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KEYWORDS Abstract Cancer cells tend to develop resistance to chemotherapy and enhance aggressive-
Calreticulin; ness. A counterintuitive approach is to tame aggressiveness by an agent that acts opposite to
Lymphocytes; chemotherapeutic agents. Based on this strategy, induced tumor-suppressing cells (iTSCs) have
Moesin; been generated from tumor cells and mesenchymal stem cells. Here, we examined the possi-
Osteosarcoma; bility of generating iTSCs from lymphocytes by activating PKA signaling for suppressing the pro-
PKA: gression of osteosarcoma (0S). While lymphocyte-derived CM did not present anti-tumor
Prot’eome capabilities, the activation of PKA converted them into iTSCs. Inhibiting PKA conversely gener-

ated tumor-promotive secretomes. In a mouse model, PKA-activated CM suppressed tumor-
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induced bone destruction. Proteomics analysis revealed that moesin (MSN) and calreticulin
(Calr), which are highly expressed intracellular proteins in many cancers, were enriched in
PKA-activated CM, and they acted as extracellular tumor suppressors through CD44, CD47,
and CD91. The study presented a unique option for cancer treatment by generating iTSCs that
secret tumor-suppressive proteins such as MSN and Calr. We envision that identifying these tu-
mor suppressors and predicting their binding partners such as CD44, which is an FDA-approved
oncogenic target to be inhibited, may contribute to developing targeted protein therapy.

© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co.,
Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).

Introduction

In response to chemotherapeutic agents, cancer cells tend
to develop resistance, for any action can induce an opposite
reaction in mechanics. Cancer cells also enhance their
aggressiveness as the natural selection law entails a survival
of the fittest. In developing a novel option for cancer
treatment, we developed an unconventional approach that
would consider the reactive mechanism as well as compe-
tition among cells. In this study, we reported the use of
activating oncogenic signaling instead of inactivating it and
converting oncogenic signaling into anti-oncogenic signaling
using engineered lymphocytes for osteosarcoma (OS) as a
cancer model.

0OS is the most common type of primary bone cancer,
usually occurring in the lower limb of children and ado-
lescents.” While the primary therapeutic regimen is sur-
gery combined with adjuvant chemotherapy and the
current standard-of-care MAP therapy using metho-
trexate, doxorubicin, and cisplatin has saved many lives,
the prognosis of the metastatic or recurrent OS remains
high.?®> Pathways such as Wnt, PI3K, RANKL, and Notch
have been implicated in OS pathobiology,” but few
recurrent targetable mutations have been identified and
the efficacy of immunotherapy is controversial.’ To build a
novel therapeutic option, we examined the administration
of a conditioned medium (CM) by generating induced
tumor-suppressing cells (iTSCs).® The formation of iTSCs
requires a counterintuitive approach in which tumorigenic
signaling such as Wnt, PI3K, and EMT induction is activated
for producing tumor-suppressive proteomes.” ® Our pre-
vious studies have shown that the activation of Wnt and
PI3K signaling in bone cells such as osteocytes, osteo-
blasts, and MSCs as well as solid cancer cells including
breast, prostate, and pancreatic cancer cells can convert
those cells into iTSCs.' ' For instance, the over-
expression of (-catenin in osteocytes and Akt in MSCs
made their CM anti-oncogenic, and the administration of
their CMs inhibited the growth of mammary tumors and
tumor-driven bone degradation.'®~"?

While bone marrow-derived MSCs have attracted
attention in regenerative medicine because of their dif-
ferentiation capacity and immunomodulatory properties,
blood-derived mononuclear cells and lymphocytes have
also been placed on center stage in translational medi-
cine.”™ CAR T-cell immunotherapy, for instance, is an
excellent example of the use of engineered T cells to
fight against cancer.'® This study described another

engineering procedure to convert lymphocytes into can-
cer-fighting cells, using OS, rare cancer mostly for chil-
dren, as a model system. Effective drugs, directed to the
treatment of OS, have not been developed for the last 40
years."” This study aimed to explore the use of peripheral
blood for a novel therapeutic option of OS, focusing on
lymphocyte-derived CM.

Regarding the generation of iTSCs not only from non-
cancer cells but also from cancer cells, an intriguing
question is the mechanism of inducing tumor-suppressive
CM by activating tumorigenic signaling. Cancer cell secre-
tomes are generally considered tumorigenic'® since they
contribute to building a tumor microenvironment and
inducing chemoresistance.'” Besides soluble factors such as
interleukins, cytokines, growth factors, and other metab-
olites, the secretomes also contain exosomes with onco-
genic RNAs.?’ On the contrary, one caution is context
dependence in interpreting the role of secretomes. Our
group has shown that proteins such as a heat shock protein,
Hsp90ab1, act as a tumor promoter intracellularly and a
tumor suppressor extracellularly.'? Others also have shown
that high mobility group box protein 1 (HMGB1) serves as a
cytoplasmic tumor suppressor and an extracellular tumor
promoter.?’ Thus, tumorigenic factors in the cytoplasm may
deceitfully act as tumor-suppressive factors in the secre-
tome. Furthermore, another observation is the induction of
chemoresistance by the administration of chemothera-
peutic agents. If any tumor-inhibitory agents may induce
tumor-promotive secretomes,? a rational, counterintuitive
approach is to generate tumor-suppressive secretomes by
applying tumor-promotive agents.

