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A B S T R A C T

TANK-binding kinase 1 (TBK1) is a nodal protein involved in multiple signal transduction pathways. In RNA
virus-mediated innate immunity, TBK1 is recruited to the prion-like platform formed by MAVS and subsequently
activates the transcription factors IRF3/7 and NF-κB to produce type I interferon (IFN) and proinflammatory
cytokines for the signaling cascade. In this study, TRAF7 was identified as a negative regulator of innate immune
signaling. TRAF7 interacts with TBK1 and promotes K48-linked polyubiquitination and degradation of TBK1
through its RING domain, impairing the activation of IRF3 and the production of IFN-β. In addition, we found that
the conserved cysteine residues at position 131 of TRAF7 are necessary for its function toward TBK1. Knockout of
TRAF7 could facilitate the activation of IRF3 and increase the transcript levels of downstream antiviral genes.
These data suggest that TRAF7 negatively regulates innate antiviral immunity by promoting the K48-linked
ubiquitination of TBK1.
1. Introduction

The innate immune system relies on pattern-recognition receptors
(PRRs) to recognize pathogen-associated molecular patterns (Akira et al.,
2006; Takeuchi and Akira, 2010) and initiate intracellular and intercel-
lular signaling pathways to remove invading pathogens. Several types of
PRRs (such as RIG-I-like receptors (RLRs) (Takeuchi and Akira, 2009),
Toll-like receptors (TLRs) (Kawai and Akira, 2008, 2009), NOD-like re-
ceptors (NLRs) (Kawai and Akira, 2009), and DNA sensors (Barber, 2011)
have been identified to detect invading pathogenic molecules and initiate
the type I IFN signaling. Among them, RIG-I recognizes RNA viruses,
resulting in conformational changes and exposure of the N-terminal
CARD domain (Hu and Shu, 2018). Subsequently, RIG-I interacts with
the mitochondrial antiviral proteinMAVS (also known as VISA, ISP-I, and
CARDIF) via the CARD structural domain (Kawai et al., 2005; Meylan
et al., 2005; Seth et al., 2005; Xu et al., 2005). Activation of MAVS forms
a giant prion-like complex that recruits downstream signaling molecules,
including TRAFs, TBK1, and IKK complex (Hou et al., 2011). Next, TBK1
activates transcription factors IRF3/7 and NF-κB to produce type I
interferon and proinflammatory cytokines (Tan et al., 2018). Type I
interferon further activates the expression of a series of
equally to this work.
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interferon-stimulated genes to initiate adaptive immunity (Ivashkiv and
Donlin, 2014).

TBK1, a serine/threonine kinase, involved in multiple signal trans-
ductions that belongs to the noncanonical IKK family, similar to IκB ki-
nase ε (IKKε, also known as IKKi). It plays an essential role in regulating
the interferon response (Fitzgerald et al., 2003). Multiple pattern
recognition receptors (PRRs) activate downstream signaling via TBK1
after virus or bacterial infection, such as TLR3/4-TRIF-TBK1, RIG-I/M-
DA5-MAVS-TBK1 and cGAS-STING-TBK1 (Tan et al., 2018). Moreover,
many studies have shown that TBK1 also plays essential roles in multiple
signal transduction pathways. TBK1 can regulate adipose tissue meta-
bolism and inflammation, thus affecting the metabolic balance of glucose
and energy (Oral et al., 2017; Zhao et al., 2018). TBK1 phosphorylates
and matures optineurin (OPTN) to mediate the xenophagy of damaged
mitochondria and pathogens (Pilli et al., 2012; Richter et al., 2016). It has
been reported that GSK3β promoted TBK1 self-association and auto-
phosphorylation at Ser172 (Lei et al., 2010). In addition, TBK1 is an
essential kinase involved in mitosis, which provides a target for cancer
treatment (Pillai et al., 2015). Zhu et al. proposed that TBK1 promotes
KRAS-driven tumorigenesis by regulating CCL5 and IL-6 (Zhu et al.,
2014). In the non-classical NF-κB signaling pathway, TBK1 promotes the
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phosphorylation of NIK, and this phosphorylation site, Ser862, is located
in the degradation-determining region of NIK. Its phosphorylation pro-
motes the degradation of NIK, which inhibits the activation of the
non-classical NF-κB signaling pathway (Cildir et al., 2016). Furthermore,
posttranscriptional modifications (including phosphorylation, ubiquiti-
nation, acetylation, etc.) of TBK1 are essential for its function. The
phosphorylation modification of TBK1 is closely related to its activation
level. Phosphorylated TBK1 can activate more TBK1 by trans-
auto-activation, thus achieving a cascade amplification of activation (Ma
et al., 2012). Acetylationmodification of TBK1 also plays a vital role in its
activation. Histone deacetylase 9 (HDAC9) can remove the acetylation
modification of the lysine residue at position 241 of TBK1, thereby
activating TBK1 and its downstream signaling pathway (Li et al., 2016).
Besides, ubiquitination is the leading way to regulate the activity of
TBK1. DYRK2 could promote the K48-linked ubiquitination and degra-
dation of TBK1 in a kinase-activity-dependent manner (An et al., 2015).
NLRP4 has been reported to promote ubiquitination and degradation of
TBK1 via the E3 ligase DTX4 (Cui et al., 2012), and Zhang et al. proposed
that TRIP promotes ubiquitination and degradation of TBK1 to negatively
regulate type I interferon (Zhang et al., 2012). Besides, USP24 promotes
the immune evasion of EV71 by restricting the K63-linked poly-
ubiquitination of TBK1(Zang et al., 2023). Recently, an increasing
number of teams have conducted in-depth studies on TBK1 function since
TBK1 acts as a nodal protein involved in a series of signaling pathways.
Although multiple TBK1 regulators have been reported, the other po-
tential mechanisms of TBK1 regulation need to be investigated to
maintain intracellular homeostasis.

