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Abstract
Motivation: The spectacular recent advances in protein and protein complex structure prediction hold promise for reconstructing interactomes
at large-scale and residue resolution. Beyond determining the 3D arrangement of interacting partners, modeling approaches should be able to un-
ravel the impact of sequence variations on the strength of the association.

Results: In this work, we report on Deep Local Analysis, a novel and efficient deep learning framework that relies on a strikingly simple decon-
struction of protein interfaces into small locally oriented residue-centered cubes and on 3D convolutions recognizing patterns within cubes.
Merely based on the two cubes associated with the wild-type and the mutant residues, DLA accurately estimates the binding affinity change for
the associated complexes. It achieves a Pearson correlation coefficient of 0.735 on about 400 mutations on unseen complexes. Its generalization
capability on blind datasets of complexes is higher than the state-of-the-art methods. We show that taking into account the evolutionary con-
straints on residues contributes to predictions. We also discuss the influence of conformational variability on performance. Beyond the predictive
power on the effects of mutations, DLA is a general framework for transferring the knowledge gained from the available non-redundant set of
complex protein structures to various tasks. For instance, given a single partially masked cube, it recovers the identity and physicochemical class
of the central residue. Given an ensemble of cubes representing an interface, it predicts the function of the complex.

Availability and implementation: Source code and models are available at http://gitlab.lcqb.upmc.fr/DLA/DLA.git.

1 Introduction

The ever-growing number of sequenced individual genomes
and the possibility of obtaining high-resolution 3D structural
coverage of the corresponding proteomes (Jumper et al. 2021;
Mirdita et al. 2021) open up exciting avenues for personalized
medicine. Assessing the impact of sequence variations, partic-
ularly missense mutations, between individuals on how pro-
teins interact with each other can shed light on disease
susceptibility and severity (Creixell et al. 2015; Jubb et al.
2017) and help decipher gene–disease–drug associations for
developing therapeutic treatments (Hao et al. 2012; Pi~nero
et al. 2015; Tang et al. 2020). Of particular interest are the
surface regions of proteins directly involved in the interac-
tions, as this is where most disease-related missense mutations
occur (David et al. 2012; Gonzalez and Kann 2012; David
and Sternberg 2015; Xiong et al. 2022). At the same time,
rapid advances in deep learning techniques for biology, espe-
cially for biomolecules, are creating opportunities to revisit
the way we look at protein complexes and represent them.
The impact of a mutation on the strength of the association
between two protein partners can be measured by the differ-
ence in binding free energy

DDGBind ¼ DGMU
Bind � DGWT

Bind; (1)

where DGMU
Bind and DGWT

Bind are the binding free energies, or bind-

ing affinities, of the mutated and wild-type complexes,

respectively. Significant efforts have been expended over the past
decade to produce, collect and curate binding affinity measure-
ments for wild-type and mutated complexes (Supplementary
Table S1) (Moal and Fernández-Recio 2012; Vreven et al. 2015;
Sirin et al. 2016; Jemimah et al. 2017; Liu et al. 2018;
Jankauskait_e et al. 2019). Nevertheless, the handful of experi-
mental techniques yielding accurate estimates of DGBind remain
laborious, expensive, and time-consuming (Vangone and Bonvin
2015). To overcome this limitation, several efficient computa-
tional methods have been developed (Supplementary Table S2)
(Guerois et al. 2002; Pires and Ascher, 2016; Xiong et al. 2017;
Barlow et al. 2018; Geng et al. 2019; Rodrigues et al. 2019,
2021; Liu et al. 2020, 2022; Wang et al. 2020; Zhang et al.
2020; Zhou et al. 2020). Most of them exploit local environ-
ments around the mutation site to directly predict DDGBind val-
ues. The advantage of this strategy is 2-fold. First, it avoids the

