and C.J.B.) at the console assessed whether the automated prescriptions 

needed modification in order to proceed to the subsequent scans. This assessment by the 

operators was recorded for each exam.

Statistical analysis—In the testing datasets from the retrospective study in patients, the 

performance of the full network trained without any augmentation in various sub-cohort 

across age, sex, BMI, pathology, acquisition field strength and localizer pulse sequence was 

measured by the overlap between AI and manual labeling for 3D liver detection and axial 

prescription. In the same dataset, the performance of the networks with various training 

settings (full vs. tiny, with/without augmentation) was measured by the mis-classification 

rate and IoU in 2D detection from individual slices, and the overlap between manual 

labeling and AI prediction in 3D liver detection and axial, coronal, and sagittal prescriptions. 

Paired t-tests were conducted to evaluate the statistical significance of performance 

difference between the trained networks with a threshold of 0.05. Further, the median and 

inter-quartile range (IQR) of the same performance metrics for the trained networks was 

compared against the inter- and intra-reader reproducibility of the two radiologists.

In the prospective study in healthy volunteers, the performance of both the full and tiny 

networks trained without any augmentation was measured by the overlap between manual 

labeling and AI prediction in 3D liver detection and axial prescriptions across scans acquired 

with SSFSE, GRE, and bSSFP sequences with various parameters.

RESULTS

Demo code and the YOLOv3 weights obtained after training for this work are shared in the 

following Zenodo repository: https://doi.org/10.5281/zenodo.7391054.

Overall, 7820 GA MRI examinations were identified, performed in 5351 patients (3022 

women and 2329 men). Of the 5351 patients identified, 2285 had their BMI recorded within 

30 days of one of their scans. Out of the 2285 exams with patient BMI recorded within 

30 days of the scan, 1039 were used for manual annotation and model training and testing. 

A total of 1,039 exams from 1,039 patients (age 56±17 years, range 0–101 years, 570 

females/469 males, BMI 28±9 kg/m2) were collected. Table 1 summarizes the distribution 

of the patients included in terms of age, sex, BMI, pathology, acquisition field strength 
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and sequence. The localizer acquisitions were based on SSFSE (1,015 exams, 98%) and 

GRE (24 exams, 2%). Training and validation involved 21,274 localizer slices from 748 

patients and 1,850 slices from 83 patients (randomly chosen from all patient datasets). With 

full augmentation, 2,537,390/268,320 images were used for training/validation of the tiny 

network. The performance of the proposed method was evaluated on 5,655 localizer slices 

from the remaining 208 patients. Figure 1 summarizes the data used in this study.

Training of the full network with all training data required ~40 hours (NVIDIA Tesla V100), 

to reach an mAP of 90% at an IoU threshold of 0.5. With augmentation using reflection, 

training took ~90 hours. Training of the tiny network with all training data required ~6 

hours on the same GPU (~20 hours with reflection, ~150 hours with the full augmentation 

scheme). For testing, object detection for one entire three-plane localizer (~30 images) on a 

GPU required ~0.3/0.1 seconds for the full/tiny network.

Figure 2 shows representative examples of 3D detection of the liver in a patient with a 

normal liver, and in five patients with various representative liver pathologies including focal 

lesions, iron overload, ascites, and cirrhosis.

The automated liver detection failed to detect the entirety of the liver with tight margins (2 

cm S/I) when localizer slices missed a large portion of the liver and/or provided insufficient 

signal due to dielectric shading (Figure 3). When the axial localizer images did not cover 

the liver sufficiently (a), missed prescription of the left lobe was observed due to failed 

R/L range cross-checking across views. However, 3D axial prescription of this case was 

entirely adequate (overlap with manual annotation >90%) owing to correct torso detection. 

Inaccurate automated object detection (b, c) was observed for patients with multiple cysts 

(b,c), where dielectric shading(25) led to signal dropouts in a large portion of the localizer 

slices. Inconsistencies in manual annotation between two radiologists and even between 

repeated annotations by the same radiologist appeared in the more severe case (c).