TRAF7 is a protein that expresses 670 amino acids with E3 ubiquitin
ligase activity in its RING domain, capable of auto-ubiquitination in vitro
(Bouwmeester et al., 2004). TRAF7 interacts with NEMO and p65 to
promote its Lys-29-linked polyubiquitination, leading to targeting these
two proteins to lysosomal degradative pathways, reducing the tran-
scriptional activity of NF-κB (Zotti et al., 2011). In addition, TRAF7 co-
operates with TRAF6 in the CYLD-mediated inhibition of
TLR2-dependent activation signaling of NF-κB (Yoshida et al., 2005).
TRAF7 functions in hepatocellular carcinoma and meningioma through
its N-terminal interactions and ubiquitin-mediated degradation of KLF4
(He et al., 2020; Dogan et al., 2022). In addition, TRAF7 promotes cell
death by promoting K29 ubiquitination of c-FLIP, mediating cells un-
dergoing lysosomal degradation (Scudiero et al., 2012). Wang and Zhang
et al. proposed that TRAF7 plays important role in the development of
breast cancer and hepatocellular carcinoma by facilitating the K48-linked
polyubiquitination of p53 through its RING domain (Wang et al., 2013;
Zhang et al., 2021). What's more, TRAF7 possesses SUMO E3 ligase ac-
tivity. Morita et al. have reported that TRAF7 inhibits c-Myb-induced
trans-activation by binding to the DNA binding domain (DBD) of c-Myb
through the WD40 repeat domain, which activates SUMO of c-Myb at the
Lys-523 and Lys-499 sites (Morita et al., 2005). Wang et al. propose
miR126 inhibits apoptosis by reducing TRAF7 expression and ROS for-
mation, suggesting that TRAF7 may be a potential target for preventing
and treating vascular diseases such as atherosclerosis (Wang et al., 2015).
Our previous studies revealed that TRAF7 potentiated MEKK3-mediated
AP1 and CHOP activation (Xu et al., 2004).

TRAF2,3,5,6 are critical signaling molecules in the RLR antiviral
signaling pathway. TRAF7, like other TRAFs, contains a RING finger
domain (aa 125–160) and an adjacent zinc finger domain (aa 221–287)
at its N-terminal end (Zotti et al., 2012). Unlike other TRAFs, TRAF7
contains seven WD40 repeats at its C-terminal. However, it is not clear
whether TRAF7 is involved in antiviral signaling. In this study, we found
that TRAF7 interacts with TBK1 and promotes K48 ubiquitination of
TBK1, negatively regulating the RLR antiviral signaling pathway. Our
results provide new insights into the regulation of innate antiviral im-
munity and expand our understanding of TBK1's post-translational
modifications.
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2. Materials and methods

2.1. Cell culture and virus

HEK 293, MCF7, and Vero cells (provided by Dr. Hong-Bing Shu,
Wuhan University, China) were cultured in Dulbecco's Modified Eagle's
Medium, which contains 10% fetal bovine serum and 1% penicillin-
streptomycin, and incubated at 37 �C with 5% carbon dioxide. Cells
were infected with Sendai virus (SeV) or Vesicular Stomatitis Virus (VSV)
for the indicated time. All cell lines were tested for mycoplasma
contamination with LookOut® Mycoplasma PCR Detection Kit from
Sigma-Aldrich (MO, USA).