The concept of iTSCs also arose from the biological cell
competition observed during Drosophila organogenesis as
well as mouse embryogenesis.?>*?* Briefly, in the formation
of Drosophila wing discs, cells with higher protein syn-
thesis are reported to eliminate neighboring cells with
lower protein synthesis. Likewise, in mouse embryos, it is
also reported that cells with lower Myc levels are removed
by apoptosis, and cells with higher Myc levels proliferate
to fill the vacant spaces.?® These mechanisms indicate the
possibility of removing tumor cells by generating highly
metabolically active cells. While a hallmark of tumor cells
is uncontrolled growth,?® many lines of evidence in our
previous studies demonstrate that the activation of Wnt
and PI3K signaling in tumor cells and non-tumor cells
generate tumor-suppressive secretomes. This paradoxical
approach of activating cell-proliferating signalings has
been shown effective for solid tumors including breast,
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prostate, and pancreatic cancers, although the efficacy of
anti-tumor actions differs depending on the type of iTSC-
generating cell and their activated pathways.'0 '
Because of the accessibility of patient-derived peripheral
blood, we herein focused on converting lymphocytes into
iTSCs. The preliminary screening of cell-proliferating
signaling revealed that the activation of PKA signaling®’ is
effective for generating iTSCs from lymphocytes, as
compared to activation of Wnt and PI3K signaling.®

PKA is commonly known as a cAMP-dependent protein
kinase, which is activated by the binding of cAMP and
phosphorylates numerous metabolic enzymes.?® Since the
activation of PKA generally produces metabolically active
cells, the question addressed in this study was whether
PKA-activated lymphocytes become iTSCs and generate
CM that can inhibit the progression of osteosarcoma in
vitro and in vivo (PKA CM). To determine the regulatory
mechanism underlying this counterintuitive approach of
activating PKA signaling as a cancer therapy, we examined
the contribution of two known tumor suppressors,
moesin (MSN)*° and calreticulin (Calr),*® since these
two proteins in the extracellular domain were shown to
act as tumor-suppressing proteins in our previous iTSC
studies.'”"® We have previously reported that extracel-
lular MSN acts as a tumor suppressor by interacting with
CD44 that drives aggressiveness and chemoresistance of
metastatic 0S.">3"

To begin to evaluate the downstream effectors that may
mediate the anti-tumor action of extracellular Calr, we
completed immunoprecipitation assays. Specifically, Calr
immunoprecipitated CD91, a signaling receptor to prime
immune responses of T cells and macrophages,*” as well as
CD47, an immunoglobulin that is reported to be overex-
pressed on the surface of many types of cancer cells.*
Collectively, this study revealed the potent anti-tumor ef-
fects of PKA-activated lymphocytes, which are in part
mediated by the Calr-CD47/CD91 axis. It also indicated the
possibility of developing a unique proteome-based therapy,
as well as the identification of cell-surface receptors as
druggable targets that should mediate the anti-tumor ac-
tions of iTSCs and their CM.

Materials and methods

Cell culture and agents

MG63 human OS cells and U20S human OS cells (Sigma, St.
Louis, MO, USA) were cultured in DMEM. Jurkat T lympho-
cytes were cultured in RPMI1640.>* Primary human T lym-
phocytes (#33002-02, Celprogen, CA, USA) were cultured in
CTS™ OpTmizer™ T-Cell Expansion SFM (#A3705001, Thermo
Fisher Scientific, Waltham, MA, USA). MLO-A5 osteocyte-like
cells (obtained from Dr. L. Bonewald, Indiana University, IN,
USA), RAW264.7 pre-osteoclast cells (ATCC, Manassas, VA,
USA),*° and MC3T3 osteoblasts (Sigma) were grown in aMEM.
Patient-derived xenograft (PDX) xenoline (TT2-77) were
grown in DMEM.3® Human mesenchymal stem cells (MSCs)
(Lonza, Basel, Switzerland) were grown in MSCBM (Lonza).
The culture media were supplemented with 10% FBS (fetal
bovine serum) and antibiotics (penicillin and streptomycin),
and cells were maintained at 37°C and 5% CO,.

MSN (1 pg/mL, MBS2031729, MyBioSource, San Diego,
California, USA), and Calr (0.7 pg/mL, MBS2009125) re-
combinant proteins were given to U20S cells, and cells
were incubated for 24 h. A PKA signaling activator (CW008,
20 uM and 50 pM, #5495, Tocris, Minneapolis, MN, USA)*’
and an inhibitor of PKA signaling (H89 dihydrochloride,
20 pM, #2910, Tocris)*® were applied to the cells for 24 h.
Cyclic AMP (10 puM, 50 uM and 100 pM, #A23811G, Thermo
Fisher Scientific) and Dibutyryl cAMP (100 uM, 200 uM and
500 uM, #1141, Tocris) were applied to the cells for 24 h.