The accuracy of automated 2D and 3D detection and prescription as measured by the 

mismatch in each dimension is shown in Figure 4. Each of the seven classes had a median 

IoU>0.91 with interquartile range (IQR) <0.09. The performance of the full YOLOv3 

network (without any augmentation) in 3D liver detection and axial, coronal, and sagittal 

prescription was comparable to that of inter-reader reproducibility. For 3D liver detection, 

the percentage of manual volume included in the automated prescription had median = 

97.6% and IQR = 6.5% while the percentage of manual volume from one radiologist 

included in the other had median = 97.0% and IQR = 5.0%. The overlap for 3D axial 

prescription by the full network had median = 98.5% and IQR = 3.0% while the inter-reader 

reproducibility performance had median = 97.1% and IQR = 1.9%. The maximum S/I shift 

for 3D axial prescription by the full network was 2.3 cm for 99.5% of the test datasets, 

while that for the inter-reader reproducibility was 2.4 cm. The overlap for 3D coronal 

prescription by the full network had median = 98.3% and IQR = 3.8%, while the inter-reader 

reproducibility performance had median = 97.7% and IQR = 2.2%. The overlap for 3D 

sagittal prescription by the full network had median =97.9% and IQR = 5.5%, while the 

inter-reader reproducibility performance had median = 97.3% and IQR = 3.6%. In addition, 

Geng et al. Page 7

J Magn Reson Imaging. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for the full network the overlap for 3D axial prescription was significantly higher than the 

overlap for 3D liver detection.

For 2D detection with the full network, IoU histograms for different classes as well as 

the combined histogram followed similar trends (Supplementary Figure S2). IoU median, 

IQR, mean, and standard deviation were similar across classes. Liver detection had a lower 

mis-classification rate than torso detection in all orientations, while 2D detection of the arms 

in the axial orientation had the highest mis-classification rate. Liver detection in the coronal 

and sagittal orientations had a mis-classification rate of ~1%.

The performance of the AI-based liver prescription for 3D liver detection and 3D axial 

prescription across sub-cohorts in age, sex, BMI, pathology, and acquisition field strength 

and sequence is shown in Table 1. For both 3D liver detection and 3D axial prescription, the 

overlap between AI and manual labeling was observed across all sub-cohorts was larger than 

91%. 3D axial prescription had higher levels of overlap between AI and manual methods 

than 3D liver detection across all categories. The accuracy of AI-based liver detection was 

lower in the presence of iron overload (signal dropouts), partial liver resection, anatomical 

variation, or perihepatic pathologies such as pleural effusion or ascites. 3D axial prescription 

had an overlap of larger than 95% between AI and manual labeling across all pathologies.

As training size increased, the percentage of test cases with an overlap larger than 90% 

in 3D between AI and manual prescription increased for 3D liver detection and axial 

prescription (Figure 5). AI performance for 3D axial prescription plateaued after training 

with 500 datasets. AI performance for 3D liver detection approached but never reached inter-

radiologist reproducibility. Training with ≥ 250 datasets, AI-based 3D axial prescription 

performed better than (manual) inter-reader reproducibility.

Table 2 shows the testing results with various training settings including the tiny and 

full networks. Overall, the tiny network performance was significantly inferior to the full 

network for 3D axial prescription. Without any augmentation, the tiny network had an 

overlap of median = 96.7% and IQR = 6.2%, 95.3%±6.3%, 96.3%±6.1%, 96.5%±5.8% in 

3D liver detection, axial, coronal, and sagittal prescriptions, respectively. The maximum 

S/I shift for 3D axial prescription by the tiny network for 99.5% of the test datasets was 

2.3 cm (the same as for the full network). Although augmentation methods reduced the 

mis-classification rate in individual slices, these augmentation methods did not significantly 

improve the performance of 3D prescription for either the full (p = 0.23 for 3D axial 

prescription) or the tiny network (p = 0.26 for 3D axial prescription). Finally, the full 

network’s mis-classification rate in 2D detection was low and comparable to that of the 

intra- and inter-reader reproducibility studies (Supplementary Figures S3 and S4).

We successfully implemented the AI-based automated image prescription method with both 

the full and tiny YOLOv3 networks on a clinical MR system (GE MR750) at the site of 

this study. Automated image prescription for an entire three-plane localizer dataset on the 

MRI system CPU required ~10 seconds with the full network and ~3 seconds with the 

tiny network. For the six volunteers in this study, the online 3D axial prescription was 

performed by the tiny network to determine the prescription for the subsequent series. In all 

Geng et al. Page 8

J Magn Reson Imaging. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



six volunteers, the whole liver was covered with visually adequate placement. The online 

AI axial prescriptions were accepted by the operators (R.G. and C.J.B.) at the console 

without modifications to proceed to the subsequent scans. This allowed for fully automated 

prescription within 10 seconds (including time for AI prediction and review by the operator) 

of the previous scan completion.