2.2. Antibodies, reagents, and plasmids

Mouse monoclonal antibodies (Flag: F3165 and HA: H3663) were
purchased from Sigma-Aldrich (MO, USA). Anti-IRF3 (#4302S), anti-P65
(#8242), and anti-phosphorylated P65 (#3033) were purchased from
Cell Signaling Technology (MA, USA). Anti-Myc (sc-40), anti-β actin (sc-
1616), anti-β tubulin (sc-55529), and anti-LAMB1 (sc-56144) were pur-
chased from Santa Cruz Biotechnology (TX, USA). Anti-TRAF7 (11780-1-
AP) and anti-TBK1 (67211-1-Ig) were purchased from Proteintech
(Wuhan, China). Anti-TBK1 (#3504) was purchased from Cell Signaling
Technology. Alexa Fluor 647-labeled anti-mouse (A0473), Alexa Fluor
488-labeled anti-rabbit (A0423), and HA tag Rabbit Monoclonal Anti-
body (AF2305) were purchased from Beyotime (Suzhou, China). SeV and
VSV were provided by Dr. Hong-Bing Shu (Wuhan University, China).
The mammalian expression plasmids used in this study were previously
described (Xu et al., 2004; Ling et al., 2018).

2.3. Dual-luciferase reporter assay and transfection

These experiments were consistent with previous descriptions (He
et al., 2018; Huang et al., 2022). In brief, HEK 293 cells or
TRAF7-deficient cells were plated in 24-well plates and transfected with
plasmids containing the IFN-β promoter or ISRE luciferase reporter gene
and URL-TK using the calcium phosphate method with a dose of TRAF7
or RIG-I/VISA signaling pathway components. The cells were subse-
quently analyzed after viral infection for the indicated time.

2.4. Coimmunoprecipitation, western blotting, and native PAGE

These assays were performed as previously described (Chen et al.,
2018; Ling et al., 2018). In brief, cells were lysed in NP-40 lysis buffer
supplemented with 1 mmol/L EDTA, 150 mmol/L NaCl, 20 mmol/L
Tris-base, 1% NP-40, and 1% protease and phosphatase inhibitor cock-
tail. For immunoprecipitation assays, the lysates were immunoprecipi-
tated with IgG or the appropriate antibodies, and the precipitates were
washed two times with lysis buffer containing 0.5 mol/L NaCl. For
Western blotting, protein samples were fractionated by SDS-PAGE, and
analysis was performed with the indicated antibodies (mouse
anti-Flag/HA, 1:4000 dilution, Sigma; rabbit anti-IRF3/P65/p-P65,
1:1000 dilution, CST; mouse anti-Myc/β actin/β tubulin/LAMB1,
1:1000 dilution, Santa Cruz; rabbit anti-TBK1, 1:1000 dilution, CST;
rabbit anti-TRAF7, 1:500 dilution, Proteintech). For native PAGE, cell
lysates were diluted with 5 � sample buffer, and the samples were per-
formed with a 7.5% acrylamide gel without SDS for analysis.

2.5. CRISPR-Cas9 gene editing, quantitative RT‒PCR and ELISA

The lentil-CRISPR-V2 vector was used to clone double-stranded oli-
gonucleotides of human TRAF7, which were then transfected into HEK
293 cells with psPAX2 and pMD2G. The supernatants were collected
after 36 h, and HEK 293 cells were infected with the supernatants. Cells
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were screened with puromycin (1 μg/mL) for seven days, followed by
sorting in 96-well plates to obtain TRAF7-deficient monoclonal cells.
The gRNA sequence used for targeting TRAF7 was 50-GCTA-
CAACCGCTTCTCCGGG-30. Total RNA extraction and reverse transcrip-
tion were performed according to the Promega protocols. The qPCR
primer sequences were consistent as previously described (Huang et al.,
2022). HEK 293 cells and TRAF7-deficient cells were stimulated with
viruses for 12 h, and the culture media were collected for measurement
of IFN-β by ELISA.