Preparation of conditioned medium (CM)

For in vitro experiments, CM was subjected to low-speed
centrifugation at 2,000 rpm for 10 min. The cell-free su-
pernatants were centrifuged at 4,000 rpm for 10 min and
subjected to filtration with a 0.22-um polyethersulfone
membrane (Sigma). For examining the efficacy of CM in
vivo, fetal bovine serum-free CM was condensed by a filter
with a cutoff molecular weight of 3 kDa and the 10-fold
condensed CM (50 pL re-suspended in PBS) was intrave-
nously injected from the tail vein.

Generating the CM from human peripheral blood

The study with human peripheral blood samples was con-
ducted according to the guidelines of the Declaration of
Helsinki and approved by the ethics committee of Osaka
University (protocol #21344). We collected 8 mL peripheral
blood from 4 healthy volunteers (mean of 33 years, ranging
from 22 to 64 years) into a blood collection tube (#362753,
Becton, Dickinson and Company, NJ, USA). Blood samples
were diluted by the addition of an equal volume of 0.9% NaCl
solution. In a 15 mL centrifuge tube, 3 mL of Lymphoprep™
(# 1,114,544, Abbott Diagnostics Technologies AS, Norway)
was added onto 6 mL of the diluted blood sample. Samples
were centrifuged at 800 x g for 30 min at room temperature.
After centrifugation, the mononuclear cell fractions were
collected with a Pasteur pipette. The harvested fractions
were cultured in AlyS705 medium (Cell Science & Technology
Institute, Inc., JAPAN) and CWO008 (50 uM) was added. After
24 h, the culture medium was changed to a fresh medium,
and CW008 was completely removed. The cells were incu-
bated for 24 h. The supernatant of the culture medium was
collected and centrifuged (1,000 x g for 10 min, 14,000 x g
for 2 min, and 14,000 x g for 60 min) to separate the CM. The
CM was further concentrated to ~ 10-fold by a centrifugal
evaporator (Genevac EZ-2 Plus, SP Scientific, NY, USA). The
final protein concentration was adjusted to 0.23 pg/pl.

Human lymphocyte separation

Lymphocytes were isolated using a lymphocyte separation
medium (LSM, Corning, Glendale, Arizona, USA). In brief, a
blood sample (3W-902, Lonza) was diluted with an equal
volume of RPMI1640, and 4 mL of diluted blood sample were
carefully layered (not mixed) on top of 3 mL of LSM. The
mixture was centrifuged at 400 x g for 30 min at room
temperature. The lymphocyte layer was transferred to a
new tube, and cells were diluted with 5 volumes of
RPMI1640. They were mixed gently and centrifuged at 500
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x g for 10 min. A cell pellet was rinsed 2 times with PBS,
and the final pellet was re-suspended in RPMI1640. Har-
vested cells were mononuclear cells that included lym-
phocytes and monocytes.

MTT and EdU assays

MTT-based metabolic activity was evaluated using
2,000—3,000 OS cells seeded in 96-well plates (Corning). CM
was given on day 2, and OS cells were dyed with 0.5 mg/mL
thiazolyl blue tetrazolium bromide (Sigma) on day 4 for 4 h.
Optical density for assessing metabolic activities was
determined at 570 nm using a multi-well spectrophotometer.

Using the EdU procedure previously described,®” cellular
proliferation was examined using a fluorescence-based cell
proliferation kit (Click-iT™ EdU Alexa Fluor™ 488 Imaging Kit;
Thermo Fisher Scientific). Approximately 1,000 cells were
seeded in 96-well plates (Corning) on day 1, CM was given on
day 2, and cells were labeled with 10 uM EdU on day 4 for 4 h.
After labeling, cells were fixed in a 3.7% (w/v) formaldehyde
solution for 15 min at room temperature. Cells were washed
with a PBS buffer (3% BSA, 0.5% Triton® X-100) and incubated
with afreshly prepared Click-iT® reaction cocktail in dark for
30 min. After rinsing with a PBS buffer, at least four images
from four wells in each group were taken with a fluorescence
microscope (magnification, 100 x , Olympus, Tokyo, Japan).
The number of fluorescently labeled cells, as well as the total
number of cells, were counted using Image J (National In-
stitutes of Health, Bethesda, MD, USA) and the ratio of the
fluorescently labeled cells to the total cells was determined.

Transwell invasion and scratch motility assays

The invasion capacity of OS cells was determined using a
12-well plate and transwell chambers (Thermo Fisher Sci-
entific) with 8-um pore size. Transwell chambers were
coated with 300 uL Matrigel (100 pg/mL) that was poly-
merized and dried overnight. 500 uL of the serum-free
medium was added to each chamber and after 1 h, the
chamber was washed three times with the serum-free
medium. Approximately 7 x 10* cells in 300 pL serum-free
DMEM were then placed in the upper chamber and 800 pL
CM was added to the lower chamber. After 48 h, the cells on
the upper surface of the membrane were removed and the
membrane was treated with ~400 uL of 75% ethanol in a
fresh 12-well plate for 40 min. The cells, which invaded the
lower side of the membrane, were stained with Crystal
Violet (diluted 1:25 in water) for 30 min. At least five
randomly chosen images were taken with an inverted op-
tical microscope (magnification, 100 x , Nikon, Tokyo,
Japan), and the average number of stained cells, which
represented the invasion capacity, was determined.