The prospective performance of the AI-based 3D axial prescription in healthy volunteers 

was similar to that of the retrospective study, using both the tiny network (Table 3) and 

the full network (Supplementary Table 1). For 3D liver detection, the percentage of manual 

volume included in the automated prescription by the full network had median = 89.2% 

and IQR = 14.6%. The overlap for 3D axial prescription by the full network had median = 

92.1% and IQR = 13.2%. The 3D liver detection and axial prescription with both networks 

had overlaps > 80% with all three types of localizer sequences: SSFSE, GRE, and bSSFP, 

acquired with various parameters (Figure 6). Nevertheless, AI performed best with SSFSE 

acquisitions (Table 3 and Supplementary Table 1). The performance of both networks had 

no significant difference (p = 0.06) in 3D axial prescription across the various acquisition 

settings in the six healthy volunteers.

DISCUSSION

This work proposed an AI-based automated liver image prescription method for abdominal 

MRI. The proposed method performed well across patients, pathologies, and clinically 

relevant acquisition settings (spin echo and gradient echo localizers at 1.5T and 3T) in 

a retrospective study. Further, prospective implementation on a 3T clinical MR system 

demonstrated rapid and accurate prospective performance in a pilot study with a limited 

number of healthy volunteers. Importantly, the AI-based automated liver prescription had a 

performance level comparable to radiologists’ inter-reader reproducibility. This method has 

the potential to enable automated, efficient, and reproducible image prescription for liver 

MRI.

The trained networks demonstrated excellent performance for 2D detection of the liver, 

torso, and the arms from individual localizer slices. However, 2D detection performance was 

only an intermediate evaluation metric in this study. Thanks to redundancy across multiple 

slices and orthogonal views, 3D prescription was minimally affected by occasional detection 

errors in single slices. Importantly, the shift in 3D axial prescription in the testing dataset 

was less than 2.3 cm in the S/I dimension for 99.5% of the test datasets. This indicates that 

the addition of narrow safety margins would ensure complete liver coverage in effectively 

all patients, at the cost of slightly longer acquisitions to cover these safety margins. Finally, 

although the network was trained primarily with SSFSE localizers, the method performed 

well with other localizer methods (GRE, bSSFP) with different parameters, suggesting 

generalizable application across various localizer acquisitions.

There are relevant previous preliminary efforts towards automated scan prescription in 

the liver using traditional object detection methods(8). The method based on liver-only 

bounding boxes could only perform axial prescription, while the proposed method has 

the capability to enable liver image prescription in any orthogonal orientation thanks to 
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the inclusion of torso and arms classes. Importantly, this previous method requires a 

specialized volumetric, breath-held localizer scan, while the proposed method does not 

add any additional scan and is based on conventionally acquired localizers. In addition, 

the previous method has been tested in limited numbers of healthy volunteers (n = 24) 

and simulated deformed livers (n = 7) while the proposed method has been tested in 208 

patients with various pathologies in the liver. The proposed AI-based method may be more 

robust than the previous method in terms of testing performance. In 24 healthy volunteers, 

the detection errors of the previous method to detect the upper and lower edges of the 

liver were 1.87±2.04 mm and −0.90±7.84 mm, respectively(8). The detection errors of the 

proposed method in 208 patients for the upper and lower edges were 0.31±3.53 mm and 

−0.68±12.52 mm, respectively. The performance of the proposed method is similar to recent 

developments in automated organ detection for kidney and spine using YOLOv3-based 

networks(12, 13). After training with datasets of 14 patients and testing with 41, the reported 

metrics for 2D detection of kidneys in CT were: average IoU = 0.769 and Dice coefficient 

= 0.851(13). Detection of intervertebral discs (IVD) in lumbar spine MRI, trained with 

datasets of 19 patients and tested with 18, obtained a Dice coefficient = 0.839(12). Likely as 

a result of the larger, diverse training dataset in this study, the IoU and Dice coefficient are 

both higher (0.878 ± 0.122 and 0.935 ± 0.069). In addition, the object mis-classification rate 

of the liver of the proposed method (1–4%) is comparable to that in a recent study using a 

modified YOLOv3 network trained with 5,986 abdominal (axial) CT images (~3%)(21).

This work relied on YOLO, a state-of-the-art and robust object detection system(20). 

