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Abstract
Motivation: Deep learning-based molecule generation becomes a new paradigm of de novo molecule design since it enables fast and
directional exploration in the vast chemical space. However, it is still an open issue to generate molecules, which bind to specific proteins with
high-binding affinities while owning desired drug-like physicochemical properties.

Results: To address these issues, we elaborate a novel framework for controllable protein-oriented molecule generation, named CProMG, which
contains a 3D protein embedding module, a dual-view protein encoder, a molecule embedding module, and a novel drug-like molecule decoder.
Based on fusing the hierarchical views of proteins, it enhances the representation of protein binding pockets significantly by associating amino
acid residues with their comprising atoms. Through jointly embedding molecule sequences, their drug-like properties, and binding affinities w.r.t.
proteins, it autoregressively generates novel molecules having specific properties in a controllable manner by measuring the proximity of
molecule tokens to protein residues and atoms. The comparison with state-of-the-art deep generative methods demonstrates the superiority
of our CProMG. Furthermore, the progressive control of properties demonstrates the effectiveness of CProMG when controlling binding
affinity and drug-like properties. After that, the ablation studies reveal how its crucial components contribute to the model respectively, including
hierarchical protein views, Laplacian position encoding as well as property control. Last, a case study w.r.t. protein illustrates the novelty of
CProMG and the ability to capture crucial interactions between protein pockets and molecules. It’s anticipated that this work can boost de novo
molecule design.

Availability and implementation: The code and data underlying this article are freely available at https://github.com/lijianing0902/CProMG.

1 Introduction

During the drug design, it is essential to screen or design can-
didate compounds binding to protein targets. However, it is
extremely difficult to find appropriate small molecules in the
vast chemical space, including 1023–1060 compounds as esti-
mated (Polishchuk et al. 2013). In past years, high-
throughput screening (Macarron et al. 2011) and virtual
screening (Schneider and Böhm 2002) are two classical techni-
ques of computer-aided drug design, which search candidate
molecules in predefined compound libraries. However, they
only perform limited searching in chemical space such that
their finding molecules are not novel due to predefined
small-size molecule libraries. In recent years, biologists and
pharmacologists have been paying attention to various deep
generative models, which have been successfully used in com-
puter vision and natural language processing. They believe
that the design of novel small molecules via deep generative
models (called molecule generation) can explore the entire
chemical space. Molecule generation provides a new
paradigm of de novo molecule design.

Current deep learning-based molecule generation methods
can be roughly categorized into ligand-based and protein-
based methods.

(1) Ligand-based methods
By learning hidden chemical rules of structure forming

among existing small molecules, ligand-based methods gener-
ate novel molecules different from them. Typically, ligand-

based methods leverage three types of generative models, in-
cluding Recurrent Neural Networks (RNN) (Graves 2014),
Generative Adversarial Networks (GAN) (Creswell et al.
2018), and Variational Autoencoders (VAE) (Kingma and
Welling, 2022).

Since RNN naturally processes variable-length sequences, it
can generate novel molecules by representing molecules in
SMILES strings. Furthermore, aiming to refine generated mol-
ecules having desired drug-like properties, RNN-based meth-
ods always employ diverse optimization strategies. For
example, ChemTS directly applies an RNN to generate novel
molecules, which are further optimized by a tree search to
find molecules having specific drug-like properties (Yang
et al. 2017). Based on the pretraining strategy, RNN can be
fine-tuned by transfer learning (Segler et al. 2018) or rein-
forcement learning (Wang et al. 2021) to generate property-
specific molecules. In contrast to these optimization strategies,
the training of a conditional RNN by setting its initial state
with specific molecular properties can directly generate novel
property-specific molecules (Kotsias et al. 2020). However,
RNN is designed for sequences but not for graphs (e.g. mole-
cule structures).

GAN and VAE are two typical distribution-based genera-
tive models, which can characterize the small molecule space.
GAN contains a generator and a discriminator, contesting
with each other by a zero-sum (adversarial) game. They are
trained together in an adversarial manner which enables the
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generation of novel molecules. ORGAN (Guimaraes et al.
2018) utilizes a SMILES-based GAN to generate molecules.
The pioneering graph-based model, MolGAN (De Cao and
Kipf 2018), employs a GAN to directly generate molecular
graphs. A reinforcement learning module is a popular strategy
to help generate molecules with specific properties. However,
the training of GAN usually suffers from mode collapse.

VAEs are generative encoder–decoder models under ex-
plicit normal distribution assumptions. Since the latent distri-
bution space is analogous to the chemical space, the
designated sampling in it enables the generation of novel mol-
ecules owning specific properties. There are various
approaches to generate novel molecules with desired proper-
ties, such as an extra property predictor (Gómez-Bombarelli
et al. 2018) and a conditional VAE (Lim et al., 2018).
Considering molecule structures contain richer information
than SMILES strings, some works directly generate novel mo-
lecular structures but not SMILES strings. For example,
GraphVAE (Simonovsky and Komodakis 2018) design a
graph-based VAE by representing molecules as graphs with
attributes. JT-VAE (Jin et al. 2018) combine a tree-structured
scaffold over chemical substructures into a molecule with a
graph message-passing network. Remarkably, VAE-generated
molecules only exhibit moderate novelty and diversity.

Ligand-based methods can generate novel compounds with
favorable physicochemical properties. However, since they
consider no or less protein information when generating mol-
ecules, they cannot guarantee that generated molecules have
desired binding affinity to new protein targets.

(2) Protein-based methods
In contrast, recent protein-based methods ensure that gen-

erated molecules bind to specific protein targets with high-
binding affinities. Some methods turn such a generation into a
machine translation problem, which translates protein
sequences (amino acid sequences) into molecule sequences
(SMILE strings). In this context, Transformer can be directly
applied for protein-based molecule generation
(Grechishnikova 2021). AlphaDrug (Qian et al. 2022)
improves the vanilla Transformer by multiple skip connec-
tions from its protein encoder to its molecule decoder to ob-
tain better protein representations and further applies the tree
search to guide molecule generations. However, only consid-
ering protein sequences, these methods neglect the informa-
tion in binding pockets, which imply how a molecule binds to
a protein.

Some methods attempt to utilize protein 3D structures
when generating molecules. For example, based on the voxeli-
zation of 3D protein pockets and 3D molecule structures,
Skalic et al. (2019) trains a GAN to generate 3D shapes of
molecules, which are further decoded into multiple candidate
SMILES strings by a captioning network. Recently, Xu et al.
(2021) construct a protein residue-based Coulomb matrix to
directly characterize the spatial structure of the pocket, which
is further input into a conditional RNN to control the genera-
tion of molecules.