2.6. Immunofluorescence and plaque assays

MCF7 cells were grown on 24-well plates and the mammalian
expression vectors HA-TRAF7 and Flag-TBK1 were transfected into cells
with Lipofectamine™ 3000 transfection reagent for 36 h. Cells were fixed
with 4% paraformaldehyde for 10min, permeabilized with 0.1% Triton X-
100 for 10 min, and blocked with 1% BSA for 60 min. Subsequently, the
421
cells were incubated with mouse anti-Flag and rabbit anti-HA for 60 min
at room temperature. Then, the cells were incubated with Alexa Fluor
647-labeled anti-mouse and Alexa Fluor 488-labeled anti-rabbit anti-
bodies. After 60 min, nuclei were stained with 10 μg/mL DAPI at RT for
10 min. Finally, the cells were analyzed with a Leica DMi8 confocal mi-
croscope. For plaque assays, HEK 293 cells or TRAF7-deficient cells were
plated in 6-well plates, and TRAF7 plasmids were transfected into cells or
not for 12 h. Then, the cells were infected with VSV (MOI ¼ 0.2) for 16 h
before collecting the supernatant. Viral titers were subsequently calcu-
lated by infecting Vero cells with the supernatant.

2.7. Yeast two-hybrid system

Full-length TBK1 protein was used as bait to screen for candidate
proteins interacting with TBK1 in a cDNA expression library of 293 cells
by a yeast two-hybrid system (Clontech). The screening method was
performed as previously described (He et al., 2019).
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2.8. Statistical analysis

All statistical analyseswereperformedwithGraphPadPrism8.0, andare
presented as the mean and standard deviation of at least three independent
422
experiments. The Student's t-test was performed to compare the statistical
significance of differences between the two groups, and the one-way anal-
ysis of variance with Tukey's post hoc analysis was used for multiple com-
parisons (n� 3). P < 0.05 was considered statistically significant.
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3. Results

3.1. TRAF7 interacts with TBK1 specifically

To investigate the regulatory mechanism of TBK1, a yeast two-hybrid
assay was performed to screen the HEK 293 cell library using TBK1 as
bait. Multiple TBK1-interacting candidate genes were obtained,
including TRAF7. To further confirm the interaction of TBK1 with its
candidate prey TRAF7, we constructed TRAF7 and its truncations TRAF7
(1–390), TRAF7 (407–670) into the pGBT9 expression vector and pACT2
expression vector, respectively. As shown in Fig. 1A, we co-introduced
different pGBT9 and pACT2 expression vectors into yeast strain AH109
and observed whether the transformants could grow on Trp, Leu, and
His-deficient plates. The results showed that the full length of TRAF7 and
its C-terminal WD40 repeat domain (407–670) interacted with TBK1.
Transient transfer and immunoprecipitation results demonstrated that
TRAF7 specifically interacts with TBK1, but not with RIG-I, MAVS, and
IRF3 in HEK 293 cells (Fig. 1B). The endogenous co-immunoprecipitation
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assay in HEK 293 cells consistently showed that the interaction between
TRAF7 and TBK1 was enhanced upon Sendai virus (SeV) infection
(Fig. 1C). Further immunofluorescence experiments in MCF7 cells vali-
dated that TRAF7 was colocalized with TBK1 (Fig. 1D). These results
indicate that TRAF7 specifically interacts with TBK1 and may play a role
in TBK1-mediated antiviral signaling.

3.2. TRAF7 negatively regulates the RLR-mediated antiviral response

The role of TRAF7 in RNA virus-triggered innate immunity was further
investigated. The dual luciferase reporter assays showed that TRAF7
overexpression in HEK 293 cells inhibited SeV and VSV-induced activation
of the IFN-β promoter and ISRE in a dose-dependent manner (Fig. 2A).
qPCR assays indicated that overexpression of TRAF7 in HEK 293 cells
suppressed the transcription level of downstream antiviral genes,
including IFN-β, ISG56, and CXCL10, induced by RNA virus (Fig. 2B).
Plaque assays showed that TRAF7 overexpression in HEK 293 cells
increased VSV titers (Fig. 2C). Furthermore, overexpression of TRAF7 in
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HEK 293 cells inhibited the production of IFN-β protein (Fig. 2D), the
dimerization of IRF3 and the phosphorylation of p65 induced by SeV
(Fig. 2E). Further experiments indicated that TRAF7 overexpression sup-
pressed the nuclear translocation of IRF3 (Fig. 2F). These data suggest that
TRAF7 is a negative regulator in RLR-mediated signaling.