Alternative networks include Single Shot Detector (SSD) and Faster R-CNN(26–28). YOLO 

and SSD have the advantage of real-time object detection(26). YOLO-based models have 

been applied to localization of organs with normal activity in 3D PET scans, detection 

of lung nodules, and detection of the nasal cavity in CT scans, with excellent robustness, 

speed and accuracy(29–31). YOLOv3 and SSD have shown similar accuracy, but YOLOv3 

is about three times faster(13, 20).

The proposed approach presents several important network and workflow design 

considerations. Among various training settings, the tiny network, with much shallower 

architecture, showed slightly inferior performance to the full network. However, the 3x 

speedup of prediction time compared to the full network may make it a practical choice 

for implementation on current clinical MR systems. Additionally, the current workflow 

used a single network for all localizer image orientations. Alternatively, one might train a 

different network for each localizer slice orientation. An important advantage of the current 

single-network approach is approximately 3x faster prediction for the current MR system 

implementation, compared to using three networks.

Limitations

Confounding conditions such as multiple cysts, ascites, soft tissue edema, and iron 

overload, where B1-inhomogeneity leads to dielectric shading artifacts, pose a challenge 

for automated (and even manual) organ detection in the abdomen(25). Due to the limited 

number of failure cases with such conditions and artifacts in the testing dataset, the specific 

cause of detection failures is unknown. Furthermore, the quality of manual and automatic 
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annotation in these cases may be limited by the fixed window/leveling of the input images. 

Although this did not appear to be a limitation in most cases, dynamic window/leveling may 

improve the quality of the manual and automatic annotation and provide a more accurate 

performance assessment. Importantly, this study relied on data from a single center and a 

single vendor. Finally, the prospective pilot study on a clinical MR system demonstrated 

promising performance, but only on a small number of healthy subjects.

Training and evaluation of the proposed method using multi-center and multi-vendor 

data with a wider variety of patient datasets are needed as future work. Evaluation of 

the model performance for centers that prioritize fast acquisitions and use fewer images 

per plane for the localizers is needed as future work. More cases with severe dielectric 

shading and iron overload from other vendors can be collected for training and testing 

to broaden the applicability of the algorithm. In this study, simple definitions of liver 

coverage for 3D prescription in axial, coronal, and sagittal orientations were used for 

illustration. Additional coverage considerations in each orientation can easily be included 

subsequently. Finally, in this study experienced radiologists (rather than technologists) 

performed the labeling to train and demonstrate the performance of AI using the best 

possible manual labeling as the reference. In clinical practice, technologists typically 

prescribe the field of view for a given patient exam. Future studies aimed at measuring 

and comparing the inter-reader variability of technologists with AI performance are needed. 

A previous study showed that a commercial platform (Day optimizing throughput [Dot] 

engine, Siemens Healthineers, Forchheim, Germany) for automated image prescription 

contributed significant time savings (2–5 minutes) for whole-body free-breathing exams(32). 

The effect of the proposed automated liver prescription approach on potential time savings 

needs to be further examined in future work. Value chain analysis from study acquisition to 

delivery of actionable information to clinicians and patients may be conducted to determine 

whether automated prescription improves patient care and workflow efficiency in Radiology 

departments(33–36).

Conclusion

An AI-based automated liver prescription method developed in this work has promising 

performance across patients, pathologies, and clinically relevant acquisition settings, well 

within inter-radiologist reproducibility. Further, this study demonstrated the successful 

prospective implementation of the method on a clinical MR system. This method has the 

potential to improve clinical workflow and standardization for MRI of the liver.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow-chart summary for data retrieval, annotation, training, prescription, evaluation, and 

scanner implementation. Manual labeling consisted of 7 localization regions (LiverAx, 

TorsoAx, ArmsAx, LiverCor, TorsoCor, LiverSag, TorsoSag) that was evaluated by 

assessment of inter-reader reproducibility. A convolutional neural network (CNN) for object 

detection was trained with 80% of the datasets. The minimum 3D box needed to cover 

the appropriate labeled 2D boxes was used to obtain the final 3D automated prescription. 