A wound-healing scratch motility assay was performed to
assess 2-dimensional cell motility. Approximately
4 x 10° cells were seeded in 12-well plates, and after the cell
attachment, a scratch was made on the cell layer with a
plastic pipette tip. Cell medium was exchanged and floating
cells were removed. Images of the cell-free areas were
captured at 0 h and 24 h after scratching via an inverted
microscope with a magnification of 40 x . The areas of 4
images in each group were quantified with Image J.*°

Cell co-culturing assay

Fluorescently labeled U20S cells were prepared by
culturing them with green fluorescent dyes (4705, Sarto-
rius, Gottingen, Germany) for 20 min at 37°C. Approxi-
mately 2000 fluorescently labeled U20S cells were cultured
in a 96-well plate (Corning) with or without normal
RAW264.7 cells in complete DMEM (10% FBS, 1% antibiotics).
Five images for each group were captured with a fluores-
cence microscope (magnification, 100 x , Olympus) at 0 and
24 h and evaluated with Image J.

Western blot analysis and ELISA assay

Cells were lysed in a radio-immunoprecipitation assay buffer
with protease inhibitors (PIA32963, Thermo Fisher Scientific)
and phosphatase inhibitors (2,006,643, Calbiochem, Bill-
erica, MA, USA). After cell lysis, proteins were fractionated
by 10%—15% SDS gels and electro-transferred to poly-
vinylidene difluoride transfer membranes (IPVH00010, Milli-
pore, Billerica, MA, USA). After blocking 1 h with a blocking
buffer (1,706,404, Bio-Rad, Hercules, CA, USA), the mem-
brane was incubated overnight with primary antibodies and
then with secondary antibodies conjugated with horseradish
peroxidase for45min (7074S/7076 S, Cell Signaling, Danvers,
MA, USA). We used antibodies against Lrp5, Runx 2, Snail,
MSN, Calr, cleaved-caspase 3, caspase 3, CD91, p-CREB, and
CREB (Cell Signaling), c-fos, NFATc1, Cathepsin K (Santa Cruz
Biotechnology, Dallas, TX, USA), CD47 (Thermo Fisher Sci-
entific), Collagen I (Novus Biologicals, CO, USA), Osteocalcin
(abcam, Boston, MA, USA), and B-actin as a control (A5441,
Sigma). The protein level was determined using a SuperSignal
west femto maximum sensitivity substrate (P134096, Thermo
Fisher Scientific), and a luminescent image analyzer (LAS-
3000, Fuji Film, Tokyo, Japan) was used to quantify signal
intensities.*' The levels of Calr and MSN in CW008-treated CM
were determined using the ELISA kits (MBS263181 and
MBS2709503; MyBioSource).

RNA interference

RNA interference with specific siRNAs was conducted to
silence CD91 (106,762) and CD47 (145,977, Thermo Fisher
Scientific), together with nonspecific negative control siR-
NAs (Silencer Select #1, Thermo Fisher Scientific). Cells
were transiently transfected with siRNA using Lipofect-
amine RNAIMAX (13,778,075, Life Technologies). The me-
dium was replaced by a regular culture medium after 24 h,
and the efficiency of silencing was assessed with immuno-
blotting 24 h after transfection.

Immunoprecipitation

Immunoprecipitation was conducted with an immunopre-
cipitation starter pack kit (Cytiva, Marlborough, MA, USA),
using the procedure the manufacturer provided. In brief,
20 pL of protein A sepharose was washed twice with PBS and
incubated with 2 ug of antibodies for Calr. In parallel, normal
IgG was prepared for negative control. We employed two
kinds of protein samples, including RAW264.7 cell lysate, as
well as U20S cell lysate. The antibody-cross-linked beads
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were incubated overnight with 600 uL protein samples on a
shaker. The beads were collected by centrifugation, washed
three times with PBS, and resuspended for Western blotting.
The protein samples before the immunoprecipitation were
used as positive controls. Western blotting was conducted
using antibodies against Calr, CD91, and CD47.

Differentiation of osteoblasts and osteoclasts

The differentiation assay of RAW264.7 pre-osteoclasts was
performed in a 12-well plate. During the 6-day incubation
of pre-osteoclast cells with 40 ng/mL of RANKL, the culture
medium was exchanged once on day 4. Adherent cells were
fixed and stained with a tartrate-resistant acid phosphate
(TRAP)-staining kit (Sigma), according to the manufac-
turer’s instructions. TRAP-positive multinucleated cells (>3
nuclei) were identified as mature osteoclasts.*” To evaluate
the effect of CW CM on the differentiation of osteoblasts,
MC3T3 osteoblasts were cultured in the osteogenic medium
that consisted of 50 ug/mL ascorbic acid and 5 mM sodium
B-glycerophosphate with 10% FBS and antibiotics. The me-
dium was exchanged every 3 days and cells were fixed and
stained with Alizarin red to visualize calcium deposits in 4
weeks.