3.3. Knockout of TRAF7 facilitates RNA virus-triggered signaling

To further explore the function of TRAF7 in RLR-mediated antiviral
innate immunity, TRAF7-deficient single clones of HEK 293 cells were
obtained using CRISPR/Cas9-mediated genome editing. Sequence anal-
ysis revealed TRAF7 genomic base deletions leading to amino acid shift
mutations and early termination, and Western blotting experiments
showed that endogenous TRAF7 was successfully knockout (Fig. 3A). The
dual luciferase reporter assays indicated that the activation of the IFN-β
promoter and ISRE was increased in TRAF7-deficient cells (Fig. 3B). In
addition, TRAF7 knockout enhanced the dimerization of IRF3 and the
phosphorylation of p65 after SeV infection (Fig. 3C). Furthermore, qPCR
analysis suggested that the transcription levels of IFN-β, ISG56, and
CXCL10 induced by Sendai virus were enhanced in TRAF7-deficient HEK
293 cells (Fig. 3D), and knockout of TRAF7 in HEK 293 cells enhanced
the production of IFN-β protein (Fig. 3E). As shown in Fig. 3F, the plaque
assay indicated that VSV titers were reduced in TRAF7-deficient HEK
293 cells. These results suggest that TRAF7 deficiency enhances RLR-
mediated antiviral signaling.

3.4. TRAF7 impairs TBK1-mediated type-I IFN signaling

We performed RLR pathway component-mediated reporter gene ex-
periments to further examine the specific site of TRAF7 function in the
antiviral signaling pathway. As shown in Fig. 4A, the results indicated
that overexpression of TRAF7 impaired the activation of the IFN-β pro-
moter and ISRE mediated by RIG-I-N, VISA, and TBK1. In contrast, it did
not affect the activation of ISRE mediated by IRF3-5D. Subsequent ex-
periments showed that overexpression of TRAF7 reduced the dimeriza-
tion of IRF3 and the phosphorylation of p65 induced by TBK1 (Fig. 4B).
These data suggest that TRAF7 negatively regulates RNA virus-triggered
innate immunity by targeting TBK1.

3.5. TRAF7 enhances K48-linked polyubiquitination of TBK1

It has been reported that TRAF7 is a RING-type E3 ubiquitin ligase
that has autoubiquitination activity (Xu et al., 2004). As shown in
Fig. 4B, TRAF7 inhibited the protein level of TBK1 in a dose-dependent
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manner. Combined with the ubiquitin ligase activity of TRAF7, we
hypothesized that TRAF7 promotes K48 ubiquitination of TBK1 to
mediate its degradation. To verify this hypothesis, TRAF7 and TBK1
were cotransfected into HEK 293 cells treated with DMSO or MG132.
The results indicated that TRAF7 could enhance the degradation of
TBK1 through the proteasome pathway (Fig. 5A). To further investigate
the effect of TRAF7 on ubiquitination modifications of TBK1. Coim-
munoprecipitation experiments were performed, and the results
showed that the overexpression of TRAF7 in HEK 293 cells enhanced
K48-linked ubiquitination but had no effect on K63-linked ubiquitina-
tion of TBK1 (Fig. 5B–D). These results suggest that TRAF7 promotes
K48 ubiquitination of TBK1 to negatively regulate innate immune
signaling.
3.6. The RING domain is required for TRAF7 functions in antiviral
signaling

To further investigate the domains responsible for TRAF7 inhibiting
innate immune responses, a series of deletion mutants of TRAF7 were
constructed (Fig. 6A). Then, these TRAF7 mutants were analyzed for
TBK1 by co-immunoprecipitation. The results showed that both the RING
domain and WD40 repeat domain of TRAF7 were required for its inter-
action with TBK1 (Fig. 6B). Subsequent reporter gene assays indicated
that the RING domain was necessary for TRAF7 to inhibit the activation
of the IFN-β-promoter and ISRE after SeV infection (Fig. 6C). To further
explore the specific site of TRAF7 function on TBK1 ubiquitination
modification, we constructed TRAF7 (C131S, C151S, C154S, C161S), in
which the conserved cysteine residues at positions 131, 151, 154, and
161 within the RING domain were replaced with serine independently.
Subsequent reporter gene assays indicated that the conserved cysteine
residue at position 131 within the RING domain was required for TRAF7
to inhibit the activation of the IFN-β promoter and ISRE after SeV
infection (Fig. 6D). We then performed ubiquitination experiments and
found that overexpression of TRAF7 (C131S) did not affect WT TBK1 or
K48-linked ubiquitination of TBK1 in HEK 293 cells (Fig. 6E and F).
These results demonstrated that TRAF7 inhibits innate immune signaling
by facilitating the K48-linked ubiquitination of TBK1 through conserved
cysteine residues at position 131 in TRAF7's RING domain, leading to
TBK1's proteasomal degradation.