Evaluation of 2D and 3D boxes was performed on the remaining 20% datasets across 

patients, pathologies, and acquisition settings. We successfully implemented the method 

on a clinical MR system and conducted a prospective study with 6 healthy volunteers 

across acquisition sequences. LiverAx/TorsoAx/ArmsAx: liver/torso/arms in the axial view; 

LiverCor/TorsoCor: liver/torso in the coronal view; LiverSag/TorsoSag: liver/torso in the 

sagittal view.
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Figure 2. 
3D detection of the liver in all three localizer orientations, with examples of common 

pathologies. a) In most cases, the liver volume was covered accurately by automated 

prescription. The automated prescription aligned well with the manual annotation in patients 

with focal lesions (b), iron overload (c), ascites (d), and/or cirrhosis (e), as well as in a 

patient with splenomegaly (f), where the spleen abuts the liver and its signal level is similar 

to that of liver, but the proposed method was still able to identify the liver correctly.
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Figure 3. 
Examples of algorithm failures for 3D liver detection. a) Missed coverage in the tip of the 

lateral segment of the left lobe due to insufficient axial localizer slices. Inaccurate automated 

object detection was observed for patients with multiple renal cysts (b) or liver cysts (c), or 

with dielectric shading (b,c) with signal dropouts in the central portion of multiple localizer 

images. Variation in manual annotation between two radiologists and even between repeated 

efforts by the same radiologist was observed in severe cases such as (c).
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Figure 4. 
Accuracy of 2D annotation across all label classes (a), 3D liver detection (b), and 3D image 

prescription (c-e). IoU histograms for all classes are qualitatively similar, with IoU median 

>0.91 and interquartile range <0.09. In (b-e), x axis shows the 6 edges: right (R), left 

(L), posterior (P), anterior (A), inferior (I), and superior (S); y axis shows the difference 

between automated and manual volumes (0: perfect alignment; negative offset: AI covering 

more volume; positive offset: missed volume). All boxes are tight around 0. For 3D axial 
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prescription, the shift in the S/I dimension was less than 2.3 cm for 99.5% of the test 

datasets.
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Figure 5. 
As training size increased, the percentage of test cases with high overlap (>90%) in 3D 

between AI and manual prescription increased for 3D liver detection and axial prescription. 

AI performance for 3D axial prescription plateaued after training with 500 patients’ datasets 

(60% of training data). AI performance for 3D liver detection approached but never reached 

radiologists’ inter-reader reproducibility performance. Training with at least 250 datasets 

(30% of training data), AI-based 3D axial prescription performed better than (manual) 

inter-reader reproducibility.
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Figure 6. 
The AI-based automated image prescription was successfully implemented on a clinical 

MRI system for prospective scanning. This online implementation performed well across 

various localizer sequences for 6 healthy volunteers. Automated prescription demonstrated 

promising performance for 3D axial prescription (similar to that of the retrospective study) 

across SSFSE, GRE, and bSSFP sequences with various parameters. The performance of 

AI-based automated prescription was best when using spin-echo (SSFSE) acquisitions.
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Table 1.

Distribution of patient datasets and testing results across age, sex, BMI, pathology, acquisition field strength 

and localizer pulse sequence. Overlap between AI and manual labeling for 3D liver detection and axial 

prescription was high (>91%) across all categories. 3D axial prescription had higher levels of overlap between 

AI and manual methods than 3D liver detection across all categories. While AI-based liver detection faced 

challenges in iron overload (signal dropouts), resection and pleural effusion (unusual anatomy), 3D axial 

prescription maintained high overlap (>95%) between AI and manual labeling across all pathologies. Overlap: 

percentage of 3D volume from manual labeling covered by AI prescription.

Sub-cohorts
Number of patients 3D Liver Detection overlap 

between AI and manual (%)
3D Axial Prescription overlap 
between AI and manual (%)