To enhance the protein structure representation, recent
works characterize the binding interface between a protein
and a molecule. By considering the 3D coordinates of atoms
in given binding sites, Luo et al. (2021) design a 3D generative
model to estimate the probability density of atom occurrences
in the 3D binding space, and perform an autoregressive sam-
pling scheme on the binding spatial locations assigned with
higher probabilities to generate molecules atom by atom. But

this approach ignores bond types and functional groups in the
binding pocket. To solve the problem, its extension,
Pocket2Mol (Peng et al. 2022) designed an E(3) equivariant
neural network to capture spatial and bonding relationships
between atoms in the binding pocket.

However, the representation of 3D structures is still chal-
lenging so far. In terms of binding affinity, the molecules they
generated are surprisingly lower than those generated by 1D
sequences (Qian et al. 2022). More importantly, it is difficult
to generate small molecules w.r.t. drug-like physicochemical
properties under control.

To address the above issues, we elaborate a protein-
oriented generative framework (CProMG), which contains a
3D protein embedding module, a dual-view protein encoder,
a molecule embedding module, and a novel drug-like mole-
cule decoder. Overall, the main contributions of our CProMG
are as follows.

1) It serves in a controllable learning framework to generate
novel small molecules having high-binding affinities to
specific protein targets while owning desired drug-like
properties.

2) It provides a better representation of 3D protein struc-
ture (pocket) by integrating a fine-grained atom view
with a coarse-grained amino acid view based on an inter-
active attention block in the encoder.

3) It leverages the protein-interactive multi-head attention
block in the decoder to calculate the proximity of mole-
cule tokens to protein residues and atoms, such that cru-
cial interactions between protein pockets and molecules
can be captured.

2 Materials and methods
2.1 Problem formulation and model construction

Suppose that m proteins P ¼ fpi; i ¼ 1; 2; . . . ;mg bind to n
small molecules C ¼ fcj; j ¼ 1; 2; . . . ng. Let ai;j be the binding
affinity of pi with respect to cj. In addition, cj has specific
physicochemical properties yj 2 R1�dy ; yjðtÞ 2 f1; 0g or yjðtÞ
2 R; j 2 f1; 2; . . . ng. The former type of yiðjÞ indicates a
hard (binary/discrete) property of cj (e.g. Synthetic
Accessibility, SA), while the latter represents its soft (continu-
ous) properties (e.g. logP). For example, a molecule entry,
named PF-4989216, assigned with the compound ID
51033720 in PubChem, has a value of LogP¼ 2.919.
Meanwhile, it has a good SA score (i.e. 0.78). In practice,
since pharmacologists are more interested in whether the mol-
ecule can be synthesized easily, SA is binarized by the rule
that SA¼ 1 if SA � 4:0 (i.e. easy to be synthesized), other-
wise SA¼ 0 (i.e. difficult to be synthesized) (Wang et al.
2021). We consider two types of molecule properties simulta-
neously when generating novel molecules.

Given a new protein px, the task is to generate a set of novel
molecules fck

x; k ¼ 1; 2; . . .g, which bind to px with high-
binding affinities and have desired physicochemical properties
yx. Inspired by Transformer (Vaswani et al. 2017), we treat
this task as a specific translation from proteins into small mol-
ecules. We design a novel protein-oriented molecule genera-
tion framework, including a 3D protein graph embedding
module, a dual-view protein encoder, a drug-like molecule
embedding module, and a novel molecule decoder (Fig. 1).
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2.2 Protein graph embedding module

Inspired by the hierarchy of protein structure (Jin et al. 2022;
Wang et al. 2023), we characterize 3D protein structures in
both an amino acid view and an atom view. To reduce the
computation, only binding pockets are considered when char-
acterizing 3D protein structures.

(a) Protein graph construction
Technically, given a protein p, its 3D structure can be repre-

sented as a graph G ¼ ðV; EÞ. Specifically, V ¼ fðvi; riÞgn
i¼1 is

the node set, where a node vi has known 3D coordinates ri 2
R

3 and n denotes the number of nodes. Moreover, E ¼
feij; i; j ¼ 1; 2; . . . ; n & i 6¼ jg denotes a set of edges between
nodes. We build an amino acid residue-based graph (Gr) and
an atom-based graph (Ga), respectively.

In the residue-based graph Gr, we treat amino acid
residues as the nodes V. Each node vi is naturally represented
as a one-hot coding vector xi according to 20 amino
acid types. The edges between them are determined
by their Euclidean distances. In detail, being the representative
point of vi, its centroid is first calculated by

ci ¼
P

rk
i �mk

i

� �
=
P

mk
i ;k ¼ 1; 2 . . . ; where rk

i

n o
represent

the atom coordinates in vi and mk
i

n o
are its atomic masses ac-

cordingly. Then, the pairwise Euclidean distance between vi

and vj is calculated by di;j ¼ ci � cjj jj j2. It is used further to

construct edges eij; j 2 N i

� �
by the K-nearest neighbor

(KNN) algorithm, which selects k nearest neighbor nodes

vj 2 N i

� �
(e.g. k¼48), where N i is the node neighborhood

of vi. Last, di;j is set as the initial representation of eij. The resi-
due view of a protein provides a coarse-grained representa-
tion of its binding pocket.

In the atom-based graph Ga, we treat atoms as the nodes V.
Similarly, each atom is represented by the one-hot encoding
based on six popular atom types, including H, C, N, O, S,
and P. Moreover, each atom in the protein backbone is anno-
tated by an additional bit, where 1 indicates its location being
in the backbone, and 0 otherwise. Thus, each node vi is repre-
sented as a 7-dimensional vector (xi). We determine an edge
between two nodes in a similar way as that in Gr but with a
different number of nearest neighbors (i.e. K¼ 30) as recom-
mended by Ingraham et al. (2019). The atom view provides a
fine-grained representation of its binding pocket.

Once the protein graphs are built, our task is to generate
the embeddings of nodes and edges. In common, suppose that
each node vi has the initial representation xi 2 R

1�dv and each
edge eij has the initial representation dij 2 R

1�1. The embed-
ding of vi (i.e. h

ð0Þ
i 2 R

1�d) is defined as

h
ð0Þ
i ¼ xiW

0ð Þ þ h
pos
i ; (1)

where h
pos
i 2 R

1�d is the Laplacian positional encoding vector
of vi, and W 0ð Þ 2 R

dv�d is the learnable parameter. See Section
2.2(b) for the definition of h

pos
i . Inspired by the idea analo-

gous to RBF neural network (Seshagiri and Khalil 2000), we
obtain the embeddings of eij by de RBFs mapping its initial
representation di;j into eij 2 R

1�de .