4. Discussion

In this study, we demonstrated a novel regulatory mechanism of
TRAF7 in innate immunity. Our results showed that TRAF7
Vector
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overexpression inhibited IFN-β promoter and ISRE activation, IRF3
dimerization and nuclear translocation, and the production of IFN-β
protein. Knockout of TRAF7 had the opposite effect, which enhanced the
transcript levels of downstream antiviral genes and improved interferon
production. In addition, TRAF7, which interacted specifically with TBK1,
promoted the K48-linked ubiquitination and degradation of TBK1. These
results suggest that TRAF7 negatively regulates RNA virus-mediated
antiviral innate immunity by promoting K48-linked ubiquitination of
TBK1.

Recently, TBK1 has become a hot spot for research due to its role as a
nodal protein in various signaling pathways (Runde et al., 2022). Post-
translational modifications of TBK1 are critical for its function. One of the
essential modifications of TBK1 is ubiquitination, but there are still a few
known E3 ligases that regulate TBK1. RNF128 facilitates innate immune
signaling by promoting the K63-linked ubiquitination of TBK1 (Song
et al., 2016). Parkin promotes mitochondrial autophagy by enhancing
425
the K63 ubiquitination of TBK1 (Gao et al., 2021). USP15 inhibits type I
interferon production by removing the ubiquitination of TBK1 (Huang
et al., 2020). Cui and Zhang et al. proposed that the E3 ligases DTX4 and
TRIP negatively regulate type I interferon signaling by facilitating the
K48-linked ubiquitination and degradation of TBK1 (Cui et al., 2012;
Zhang et al., 2012). Our study revealed that TRAF7 interacts with TBK1
specifically.

We have previously reported that TRAF7 interacts with MEKK3
through the WD40 repeat domain to activate AP-1 signaling (Xu et al.,
2004). Bouwmeester et al. reported that the RING domain of TRAF7 has
E3 ligase activity (Bouwmeester et al., 2004). Our experiments show that
TRAF7 promotes ubiquitination of TBK1 mainly by K48-linked ubiq-
uitination, which is associated with proteasomal degradation, and that
TRAF7 weakly promotes ubiquitination of K6, 11, 27, 29 linkages (data
not shown), and according to the experimental results in Fig. 6B and C,
we speculate that TRAF7 depends on RING domain to inhibit RNA
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virus-induced innate immune responses, while its WD40 repeat domain
interacting with TBK1 may provide support for its function, but is not
necessary. Further data suggest that the conserved cysteine residues at
position 131 of TRAF7 are necessary for its E3 ligase activity. TRAF7
loses its ability to ubiquitinate TBK1 after cysteine mutation at position
131. However, further experiments are needed to explore the specific site
of TBK1 ubiquitination by TRAF7.

We found that TRAF7 was present in both the cytoplasm and nucleus
and that the nuclear translocation of TRAF7 increased after SeV infection.
This is consistent with what Morita et al. have reported (Morita et al.,
2005). Furthermore, we found that overexpression of TRAF7 inhibits the
phosphorylation of p65, which is consistent with previous reports (Zotti
et al., 2011). TBK1 is known to be involved in metabolic signaling (Xiang
et al., 2021), such as adipose metabolism (Beyett et al., 2018), while
TRAF7 is involved in multiple tumor signal transduction (Zotti et al.,
2017), including meningiomas (Dogan et al., 2022). We propose that
TRAF7 may be involved in various metabolic regulatory mechanisms
through TBK1, but further studies on the regulatorymechanism of TRAF7
are needed.

5. Conclusions

In summary, our study demonstrates that TRAF7 is a novel E3 ligase
that negatively regulates RLR-mediated innate immunity by promoting
K48-linked ubiquitination of TBK1 through its RING domain to regulate
signal transduction. Those results suggest TRAF7 regulates TBK1
signaling.
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