Animal model

The experimental procedures using animals were approved
by the Indiana University Animal Care and Use Committee
and were complied with the Guiding Principles in the Care
and Use of Animals endorsed by the American Physiological
Society. Mice were housed five per cage and provided with
mouse chow and water ad libitum. In the mouse model of
osteolysis (3 groups, 8 mice per group, ~8 weeks), NOD/
SCID/y (—/-) (NSG) mice received an injection of U20S
cells (2.5 x 10° cells in 20 pL PBS), into the right tibia as an
intra-tibial injection. The three treatment groups were 1)
placebo, 2) Jurkat-derived CM without CWO008 treatment,
and 3) Jurkat-derived CM with CW008 treatment. CM was
given daily as an intravenous injection to the tail vein. Mice
were sacrificed after 18 days and the hindlimbs were har-
vested for microCT imaging and histology.

X-ray

Whole-body X-ray imaging was performed using a Faxitron
radiographic system (Faxitron X-ray Co., Tucson, AZ,
USA).** Tibial integrity was scored in a blinded manner on a
scale of 0—3: 0 = normal with no indication of a tumor,
1 = clear bone boundary with slight periosteal prolifera-
tion, 2 = bone damage and moderate periosteal prolifer-
ation, and 3 = severe bone erosion.

microCT imaging and histology

The tibiae were harvested for micro-computed tomogra-
phy (uCT) imaging and histology. uCT was performed with
Skyscan 1172 (Bruker-MicroCT, Kontich, Belgium).*> Scans
were performed at pixel size 8.99 um and the images were
reconstructed (nRecon v1.6.9.18) and analyzed (CTan
v1.13). Using uCT images, trabecular bone parameters

such as bone volume ratio (BV/TV), bone mineral density
(BMD), trabecular number (Tb.n), and trabecular separa-
tion (Tb.Sp) were determined in a blinded fashion. For
histology, H&E staining was conducted as described pre-
viously.*® Of note, normal bone cells appeared as a regular
shape with round and deeply stained nuclei, while tumor
cells were of a distorted shape with irregularly stained
nuclei.

Statistical analysis

For cell-based experiments, three or four independent ex-
periments were conducted and data were expressed as
mean =+ S.D. Statistical significance was evaluated using a
one-way analysis of variance (ANOVA). Post hoc statistical
comparisons with control groups were performed using
Bonferroni correction with statistical significance at
P < 0.05. In animal experiments, we employed 8 mice per
group to obtain statistically significant differences in bone
volume ratio as a primary outcome measure. The single and
double asterisks in the figures indicate P < 0.05 and
P < 0.01, respectively.

Ethics statement

All animal experiments were conducted according to pro-
tocols approved by the Indiana University Animal Care and
Use Committee and were complied with the Guiding Prin-
ciples in the Care and Use of Animals endorsed by the
American Physiological Society (protocol #330R). The study
with human peripheral blood samples was conducted ac-
cording to the guidelines of the Declaration of Helsinki and
approved by the ethics committee of Osaka University
(protocol #21344).

Results

Suppression of tumorigenic behaviors of U20S cells
by CWO008-treated jurkat cell-derived CM

Using a PKA activator (20 pM of CWO008), we generated
CWO008-treated T-cell derived CM (CW CM) with Jurkat T-
lymphocytes. Notably, CW CM suppressed MTT-based
viability in 2 days, scratch-based migration in 1 day, EdU-
based proliferation in 2 days, and transwell invasion in 2
days of the OS cell line, U20S cells (Fig. 1A—D). The sup-
pression of the viability, migration, and proliferation was
validated in another OS cell line, MG63 cells (Fig. 1TE—-G).
To evaluate the degree of unwanted elimination of non-
tumor cells, we defined a tumor-selectivity factor, A, using
MTT-based metabolic activities. Since 1 is defined as the
ratio of (MTT reduction in tumor cells) to (MTT reduction in
non-tumor cells), the value of A above 1 indicates that an
inhibitory effect is tumor-selective. We observed that the
inhibitory effect of CW CM was tumor-selective and
stronger in two OS cell lines than bone cells such as MSCs
and an osteocyte cell line, MLO-A5 cells (Fig. S1). By
contrast, we observed the opposite pro-tumor effect by a
PKA inhibitor, H89 dihydrochloride. H89-treated Jurkat-
derived CM (H89 CM) promoted MTT-based viability in 2
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Figure 1 Suppression of tumorigenic behaviors of U20S and MG63 OS cells by CWO008-treated Jurkat cell-derived CM.