Figure 1. The framework of CProMG. This framework is composed of four modules, a 3D protein graph embedding module, a dual-view protein encoder,

a drug-like molecule embedding module, and a novel molecule decoder. (a) Protein embedding module. A protein (pocket) is represented in a residue

graph and an atom graph in parallel. Nodes and edges in each protein graph are embedded. Especially, nodes have additional Laplacian positional

encodings. Node representations are also augmented by edge representations. (b) Dual-view protein encoder. It contains two parallel encoder modules

w.r.t. protein graph, of which each module is composed of t encoding blocks. Each block contains a multi-head self-attention unit and a feedforward

neural network. There are also two cross-attention units between the parallel encoder modules. The concatenation of representations of two encoder

modules is output as the protein representation and input into the molecule decoder as the key and value. (c) Molecule embedding module. It encodes

physicochemical properties of small molecules, docking scores w.r.t. proteins, and their SMILES sequences simultaneously. The concatenation of them

is added with an extra positional encoding as the Query input into the decoder. (d) Molecule decoder. It contains t decoder blocks, each of which contains

a masked multi-head attention unit, a cross-attention unit, and a feed-forward network. The decoder autoregressively predicts the next token of the

molecular sequence through the generated molecular intermediates and proteins representation.
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When we attempt to encode each node in a protein graph
to obtain a unique positional representation of each node,
however, it’s hard to directly define the positions of nodes in
a graph. In other words, we cannot apply the positional cod-
ing in the vanilla Transformer to the protein graphs. To cope
with this issue, we borrow the idea of the Laplacian position
encoding in graph neural networks to obtain unique posi-
tional representations of nodes in the following.

(b) Laplacian positional encoding
Because any signal can be represented as a combination of

sine/cosine functions with varying frequencies, Transformer
regards the positional coding as a Fourier Transform on a
signal. As a result, each entity in turn is coded into a position-
unique vector. However, such positional coding cannot be
directly applied to graphs because it’s hard to define the posi-
tions of nodes in a graph. To cope with this issue, we leverage
the Laplacian position encoding in graph neural networks
(Kreuzer et al. 2021) to assign each node in a graph with a
unique representation.

Given a weighted graph G ¼ ðV; E;WÞ, the weight wij of

each edge eij is defined as wij ¼ e�d2
ij= 2r2ð Þ

, where the

hyperparameter r is empirically set as 30 in Gr and 15 in Ga

respectively. Its Laplacian matrix L 2 R
n�n can be defined as

follows (Dwivedi et al. 2022):

L ¼ I�D�
1
2AD�

1
2 ¼ UTKU; (2)

where I 2 R
n�n is the identity matrix, the n� n diagonal ma-

trix D represents the degree matrix of weighted graph G, its k-
th element dk;k is the degree of the k-th node and A represents
the weighted adjacency matrix of G, the n� n diagonal eigen-
value matrix K contains eigenvalues kkf g from small to big
along with its diagonal, U 2 R

n�n contains a set of eigenvec-
tors uk 2 R

n�1
� �

w.r.t. kkf g and uk is normalized to unit
length (i.e. uT

k uk ¼ 1). Thus, L enables the Fourier Transform
on the graph G. Specifically, the eigenvectors ukf g of L, analo-
gous to sine/cosine functions (Dwivedi and Bresson 2021),
can be regarded as the basis vectors to encode the positions of
nodes in G. The eigenvalue is considered as a node position in
the Fourier domain of the graph (Bronstein et al. 2017).

In the spectral graph theory, eigenvalues can be used to dis-
criminate between different graph structures and substruc-
tures, as they can be interpreted as the frequencies of
resonance of the graph (analogous to the frequencies reflected
by sine/cosine functions again) (Kreuzer et al. 2021).
Accordingly, smaller eigenvalues (frequencies) are more
heavily weighted when determining distances between nodes.
Moreover, corresponding low-frequency eigenvectors are
spread across the graph, while higher frequencies often reso-
nate in local structures (Kreuzer et al. 2021). Therefore, we
take low-frequency eigenvectors of nodes w.r.t. the first k-
smallest eigenvalues [e.g. k¼ 8 (Kreuzer et al. 2021)] as their
positional features.

For each node vi, its positional encoding h
pos
i is defined as:

h
pos
i ¼ Uði;1 : kÞWpos; (3)

where Uði; 1 : kÞ is the positional vector consisting of the first
k elements in the i-th row of U, and the learnable Wpos 2
R

k�d works like an adapter to map the positional coding from
the eigenspace to the node embedding space. Such a coding
can capture the intuition that nodes far apart are different

whereas nodes nearby are similar in terms of positional
features.

2.3 Dual-view encoder

The embeddings of the amino acid graph Gr and that of the
atom graph Ga are input separately into the dual-view encoder
to obtain the final representation of the protein binding
pocket. The dual-view encoder contains two parallel encoders
Enr and Ena accounting for the encodings of two graphs Gr

and Ga, respectively. Each encoder is composed of t tandem
encoding units, of which each contains an edge-augmented
encoding block Et

a and a multi-head attention block Mt
a. The

first block Et
a enhances node representations while the atten-

tion block Mt
a further updates node representations by a self-

attention mechanism.
Remarkably, Gr and Ga represent the coarse-grained (resi-

dues) and the fine-grained (atoms) information of the protein
binding pocket respectively. As a result, the dual-view encoder
also leverages two cross-attention blocks between Enr and
Ena to fuse the coarse-grained representation of the protein
binding pocket with its fine-grained representation. Such a fu-
sion helps capture the natural protein structure hierarchy.

(1) Graph encoders
Technically, suppose that node vi and its neighboring nodes

vjf g, where j 2 N i and N i is the neighborhood of vi. For the

l-th encoding unit, the edge-augmented encoding block El
a

enhances their representations to accommodate the self-
attention framework by two steps. The first step maps the

node representation h
ðl�1Þ
i output by the previous encoding

unit into the Query q
ðlÞ
i and maps h

ðlÞ
j into the Key k

ðlÞ
j and the

Value v
ðlÞ
j in parallel. The second enhances q

ðlÞ
i , k

ðlÞ
j , and v

ðlÞ
j

by the edge representation eij. For each neighboring node vj of

vi, we define neighbor-specific Queries q
ðlÞ
ij 2 R

1�dk , Keys

k
ðlÞ
ij 2 R

1�dk , and Values v
ðlÞ
ij 2 R

1�dv as:

q
ðlÞ
ij ¼ q

ðlÞ
i � eijW

Q lð Þ
e

� �
; k lð Þ

ij ¼ k lð Þ
i � eijW

K lð Þ
e

� �
; v
ðlÞ
ij

¼ v
ðlÞ
i � eijW

VðlÞ
e

� �
; (4)

where q
ðlÞ
i ¼ h

ðl�1Þ
i W

QðlÞ
h , k

ðlÞ
i ¼ h

ðl�1Þ
i W

KðlÞ
h , v

ðlÞ
i ¼ h

ðl�1Þ
i W

VðlÞ
h

and Wf g are learnable matrices accounting for specific linear
transformations, and � denotes the element-wise multiplica-
tion. Specifically, h

ð0Þ
i is the node representation output by the

protein graph embedding module and input into the first
encoding unit. See also the Edge Augment in Fig. 1.