Overall Training Testing Median IQR Median IQR

Age

<21 29 18 11 96.95 5.29 99.53 1.50

21–45 245 197 48 95.17 6.97 97.55 4.85

>45 765 616 149 97.04 8.53 98.45 3.14

Sex
Male 469 373 96 97.29 8.89 99.31 2.68

Female 570 458 112 95.95 7.15 97.68 3.58

BMI

<18.5 49 36 13 94.82 4.88 98.66 4.80

18.5–24.9 364 295 69 95.36 13.69 97.63 4.12

25.0–29.9 319 263 56 97.68 6.82 99.17 2.47

≥ 30 307 237 70 97.04 6.43 98.28 3.17

Pathology*

Cirrhosis 131 105 26 97.60 4.79 99.72 2.37

Iron overload 71 56 15 93.84 7.67 100.0 2.41

Metastasis 353 297 56 96.25 9.86 98.61 3.15

Steatosis 312 253 59 96.67 6.64 98.26 4.07

Ascites 309 246 63 96.28 7.96 98.70 3.18

Resection 39 28 11 91.90 6.98 97.96 3.28

Pleural effusion 159 125 34 95.33 13.76 98.46 5.03

Field strength 1.5T 732 589 143 96.28 8.37 98.38 3.82

3T 307 242 65 96.50 6.60 98.30 2.67

Sequence
SSFSE** 1015 809 206 96.40 8.04 98.35 3.20

GRE 24 22 2 92.20 15.61 95.44 9.13

Overall 1039 831 208 97.62 6.51 98.48 3.00

*
Pathology information was automatically extracted from medical reports using keyword matching. Actual case counts may be different from 

reported here.

**
SSFSE: single-shot fast spin-echo; GRE: gradient-echo
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Table 2.

Testing results with various training settings and inter- and intra-reader reproducibility. The full YOLOv3 

network performed better than the tiny network. Although augmentation methods such as reflection and 

translation/scaling/contrast reduced the mis-classification rate in individual slices, these augmentation methods 

did not improve the performance of 3D image prescription for either the full or the tiny network. Compared to 

the performance of the readers (radiologists), the full network’s mis-classification rate in 2D detection was low 

and on par with the disagreement rate from the intra- and inter-reader reproducibility studies. The full 

network’s performance in 3D liver detection and axial, coronal, and sagittal prescription was comparable to 

that of inter-reader reproducibility. Overlap: percentage of 3D volume from manual labeling covered by AI 

prescription.

Full network Tiny network Reproducibility of 
manual annotation

− + reflection − + reflection + all 
augmentation

Inter-
reader

Intra-
reader

2D Annotation IoU between AI 
and manual (%)

Mis-
classify 4.39 3.86 9.45 9.92 6.73 6.72 4.43

Median 91.26 92.21 88.21 88.01 89.67 95.87 96.64

IQR 8.90 8.37 10.08 10.72 10.66 4.69 5.03

3D Liver Detection overlap 
between AI and manual (%)

Median 97.62 97.66 96.65 97.17 95.17 97.02 98.91

IQR 6.51 6.52 6.16 6.49 7.49 4.96 2.46

3D Axial Prescription overlap 
between AI and manual (%)

Median 98.48 98.41 95.26 95.62 96.51 97.09 99.05

IQR 3.00 2.89 6.27 5.59 5.27 1.87 1.68

S/I Shift 
for 

≥99.5% 
patients

2.3cm 2.3cm 2.3cm 4.0cm 4.6cm 2.4cm 1.3cm

3D Coronal Prescription 
overlap between AI and manual 

(%)

Median 98.32 98.17 96.30 96.91 95.95 97.73 98.71

IQR 3.76 3.71 6.13 5.13 5.65 2.18 2.25

3D Sagittal Prescription 
overlap between AI and manual 

(%)

Median 97.89 97.90 96.53 96.92 96.55 97.31 99.53

IQR 5.50 5.37 5.79 5.92 6.79 3.64 1.29

J Magn Reson Imaging. Author manuscript; available in PMC 2024 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Geng et al. Page 23

Table 3.

Testing results for prospective study using the tiny network trained without any augmentation. The online 

implementation worked well across various localizer sequences for 6 healthy volunteers. Automated 

prescription demonstrated promising performance (similar to that of the retrospective study) across SSFSE, 

GRE, and bSSFP sequences with various parameters. The performance of AI-based prescription was best for 

SSFSE acquisitions. Overlap: percentage of 3D volume from manual labeling covered by AI prescription.

Sequences

3D Liver Detection overlap between AI and manual 
(%)

3D Axial Prescription overlap between AI and 
manual (%)

Median IQR Median IQR

SSFSE

TE=40ms 94.74 15.77 96.39 9.54

TE=80ms 97.36 12.24 97.65 1.58

TE=120ms 89.33 15.95 98.20 15.33

GRE

Flip angle=20 87.26 10.52 85.01 15.79

Flip angle=30 86.30 9.38 94.25 6.34

Flip angle=60 79.74 26.51 87.33 13.90

IR-prep 85.56 19.33 84.54 14.11

bSSFP In phase 91.38 22.82 93.85 14.12

Out of phase 88.44 12.56 92.09 7.94

Overall 89.18 14.55 92.12 13.23
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