CN = control, CW = CW008, and CM = conditioned medium. The double asterisk indicates P < 0.01 (A—D) Schematic illustration of
CWO008-treated Jurkat cell-derived CM generation, and suppression of MTT-based viability, scratch-based migration, EdU-based
proliferation, and transwell invasion of U20S cells by CW008-treated Jurkat cell-derived CM, respectively. (E—G) Suppression of
MTT-based viability, scratch-based migration, and EdU-based proliferation of MG63 OS cells by CW008-treated Jurkat cell-derived

CM, respectively.

days, EdU-based proliferation in 2 days, and transwell in-
vasion in 2 days in U20S cells (Fig. S2A—C), as well as
MG63 cells (Fig. S2D—F).

Tumor-suppressive effects of cAMP-treated CM

To further evaluate the anti-tumor effect of PKA-activated
lymphocyte proteomes, we evaluated the response to cAMP

and cAMP analog using Jurkat cells as well as primary
human lymphocytes. Jurkat-derived CM after the treatment
with cAMP and D-cAMP inhibited MTT-based viability in 2
days in U20S and/or MG63 cells (Fig. 2A—C). Consistently,
CAMP treated Jurkat-derived CM suppressed EdU-based
proliferation, and transwell invasion in 2 days in U20S cells
(Fig. 2D, E). Besides Jurkat cells, primary human T
lymphocyte-derived CW008-treated CM suppressed MTT-
based viability of U20S and MG63 cells (Fig. 2F, G). Of note,
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Figure 2

Suppression of tumorigenic behaviors of U20S and MG63 OS cells by D-cAMP/cAMP- treated Jurkat cell-derived CM.

CN = control, D-cAMP = Dibutyryl cAMP, CW = CWO008, and CM = conditioned medium. The double asterisk indicates P < 0.01. (A,
B) Suppression of MTT-based viability of U20S and MG63 OS cells by D-cAMP-treated Jurkat cell-derived CM, respectively. (C—E)
Suppression of MTT-based viability, EdU-based proliferation, and transwell invasion of U20S cells by cAMP-treated Jurkat cell-
derived CM. (F, G) Suppression of MTT-based viability of U20S and MG63 OS cells by CW008-treated primary human T lymphocyte-

derived serum-free CM, respectively.

we observed the elevation in p-CREB, cAMP-response
element-binding protein, in Jurkat cells in 1 day by the
administration of CW008 (Fig. S3). Collectively, the data
suggest that activation of PKA signaling in lymphocytes
promotes the anti-tumor capabilities of lymphocyte-
derived CM.

Tumor-suppressive capability of MSC- and
osteoblast-derived CM

To examine the possibility of generating iTSCs from other
types of cells, we employed MSCs and osteoblasts. The
result showed that CWO008-treated MSC-derived CM
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Figure 3  Suppression of tumorigenic behaviors of U20S and MG63 OS cells by CWO008-treated MSC cell-derived CM and CWO008-
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inhibited MTT-based viability and scratch-based migration
in U20S cells (Fig. 3A, B) and MG63 cells (Fig. 3C, D). The
same anti-tumor responses were also observed with CW008
treated-osteoblast derived-CM for U20S cells (Fig. 3E, F) as

well as MG63 cells (Fig. 3G, H). Taken together, the result
supported the notion that anti-tumor CM can be derived
from T lymphocytes, MSCs, and osteoblasts by the treat-
ment with CW008.
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Inhibition of osteoclast differentiation, stimulation
of osteoblast differentiation, and prevention of
bone loss in vivo

So far, we have observed the suppression of in vitro OS
progression by PKA-activated cell-derived CM. Since oste-
oclasts and osteoblasts play a critical role in bone meta-
bolism, we next examined the effect of PKA-activated CM
on the differentiation of RAW264.7 pre-osteoclasts and
MC3T3 osteoblasts. In response to lymphocyte-derived CW
CM, RANKL-stimulated RAW264.7 cells reduced the number
of TRAP-positive and multi-nucleated cells in 5 days
(Fig. 4A—C). Consistently, CW CM downregulated c-fos, a
key regulator of osteoclast-macrophage lineage determi-
nation and bone remodeling, and NFATc1, a master tran-
scription factor for osteoclast differentiation, together
with Cathepsin K, a cysteine proteinase largely responsible
for the degradation of bone matrix (Fig. 4D). By contrast,
we observed the opposite action on the osteoclast differ-
entiation in response to H89 CM (Fig. 4A—D). Regarding the
effect on bone-forming osteoblasts, the culturing of MC3T3
cells in CW CM increased Alizarin red staining, a measure of
calcium deposition and osteoblast differentiation, in 4
weeks (Fig. 4E, F). CW CM also elevated the level of type |
collagen in MSCs and osteocalcin in MC3T3 cells for 7 days in
the presence and absence of 50 pug/mL ascorbic acid and
5 mM B-glycerophosphate (Fig. S4).

Bone protection in vivo by CW CM

Next, using an intratibial OS mouse model whereby U20S
cells were injected, daily administration of CW CM for 18
days significantly reduced tumor-induced trabecular bone
loss or osteolysis (Fig. 5A—C). The increase in the bone
volume ratio, bone mineral density, and the trabecular
number was in agreement with the suppression of the
tumor-invaded area in the proximal tibia in the H&E-
stained bone sections (Fig. S5). Of note, the tumor-invaded
area presented irregular-shaped spaces with a fewer num-
ber of bone marrow cells. Collectively, this suggests that
the systemic administration of CW CM can protect bone,
possibly by the inhibition of tumor progression but also by
directly regulating the function of osteoclasts and
osteoblasts.