Suppose that multi-head attention block Ml
a in the l-th

encoding unit contains H heads of parallel attention layers. It

updates the node representation as h
ðlÞ
i ¼ jj

H
r¼1 h

ðlÞ
i;r

� �
, where

h
ðlÞ
i;r accounts for the output of its r-th attention layer and de-

fined as

h
ðlÞ
i;r ¼

X
j2N i

softmaxj

q
ðlÞ
ij k

ðlÞ
ij

� �T

ffiffiffiffiffi
dk

p
0
@

1
A

v
ðlÞ
ij

0
@

1
A
: (5)

Then, inspired by the encoder in the Transformer, the

updated node representation h
ðlÞ
i is also mapped by a linear

layer and combined with h
ðl�1Þ
i as a residual connection (i.e.
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h
ðlÞ
i  g h

ðlÞ
i W

ðlÞ
h þ h

ðl�1Þ
i

� �
), where gð�Þ represents the normal-

ization function (i.e. LayerNorm). After that, a feed-forward
network (FNN) with a residual connection is used to update it

further (i.e. h
ðlÞ
i  g FNNðhðlÞi Þ þ h

ðlÞ
i

� �
). Furthermore, the

updated node representation matrix HðlÞ stacked by h
ðlÞ
i

n o
is

output and used as the input of the next encoding unit if
l < t. Last, supposing that the node representation matrices

derived from two encoders Enr and Ena are HðtÞ and ZðtÞ; re-
spectively, we vertically stack them as the final representation

matrix HP of the protein structure (i.e. HP ¼ HðtÞ; ZðtÞ
� �

).
(2) Dual-view fusion
During the parallel encoding process, we designed a one-

way cross-fusion block between the l-th encoding unit in Enr

and that in Ena, which updates coarse-grained HðlÞ by fine-

grained ZðlÞ. Specifically, it treats z
ðlÞ
j

n o
as both the Keys and

the Values while treating h
ðlÞ
i

n o
as the Queries. Such a fusion

block provides an extra advantage that an amino acid residue
can be associated with its comprising atoms.

The fusion block is also a multi-head attention block. Let
h
ðlÞ
i be the amino acid representation output by the l-th atten-

tion block in Enr, z
ðlÞ
j be the atom representation output by

the l-th attention block in Ena, Hf be the number of heads in
the fusion block. The Query q

ðlÞ
i 2 R

1�dk , the Key k
ðlÞ
j 2 R

1�dk

and the Value v
ðlÞ
j 2 R

1�dv w.r.t. l are defined as

q
ðlÞ
i ¼ h

ðlÞ
i W

QðlÞ
f ; k

ðlÞ
j ¼ z

ðlÞ
j W

KðlÞ
f ; v

ðlÞ
j ¼ z

ðlÞ
j W

VðlÞ
f ; (6)

where three W matrices represent linear layers. Thus, the
fusion block updates amino acid representations by the

concatenation jjHf

r¼1 h
ðlÞ
i;r

� �
, where h

ðlÞ
i;r accounts for the output

of its r-th attention layer and is defined as

h
ðlÞ
i;r ¼

Xn

j¼1
softmaxj

q
ðlÞ
i k

ðlÞ
j

� �T

ffiffiffiffiffi
dk

p
0
@

1
A

v
ðlÞ
ij

0
@

1
A
: (7)

Similarly, the concatenation is mapped further by another

linear layer as ĥ
ðlÞ
i ¼ jjHf

r¼1 h
ðlÞ
i;r

� �� �
W
ðlÞ
f , and further works as a

residual connection to update the original h
ðlÞ
i by

h
ðlÞ
i  g h

ðlÞ
i þ ĥ

ðlÞ
i

� �
, where gð�Þ is the normalization function.

To reduce the information redundancy, we only build two
cross-fusion blocks for a middle encoding unit (e.g. the 3rd
unit) and the last encoding unit (e.g. the 6th unit),
respectively.

2.4 Molecule embedding module

The molecule embedding module encodes molecule sequences
based on a pre-built vocabulary and encodes their drug-like
properties as well as binding affinities w.r.t. proteins simulta-
neously. The molecule decoder can generate novel molecules
owning desired properties in a controllable manner.

We utilize the tokenization proposed by Schwaller et al.
(2018) to build a vocabulary V, which contains k non-
overlapping “words” (substrings in the SMILE string, or
called tokens), such that each SMILES string is turned into a
sequence of words.

Formally, given the n-length SMILES sequence of a small
molecule c, it can be turned into an n-word sequence
sc ¼ fa1; :; ang, where ai 2 V. To perform the decoding, we
add a prefix tag on this word sequence as s�c ¼ fb; a1; :; ang,
where b 2 V is the beginning tag when starting the decoding.
Accordingly, s�c is represented as an ðnþ 1Þ � k one-hot
encoding matrix S based on the vocabulary V.

Let fp1; :;pmg be the property sequence of the molecule c,
where each character indicates one of its property names (e.g.
Synthetic Accessibility, LogP,. . .), and y 2 R

1�m be the vector
of property values, where yðtÞ 2 f1; 0g or yðtÞ 2 R. The for-
mer type of yðtÞ indicates hard properties (e.g. Synthetic
Accessibility), while the latter represents soft properties (e.g.
logP). To generate novel molecules with better docking in pro-
teins of interest, we binarize the docking scores S of protein–
ligand pairs as a hard property. Specifically, S ¼ 1 if
S � �7:5, and 0 otherwise. Thus, we obtain the molecule
representation h

m 2 R
ðnþ2Þ�d by

h
m ¼ ½yWp; SWs�; (8)

where “;” is a stacking operation of matrices, Wp 2 R
m�d and

Ws 2 R
k�d account for two linear layers, respectively.