Anti-tumor effects of peripheral blood-derived CM

Besides Jurkat cells, we examined the anti-tumor effects of
CM that were derived from lymphocytes and mononuclear
cells using human peripheral blood samples. Specifically,
lymphocytes were isolated using a lymphocyte isolation kit,
while mononuclear cells, which contained lymphocytes and
monocytes, were isolated by a density gradient centrifu-
gation. Isolated cells were treated with 50 uM CW008 for 1
day and the collected CM was condensed by 10 times. The
result showed that CW008-treated lymphocyte-derived CM
inhibited MTT-based viability and transwell invasion of
MG63 and U20S cells (Fig. 6A—D). This anti-tumor effect
was observed with mononuclear cells prepared from four
separate human peripheral blood samples (Fig. 6E, F).

Moesin (MSN) and calreticulin (Calr) as tumor-
suppressing proteins

We next began to determine the mechanism of anti-tumor
actions by focusing on MSN and Calr, two tumor-sup-
pressing proteins previously identified by our group using
mass spectrometry-based whole-genome proteomics
analysis.'>"® In CW CM derived from Jurkat cells, the
levels of MSN and Calr were elevated by Western blotting
as well as ELISA-based quantification (Fig. 7A, B). While
CW CM downregulated Lrp5, Runx 2, and Snail and
elevated cleaved caspase 3 in U20S cells in 1 day (Fig. S6),
the application of MSN and Calr recombinant proteins also
reduced the levels of Lrp5, Runx2, and Snail with an in-
crease in cleaved caspase 3 in 1 day (Fig. 7C). Consis-
tently, the MTT-based viability and transwell invasion
were also inhibited by extracellular MSN and Calr in 2 days
(Fig. 7D, E).

Immunoprecipitation of CD91 with calr in
RAW264.7 cells, and CD47 with calr in U20S cells

To assess the potential mechanism of the tumor-suppres-
sive action of Calr, we conducted an immunoprecipitation
assay using RAW264.7 pre-osteoclast cells and U20S cells.
Regarding RAW264.7 cells, CD91 was co-immunoprecipi-
tated with Calr (Fig. 7F). Notably, the proliferation of U20S
cells was inhibited by Calr recombinant proteins in the
presence of RAW264.7 cells (Fig. 7G, H), and silencing of
CD91 in RAW264.7 cells suppressed Calr-driven reduction in
MTT-based viability (Fig. 71), suggesting that the in-
teractions of extracellular Calr with CD91 in RAW264.7 cells
is responsible for the anti-tumor action. Regarding U20S
cells, CD47 was co-immunoprecipitated with Calr (Fig. 7J).
Silencing CD47 suppressed Calr-driven MTT-based tumor
inhibition as well as the downregulation of Lrp5, Runx 2,
and Snail in U20S cells (Fig. 7K, L). Taken together, the
result indicates the involvement of CD47 and CD91 in the
anti-tumor actions of extracellular Calr.

Suppression of tumorigenic behaviors of patient-
derived xenograft (PDX) xenoline (TT2-77) by CW
M

Besides OS cell lines, we examined the anti-tumor effects
of CW CM on the patient-derived xenograft (PDX) xenoline
(TT2-77). Consistently, CW CM suppressed MTT-based
viability, scratch-based migration, EdU-based proliferation,
and transwell invasion of TT2-77 cells (Fig. 8A—D).

Discussion

This study presented that the daily administration of PKA-
activated lymphocyte-derived CM inhibited the growth of
MG63 and U20S cell lines, as well as PDX OS TT2-77 cells in
vitro and in the U20S-colonized mouse tibia in vivo. PKA
was activated by the pharmacological agent, CW008, as
well as cAMP and cAMP analog in Jurkat cells, primary T
lymphocytes, and mononuclear cells derived from human
peripheral blood samples. CW CM was reproducibly
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enriched with MSN and Calr, and they acted as extracellular
tumor suppressors. Mechanistically, extracellular Calr
interacted with CD91, a plasma membrane receptor in the
family of low-density lipoprotein receptors, in RAW264.7
macrophages. Calr also interacted with CD47, a trans-
membrane protein in the immunoglobulin superfamily, in
U20S cells. Both CD91 and CD47 mediated Calr-driven anti-
tumor actions. Besides lymphocytes and blood-derived
mononuclear cells, iTSCs were generated from bone cells

such as bone marrow-derived MSCs and osteoblasts. In
addition to the suppression of tumor progression, CW CM
contributed to protecting bone loss by impeding osteoclast
differentiation and enhancing osteoblast development
(Fig. 8E).