Moreover, we add a property tag “p” at the head of s�c to
indicate the molecule with properties as sp ¼ fp; b; a1; :; ang.
This is a crucial trick to make the generation of novel mole-
cules owning desired properties. See also Section 2.5 for de-
tailed reasons. To describe such a sequence briefly, we regard
a tag or a word in it as a token, which is assigned with a bi-
nary type indicator (i.e. 1 for property and 0 for word).
Accordingly, two token types are also embedded as vectors
t1; t0 2 R

1�d. The token type representation of the molecule is
defined as the stacking of token type embedding w.r.t. s�p,

htoken ¼ t1; t0; . . . ; t0½ �: (9)

Furthermore, we consider the positional relationship
among tokens. Inspired by the Transformer (Vaswani et al.
2017), we use sine and cosine functions of different frequen-
cies to encode the position of the i-th token into a d-dimen-
sional unique representation h

pos
i 2 R

1�d as follows:

h
pos
i 2 j� 1ð Þ þ 1ð Þ ¼ cos

i

r2j=d

	 

; h

pos
i 2jð Þ ¼ sin

i

r2j=d

	 

; (10)

where j ¼ 1; 2; . . . ;N, N ¼ d=2 if d is an even number or
N ¼ d þ 1ð Þ=2 if an odd number. The wavelengths form a
geometric progression from 2p to r�2p, where r¼ 10 000 as
suggested by Vaswani et al. (2017). Thus, the positional rep-
resentation of the molecule Hpos is just the stack of h

pos
i

� �
.

Finally, the whole embedding of small molecule c is defined
as:

h
0 ¼ h

m þ h
token þHpos: (11)

2.5 Decoder and molecule generation

We directly adopt the same architecture of the decoder as that
of the original Transformer, which contains t tandem decod-
ing units. Each unit is composed of a masked multi-head at-
tention block, a protein-interactive multi-head attention
block, and an ordinary multilayer perceptron. The masked
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module prevents the decoder from information leakage when
predicting the next token. The interactive module calculates
the proximity of molecule tokens to protein residues and
atoms by regarding the former as queries and the latter as
keys and values in an attention layer. See also Vaswani et al.
(2017) for details.

The molecule generation is completed by an autoregressive
decoding process, which begins with the sequence of two
tokens fp;b; �; . . . ; �g in and iteratively appends potential
tokens a�i to it one by one until the ending tag “e” (i.e.
fp; b; a�1; :; a�t ; eg). The resulting sequence a�1; :; a

�
tf g is directly

taken as the SMILES string of the novel molecule.
As remarked in Shuai et al. (2021) and Madani et al.

(2021), the molecular property token should be put in the
head of the token string because the essence of the autoregres-
sive decoding is an iterative process under progressive condi-
tional probabilities where properties are the first condition to
generate the next molecular token. Such a crucial step guaran-
tees the molecular generation controllable w.r.t. properties.

The training of the model aims to maximize the following
negative log-likelihood:

L Dð Þ ¼ �
Xn

i¼1

logP xi j x0;x1;x2; . . . ;xi�1½ �;Gr;Ga

� �
; (12)

where x0 ¼ ½p; b�, and xi is the token in sp. In the generation,
the model generates novel molecules based on the learned
conditional probability distribution as

Pðs�pÞ ¼
Ym
i¼1

P x�i j x0;x
�
1;x

�
2; . . . ; x�i�1

� �
;Gr;Ga

� �
; (13)

where x0 ¼ ½p; b�; x�m ¼ 0 e0; x�i is the generated token.
Finally, complete generated token strings s�p

� �
are obtained

by top-k high conditional probabilities, and their substrings
x�1; x

�
2; . . . ;x�i�1f g are corresponding SMILES strings, such

that protein-oriented novel molecules (with high-binding af-
finities and desired properties) are generated.

2.6 Evaluation metrics

To evaluate the performance of molecule generation models,
we follow the conventional settings in recent works (Bagal
et al. 2021; Luo et al. 2021), which use Vina Score (VS), High
Affinity Ratio (HAR), Quantitative Estimate of Drug-likeness
(QED), Synthetic Accessibility Score (SA), Diversity, Water-
Octanol Partition Coefficient (logP), Molecular Weight (MW)
as the performance metrics. They are introduced as follows.

VS measures the average binding affinity between generated
molecules and proteins of interest. We use Autodock Vina
(Trott and Olson 2010) to calculate docking scores. Since the
docking score is negative, the less, the better.

SA reflects the average difficulty of synthesizing a given
molecule by its synthesizable fragments (Ertl and
Schuffenhauer 2009). A drug-like molecule usually has
SA � 4:0. The lower, the easier to be synthesized.

HAR indicates the percentage of generated molecules hav-
ing higher binding scores than those of reference molecules or
equal to them. The greater, the better.

QED measures the average similarity between generated
molecules and existing drugs by multiple chemical attributes
(Bickerton et al. 2012). Its value falls into 0; 1½ �. The greater,
the better.

Diversity evaluates the diversity within a group of gener-
ated molecules G in terms of chemical structure, and its defi-
nition is as Diversity ¼ 1� 1

N2

P
m1;m22G T m1;m2ð Þ, where N

represents the number of generated molecules and Tðm1;m2Þ
represents the Tanimoto similarity between molecule m1 and
molecule m2. The greater, the better.

logP, the water-octanol partition coefficient, is a ratio of a
chemical’s concentration in the octanol phase to its concentra-
tion in the aqueous phase of a two-phase octanol/water sys-
tem. According to the Rule of 5(RO5) proposed by Lipinski
(Lipinski et al. 2001), logP should be <5.

TPSA refers to the total surface area of all polar atoms. It
measures the drug’s ability to permeate cell membranes.
Molecules with a TPSA > 140 Å

2
have a limited ability to

permeate cell membranes.
A detailed discussion of property-controllable generation

can be found in Section 3.3.

3 Experiment
3.1 Dataset and parameter setting

We adopted the dataset popularly used in previous works
(Luo et al. 2021). Built by Luo et al. (2021) based on binding
pose RMSD (i.e. RMSD< 1 Å), it contains over 100 000 pro-
tein–ligand docking pairs, involving 2922 protein pockets
and 13 839 ligand molecules. Each pair has a docking score
measured by Autodock Vina (Trott and Olson 2010).
Following the procedure proposed by Luo et al. (2021), we
first clustered proteins at a sequence identity level of 30% by
MMseqs2 (Steinegger and Söding 2017), such that two pro-
teins coming from different clusters have �30% sequence
identity (i.e. significantly different). Then, we took several
clusters (i.e. 25 clusters) out of these clusters as the testing
clusters and the remaining as the training clusters respectively.
After that, we randomly extracted 100 000 protein–ligand
pairs in the training clusters to build the model, where 99 000
pairs are labeled as the training pairs and 1000 pairs as the
validation pairs. Last, we randomly selected 100 proteins (in-
volving 	18K protein–ligand pairs) from the testing clusters
as the testing proteins (i.e. Reference) and assessed the perfor-
mance of molecule generation w.r.t. proteins significantly dif-
ferent from the training proteins.

We used the training set to tune the learnable model param-
eters while determining the hyperparameters by empirical sug-
gestions in other works.

Specifically, when constructing amino acid graphs in the
protein embedding module, each node was initially repre-
sented as a 20-dimensional one-hot feature vector accounting
for amino acid types, and the number of its nearest neighbors
k¼ 30 as recommended by Ingraham et al. (2019). When
encoding the edges between nodes, we used 64 Gaussian
RBFs as suggested by Luo et al. (2021), where 64 centroids
were taken at equal intervals between 0 and 25 Å and the
width parameter of each RBF is the interval size (i.e. 25/64).
Thus, each edge in amino acid graphs was represented as a
64-dimensional vector. Similarly, each node of the atom
graph was initially represented as a 7-dimensional binary fea-
ture vector (Section 2.2) and the number of its nearest neigh-
bors (k) was empirically assigned as 48. We used 64 Gaussian
RBFs equidistantly spaced from 0 to 15 Å and set the width
parameter to 15/64. As a result, each edge in atom graphs
was also represented as a 64-dimensional vector. Finally, as
Kreuzer et al. (2021) suggested, we collected the eigenvectors
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w.r.t. 8-smallest eigenvalues of the Laplace matrix as position
codes.

In the dual-view encoder, each of the encoders contains 6
tandem encoding units, of which each unit is composed of 4
heads of attention layers. The hidden dimensions of both
nodes and edges were set as 256. The dimensions of Query
and Key in both the encoder and the cross-fusion module
were set as 32, while the dimension of Value was set as 64. In
addition, the feedforward network contains 1024 neurons.

In the molecule embedding module, each token (including
tags and properties) in SMILES strings was initially repre-
sented as a 112-dimensional binary vector, including the be-
ginning tag(1-d), the ending tag(1-d), the non-overlapping
tokens w.r.t. SMILES strings (110-d) (Section 2.4). In the de-
coder, we set the length of token strings by the maximum
length of SMILES sequences (i.e. 200). In addition, the param-
eters in the attention module in the decoder adopt the same
values as those in the encoder.

When training our model, we set the batch size as 4, the ini-
tial learning rate a as 1e�4, and selected Adam as the opti-
mizer. To accelerate the optimization, we adopted a decay
strategy to regulate the learning rate as follows. If the loss of
the validation set is not decreased within 5 iterations, a� ¼
0:6a until it reaches 1e�5. We validated the model every
1000 training iterations and stopped the training if the loss
does not decrease significantly within 20 validation iterations.

3.2 Method comparison

We assessed the performance of our CProMG by comparison
with five state-of-the-art (SOTA) protein-oriented generative
approaches, which including LiGANN (Skalic et al. 2019),
3D-SBDD (Luo et al. 2021), Pocket2Mol (Peng et al. 2022),
naı̈ve Transformer-based (Grechishnikova 2021), and
AlphaDrug(BS) (Qian et al. 2022). These recently published
approaches are briefly summarized as follows. LiGANN
trained a GAN to generate 3D shapes of molecules, which
match corresponding protein pocket shapes in topological
complement, and then decoded the generated ligand shapes
into multiple candidate SMILES strings by a captioning net-
work. 3D-SBDD designed a 3D generative model to estimate
the probability density of atom occurrences in the 3D binding
space, and performed an auto-regressive sampling scheme on
the binding spatial locations assigned with higher probabili-
ties to generate 3D coordinates of molecules in a 3D grid
atom by atom. Pocket2Mol designed an E(3) equivariant neu-
ral network to capture spatial and bonding relationships be-
tween atoms in the binding pocket and directly generated 3D
coordinates of small molecules in continuous space. The naı̈ve
Transformer-based method directly applied the vanilla
Transformer to generate novel molecule SMILES strings for

specific amino acid sequences. Following this work,
AlphaDrug improved the vanilla Transformer by skipping
connections from its encoders to decoders. In addition, we
employed DUD-E (dude.docking.org) to generate decoy mole-
cules (denoted as Decoy) of the reference ligands which bind
to the testing proteins.

Since those approaches adopt the same dataset, to make a
fair comparison, we used the default values of parameters as
those in the original papers in the comparison. For each pro-
tein in the independent testing set, top-10 molecules were gen-
erated for comparison.

It is the prime requirement that generated molecules bind to spe-
cific proteins with high affinities. Thus, we principally set the
expected binding affinity as VS � �7:5. Meanwhile, we expected
two hard drug-like properties (i.e. QED 
 0:6; SA � 4:0) to en-
sure that generated molecules are of high drug-likeness and easy to
be synthesized respectively. A detailed investigation on controlling
more properties can be found in Section 3.3. The generation perfor-
mance was, on average, measured by the first five metrics, includ-
ing VS, SA, HAR, QED, and Diversity. For both VS and SA, the
less, the better. For the remaining, the greater, the better. In addi-
tion, we list the average results recorded (denoted as “Reference”)
in the independent dataset as the baseline.

The results show that our CProMG significantly outper-
forms the Reference and other generative methods over all the
metrics (Table 1, where P-values achieved by two-tailed t-tests
are in parenthesis). In addition, since both HAR and Diversity
are global metrics, the calculation of P-value is inappropriate
for them. Especially, it reveals that our CProMG controlling
VS, QED, and SA achieves the lowest VS, the lowest QED,
and the highest SA as expected. In contrast, since these SOTA
approaches cannot control the generation of molecules in
terms of drug-like properties, they achieve sharply worse VS,
QED, and SA. Therefore, the comparison demonstrates the
superiority of our CProMG.

3.3 Property-controllable generation

In this section, we investigate how well CProMG controls the
molecule generation w.r.t. drug-like properties in a progressive
manner including four scenarios. The first scenario, denoted as
CProMG-w/oC, removes the controls of both binding affinity
and properties. The second one, denoted as CProMG-V, keeps
the control of binding affinity without property control by
expecting VS � �7:5. The third one, denoted as CProMG-
VQS, sets the control of two hard properties QED and SA by
expecting QED 
 0:6 and SA � 4:0, based on binding affinity
control. The last one, denoted as CProMG-VQSLT, sets an ex-
tra control of two soft properties LogP and TPSA by expecting
LogP ¼ 2:0; 4:0f g and TPSA ¼ 40:0; 80:0f g, based on the
third scenario. Thus, the last strategy contains four settings.

Table 1. Comparison with state-of-the-art approaches.