The elimination of OS cells by iTSC proteomes such as
that found in CW CM resembles the removal of loser cells
nearby winner cells in the organogenesis observed in
Drosophila. It is reported that winner cells secrete unknown
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proteins that induce the death of loser cells via JNK
signaling.”® Cell competition has also been reported be-
tween Myc-overexpressing cells and wild-type cells in
Drosophila and mice, in which Myc-overexpressing cells can
kill wild-type cells at a distance.?**” Based on the current
and previous iTSC studies together with the cell competi-
tion in Drosophila and mice, an emerging paradigm for a
novel option for cancer treatment is to utilize the compe-
tition-driven anti-tumor capability of iTSC CM thereby
weakening tumor cells. To reach its full clinical potential,
future studies would evaluate whether the existing
chemotherapeutic strategy is compatible with the appli-
cation of iTSC proteomes.

The current study together with our previous iTSC
studies shed light on the counterintuitive approach of

generating anti-tumor CM and its mechanism for suppress-
ing the progression of OS and other tumors. Bone cells
including MSCs, osteoblasts, osteoclasts, and osteocytes
can be converted into iTSCs by activating Wnt and PI3K
signaling.’®' For lymphocytes, the activation of PKA
signaling was significantly more effective than the activa-
tion of Wnt or PI3K pathways (Fig. 57). These differences
highlight the importance of understanding the mechanisms
behind the cell type-dependent procedure of iTSC genera-
tion. Interestingly, in both PI3K-activated MSC CM and PKA-
activated lymphocyte CM, extracellular MSN and Calr were
enriched.'®'® They act as moonlighting proteins, serving as
a tumor suppressor extracellularly and a tumor promoter
intracellularly. Notably, our previous results indicated that
extracellular MSN interacted with a membrane-bound CD44
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in tumor cells, and silencing CD44 reduced MSN’s anti- with CD47, an immunoglobulin, which is overexpressed in
tumor effect.’® Also, it is reported that the overexpression many types of cancer cells. Consistent with this, it has been
of CD44 enhanced metastatic potential in U20S cells. In this reported that CD47 blockade inhibits tumor progression of
study, we observed that Calr interacted with CD91, which is human OS in xenograft models.*® Further studies are rec-
expressed in RAW264.7 pre-osteoclasts. It also interacted ommended to examine whether CW CM in this study shows
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anti-tumor actions on other cancers such as breast cancer
and prostate cancer and whether PKA activation induces
iTSCs in other types of cells such as MSCs.

From a translational viewpoint, we chose lymphocytes
and mononuclear cells for the generation of iTSCs since
they would allow autologous usage of peripheral blood from
a patient with 0S. We also consider the potential linkage to
chimeric antigen receptor (CAR) T cell immunotherapy that
employs T cells with transfected chimeric antigen re-
ceptors.”’ Since the procedure for applying engineered T
cells to cancer patients is established, we may develop T

cell-derived iTSCs and proteomes using the CART cell
technology. Alternatively, we may examine the possibility
of converting CART cells into iTSCs by genetic manipulation
or chemical treatment and augmenting the target anti-
tumor capability of CART cells.

Although this study presented the striking anti-tumor
action of CW CM, there are limitations. First, efficacies of
iTSC CM were untested for multiple variants of OS disease
types. We employed MG63, osteoblast-like OS cell line,
and U20S, negative for most of the osteoblastic
markers,’® together with PDX 0S TT2-77 cells. Second,
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while CWO008 is known to activate the cAMP/PKA/CEB
pathway and stimulate osteogenic differentiation of bone
marrow-derived MSCs, its action may not be completely
specific to PKA signaling. Third, the secretome from iTSCs
includes other molecules such as nucleic acids, small
metabolites, lipids, etc. This study focused on proteomes
analysis since the treatment with nucleases, a removal of
exosomes by ultracentrifugation, and filtering with 3 kD
cutoff did not significantly alter the anti-tumor capabil-
ities of CW CM.

Conclusions

The study illustrated an uncommon claim of therapeutic
option, in which tumorigenic signaling is stimulated for the
development of iTSCs. In addition to existing targets such
as angiogenesis, cell cycling, cellular metabolism, etc., we
envision that identifying extracellular MSN and Calr as
tumor suppressors and predicting their binding partners
contributes to expanding the scope of targeted protein
therapy. In summary, we demonstrated that lymphocytes
and mononuclear cells, obtained from the peripheral blood,
can be converted into iTSCs and their proteomes can pro-
tect bone from OS without inducing a vicious cycle between
OS cells and bone-resorbing osteoclasts. The therapeutic
possibilities include the local and global administration of
iTSCs and their CM, targeted delivery of a protein cocktail
consisting of the selected tumor-suppressing proteins, and
the identification of cell-surface receptors as druggable
targets that mediate CM’s anti-tumor action.
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BMD bone mineral density

BV/TV bone volume ratio

Calr calreticulin

(CAR) T cell chimeric antigen receptor T cell

1655
HMGB1 high mobility group box protein 1
iTSCs  induced tumor-suppressing cells
MSN moesin
NSG NOD/SCID/vy (—/-)
(O osteosarcoma

PDX patient-derived xenograft

TRAP  tartrate-resistant acid phosphate
Tb.N trabecular number
Tb.Sp  trabecular separation
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