Method VS QED SA HAR (%) Diversity

Reference �7.550 (3.2e�2) 0.476 (7.7e�23) 3.453 (2.0e�5) – –
LiGANN �6.144 (2.5e�269) 0.371 (0.0) 4.787 (1.9e�88) 23.8 0.655
3D-SBDD �6.344 (1.2e�174) 0.502 (0.0) 3.912 (1.8e�39) 29.1 0.742
Pocket2Mol �7.288 (2.9e�92) 0.563 (6.6e�233) 3.205 (1.4e�7) 54.2 0.688
Transformer �7.385 (1.3e�33) 0.512 (1.6e�119) 2.756 (2.9e�11) 49.3 0.725
AlphaDrug �7.393 (1.2e�29) 0.507 (1.1e�118) 2.620 (3.1e�14) 50.1 0.727
Decoys �6.737 (2.1e�15) 0.539 (3.5e�66) 3.830 (5.0e�69) 29.6 0.739
CProMG 27.644 0.741 2.884 55.5 0.757

Note: Boldface values represent the best values of the metric.
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The overall results of the comparison are listed in Table 2
and its details are illustrated by the distributions of metric val-
ues in Fig. 2. The comparison reveals significant findings as
follows.

1) Even without property control, CProMG can generate
molecules, which have approximate properties to those
of reference molecules. For example, their QED/SA dis-
tribution (orange/green curves in Fig. 2) is similar to that
of reference molecules (blue curves).

2) In contrast, CProMG with property control can generate
molecules having better properties. Specifically, the

controls of binding affinity, QED, and SA always con-
tribute to high-binding affinities, high QEDs, and low
SAs as expected (Table 2, Fig. 2a and b). For example,
	99.18% of the novel molecules generated by CProMG-
VQS shows QED 
 0:6; while 	99.19% shows
SA � 4:0. Moreover, the controls of LogP and TPSA
make generated molecules own the right values of LogP
and TPSA around their expectations (Fig. 2c and d). For
example, all cases of CProMG-VQSLT show the peaks
of value distributions at the expected property values
with small dispersions.

3) It exists a trade-off among the controls over diverse
properties. Table 2 exhibits that the smaller LogP results
in a smaller SA (better), a smaller QED (worse), and a
bigger VS (worse), while the greater TPSA causes a
smaller VS (better) and a bigger SA (worse).

4) As shown in Table 2, neither the binding-affinity control
nor drug-like property control increases the Diversity,
which depends on other modules of CProMG.

3.4 Ablation studies

In this section, we investigated how well each component of
our model contributes to the prediction by ablation studies in
the case of controlling the binding affinity. We made four var-
iants of our original model by only considering the control of
binding affinity since it is the prime requirement. Each variant
masks one block of CProMG, which helps generate molecules

Table 2. Comparison of property controlling strategies.

Strategy VS QED SA HAR Diversity

Reference �7.550 0.476 3.453 – –
CProMG-w/oC �7.384 0.488 3.500 48.8 0.736
CProMG-V �7.849 0.452 3.655 56.8 0.721
CProMG-VQS �7.644 0.741 2.884 55.5 0.757
CProMG-VQSLT(2,40) �6.587 0.741 2.467 29.2 0.736
CProMG-VQSLT(2,80) �7.562 0.776 2.836 51.0 0.745
CProMG-VQSLT(4,40) �7.717 0.782 2.722 53.3 0.721
CProMG-VQSLT(4,80) �7.977 0.673 2.950 61.3 0.730

Note: CProMG-VQSLT(*, #) accounts for a specific LogP value(*) and a
specific TSPA value (#). Boldface values represent the best values of the
metric.

(b)(a)

(c) (d)

Figure 2. Property distributions of conditionally generated molecules. (a) QED, (b) SA, (c) logP, (d) TPSA. Both the reference distribution and the

distributions of seven controlling scenarios are illustrated. Both the means and the standard deviations of distribution curves are annotated in parentheses

following scenario names. Note that these values are annotated in the second parenthesis in the scenarios of CProMG-VQSLT since their first

parenthesis annotates LogP values and TSPA values. In addition, the thresholds of QED and SA are marked in (a) and (b).
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having high-binding affinity with specific proteins. The first
one only considers the atom view, ignoring the amino acid
view (denoted as w/o AA), while the second ignores the atom
view (denoted as w/o Atom). The third removes the Laplacian
position encoding (denoted as w/o LPE). The last (denoted as
w/o C) removes the conditional control of binding affinity
(i.e. docking score).

The comparison shows that CProMG significantly outper-
forms all the variants on the VS and HAR (Table 3, where P-
values are in parenthesis). The results demonstrate that both
the amino acid view and the atom view contribute to protein-
oriented molecule generation because they provide coarse-
grained representations and fine-grained representations of
protein binding pockets respectively. Also, the Laplacian posi-
tional encoding has a untrivial contribution to protein-
oriented molecule generation because it can extract the unique
positional representations of protein binding pockets. Last,
the results reveal again that the conditionally control of bind-
ing affinity is crucial to generating molecules with high-
binding affinity to specific proteins.

In general, the amino acid view encoder, the atom view en-
coder, the Laplacian position encoding and the property con-
trol play indispensable roles when generating protein-oriented
molecules with desired binding affinity. Similarly, we also in-
vestigated how the conditional control of other properties
affects the molecule generation. Similar results were found.

3.5 Case studies

As Peng et al. (2022) did, we selected the protein (PID: 5I0B)
in the testing set as a case study. Its mutations are detected in
multiple tumor issues. After running CProMG-VQS, we se-
lected its top-5 generated molecules in terms of VS, and apply
RDKit to calculate their values of QED, SA, LogP, and TPSA
(Fig. 3). We found that their SA ¼ 2.827 and QED¼ 0.789

on average. In addition, each molecule satisfies the conditions
of QED 
 0:6; SA � 4:0, while its LogP and TPSA fits the
RO5. This demonstrates that the generated compounds are
easy to be synthesized and have good drug-like properties.

Looking into the binding pocket by the Autodock Vina
(Trott and Olson 2010). We found that the reference inhibitor
molecule has stable polar contacts with the two surrounding
residues (i.e. ASP-458 and LEU-398). Due to the dual-view fu-
sion encoder and the decoder, five generate molecules retain
polar contacts with at least one of these residues. Moreover,
there are also polar contacts with other surrounding residues,
such as GLU-323 in R1, GLY-330 in R2, and both SER-457
and GLU 396 in R5.

In addition, the structures of the generated molecules are
significantly dissimilar to that of the reference molecule (i.e.
0.221, 0.222, 0.245, 0.228, and 0.263 in terms of Tanimoto
similarity). The results validate that the molecules generated
are novel.

In summary, the case study demonstrates that novel mole-
cules generated by our CProMG can not only bind to given
specific proteins in high affinity but also own desired drug-
like properties.

4 Conclusion

In this article, we have proposed a protein-oriented generative
framework for molecule generation (CProMG) under the con-
trol of high-binding affinity and desired drug-like properties.
CProMG contains a 3D protein embedding module, a dual-
view protein encoder, a molecule embedding module, and a
novel drug-like molecule decoder. This end-to-end framework
can address two existing issues, including inadequate protein
representation and incontrollable generation in properties.

Table 3. Ablation comparison.

Ref. CProMG-V w/o AA w/o Atom w/o LPE w/o C

VS �7.550 (3.6e�2) 27.849 �7.593 (1.2e�5) �7.441 (4.3e�9) �7.729 (4.3e�2) �7.384 (2.6e�11)
HAR (%) – 56.8 50.6 49.7 53.2 48.8

Note: Boldface values represent the best values of the metric.

VS: -7.4

QED: 0.90 SA: 2.21
LogP: 1.22 TPSA: 62.30

Reference of 5I0B

VS: -8.6
QED: 0.82 SA: 2.94

LogP: 4.56 TPSA: 66.18

Generated (R1)

VS: -8.6
QED: 0.65 SA: 2.21
LogP: 4.36 TPSA: 87.66

Generated (R2)

VS: -8.5
QED: 0.91 SA: 2.95

LogP: 3.98 TPSA: 49.66

Generated (R3)

VS: -7.7
QED: 0.70 SA: 2.66

LogP: 3.11 TPSA: 85.25

Generated (R4)

VS: -7.7
QED: 0.87 SA: 3.37

LogP: 1.70 TPSA: 120.14

Generated (R5)

Figure 3. Case study. The reference molecule is located in the left column while top-5 generated molecules are listed in a descending ordered w.r.t. VS in

the remaining columns. Both their binding affinity (VS) and four drug-like properties (QED, SA, LogP, and TPSA) are annotated as well.
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The comparison with recently published deep generative
methods demonstrates the superiority of CProMG.
Moreover, the progressive Property-control, the ablation
studies as well as the case study validate its contributions.
First, CProMG provides a comprehensive framework to gen-
erate novel molecules for given proteins with high-binding af-
finities and desired drug-like properties. Secondly, by fusing
the hierarchical views of proteins, it significantly enhances the
characterization of protein binding pockets by associating
amino acid residues with their comprising atoms. Thirdly, the
protein-interactive multi-head attention block in the decoder
calculates the proximity of molecule tokens to protein resi-
dues and atoms, such that crucial interactions between pro-
tein pockets and molecules can be captured.

In summary, we believe that our study provides new
insights into molecule generation for de novo drug design.

Acknowledgements

The authors would like to thank anonymous reviewers for
suggestions that improved the paper.

Conflict of interest

None declared.

Funding

This work was supported by the National Nature Science
Foundation of China [61872297], the Shaanxi Province Key
R&D Program [2023-YBSF-114], and the CAAI-Huawei
MindSpore Open Fund [CAAIXSJLJJ-2022-035A].

References

Bagal V, Aggarwal R, Vinod PK et al. MolGPT: Molecular generation

using a transformer-decoder model. J Chem Inf Model 2022;62:

2064–76. 10.1021/acs.jcim.1c00600.34694798.
Bickerton GR, Paolini GV, Besnard J et al. Quantifying the chemical

beauty of drugs. Nat Chem 2012;4:90–8. 10.1038/nchem.1243.

22270643.

Bronstein MM, Bruna J, LeCun Y et al. Geometric deep learning: Going

beyond euclidean data. IEEE Signal Process Mag 34:18–42. 10.

1109/MSP.2017.2693418.

Creswell A, White T, Dumoulin V et al. Generative adversarial net-

works: An overview. IEEE Signal Process Mag 35:53–65. 10.1109/

MSP.2017.2765202.
De Cao N, Kipf T. MolGAN: an implicit generative model for small mo-

lecular graphs. arXiv preprint arXiv:1805.11973. 2018.

Dwivedi VP, Joshi CK, Laurent T et al. Benchmarking Graph Neural

Networks. arXiv preprint arXiv:2003.00982. 2022.
Dwivedi VP, Bresson X. A Generalization of Transformer Networks to

Graphs. arXiv preprint arXiv:2012.09699. 2021.
Ertl P, Schuffenhauer A. Estimation of synthetic accessibility score of

drug-LIKE molecules based on molecular complexity and fragment

contributions. J Cheminform 2009;1:8 10.1186/1758-2946-1-8.

PMC: 20298526.
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Kotsias P-C, Arús-Pous J, Chen H et al. Direct steering of de novo molec-
ular generation with descriptor conditional recurrent neural net-

works. Nat Mach Intell 2020;2:254–65. 10.1038/s42256-020-0174-5.
Kreuzer D, Beaini D, Hamilton W et al.. Rethinking Graph

Transformers with Spectral Attention. Advances in Neural
Information Processing Systems 34: 21618-29. https://openreview.
net/forum?id=huAdB-Tj4yG.

Lim J, Ryu S, Kim JW et al. Molecular generative model based on condi-
tional variational autoencoder for de novo molecular design. J
Cheminform 2018;10:31 10.1186/s13321-018-0286-7.

Lipinski CA, Lombardo F, Dominy BW et al. Experimental and compu-

tational approaches to estimate solubility and permeability in drug
discovery and development settings. Advanced Drug Delivery
Reviews 2012;64:4–17. 10.1016/j.addr.2012.09.019.

Luo S, Guan J, Ma J et al.. A 3D Generative Model for Structure-Based
Drug Design. Advances in Neural Information Processing Systems,
34: 6229-6239. https://openreview.net/forum?id=yDwfVD_odRo.

Macarron R, Banks MN, Bojanic D et al. Impact of high-throughput

screening in biomedical research. Nat Rev Drug Discov 2011;10:
188–95. 10.1038/nrd3368.21358738.

Madani A, Krause B, Greene E R et al.. Deep neural language modeling

enables functional protein generation across families. bioRxiv 2021.
10.1101/2021.07.18.452833.

Peng X, Luo S, Guan J et al. Pocket2Mol: Efficient Molecular Sampling
Based on 3D Protein Pockets. International Conference on Machine

Learning 39:17644-55. https://proceedings.mlr.press/v162/peng22b.
html.

Polishchuk PG, Madzhidov TI, Varnek A. Estimation of the size of

drug-LIKE chemical space based on GDB-17 data. J Comput Aided
Mol Des 2013;27:675–9. 10.1007/s10822-013-9672-4.23963658.

Qian H, Lin C, Zhao D et al. AlphaDrug: protein target specific de novo
molecular generation. PNAS Nexus 2022;1:pgac227 10.1093/pnas

nexus/pgac227. PMC: 36714828.
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