accumulation of errors on the DGWT
Bind and DGMU

Bind quantities that

would result in large approximations in DDGBind. Second, it
avoids the unnecessary calculation of properties not modified by
the mutation, e.g. the chemical composition of the noninteract-
ing surface and the 3D geometry of the interface contact distri-
bution. Indeed, these properties, while contributing strongly to
the binding affinity (Vangone and Bonvin 2015; Raucci et al.
2018), are not, or only slightly, sensitive to point mutations lo-
cated at the interface. The state-of-the-art methods sometimes
achieve very high prediction accuracy when evaluated using 10-
fold cross validation. However, their ability to generalize to
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diverse complexes and across different databases can be im-
proved (Geng et al. 2019).

Representation learning powered by deep neural networks has
opened up opportunities to develop all-purpose models transfer-
ring knowledge across systems and tasks. After a major break-
through in natural language processing (Vaswani et al. 2017;
Devlin et al. 2019), the concept has been transferred to proteins
through protein language models (pLMs) (Heinzinger et al. 2019;
Bepler and Berger 2021; Elnaggar et al. 2021; Rives et al. 2021).
pLMs learn the fundamental properties of natural protein diver-
sity by reconstructing some masked or the next amino acid(s),
given their sequence context, at scale. They exhibit exciting poten-
tial for a broad range of protein-related problems. Beyond se-
quence information, self-supervised learning-based approaches
have leveraged the protein and protein complex 3D structures
available in the Protein Data Bank (PDB) (Berman et al. 2002) for
fixed-backbone protein design (Anand et al. 2022; Dauparas
et al. 2022; Hsu et al. 2022), for predicting protein stability
(Blaabjerg et al. 2022; Zhang et al. 2022), and for assessing the
impact of mutations on protein–protein interactions (Liu et al.
2020). In particular, in Liu et al. (2020), a graph neural network
is trained to reconstruct disturbed wild-type and mutated complex
structures represented as graphs. A gradient-boosting trees algo-
rithm then exploits the learned representations to predict
mutation-induced DDGBind values. Although this approach
showed promising results, it sequentially employs two different
machine learning components trained independently, limiting its
versatility and applicability to other tasks.

Here, we report on ‘Deep Local Analysis (DLA)-mutation’,
the first deep learning architecture estimating mutation-
induced DDGBind from patterns in local interfacial 3D envi-
ronments learnt through self-supervision (Fig. 1). It relies on a
representation of protein interfaces as sets of locally oriented
cubes we previously introduced in Mohseni Behbahani et al.
(2022) and Pagès et al. (2019) (Fig. 1A). In this work, we lev-
eraged this representation through self-supervised learning
(Fig. 1B) and combined it with supervised learning of DDGbind

exploiting both structural and evolutionary information
(Fig. 1C). DLA-mutation only takes as input two cubes, corre-
sponding to the environments around the wild-type and mu-
tated residues, respectively, and directly estimates DDGbind.
Beyond prediction, we used the learned representations to in-
vestigate the extent to which the environment of an interfacial
residue is specific to its type and physicochemical properties
(Fig. 1D). DLA-mutation code and models are freely available
to the community at http://gitlab.lcqb.upmc.fr/DLA/DLA.git.

2 Methods
2.1 Protein–protein interface representation

We represent a protein–protein interface as a set of locally ori-
ented cubic volumetric maps centered around each interfacial
residue (Fig. 1A). The local atomic coordinates of the input
structure are first transformed to a density function, where
each atom is one-hot encoded in a vector of 167 dimensions
(Pagès et al. 2019). Then, the density is projected on a 3D
grid comprising 24� 24� 24 voxels of side 0.8 Å. The map
is oriented by defining a local frame based on the common
chemical scaffold of amino acid residues in proteins (Pagès
et al. 2019) (see Supplementary Data for more details). This
representation is invariant to the global orientation of the
structure while preserving information about the atoms and
residues relative orientations.

For the self-supervised representation learning, we trained
DLA to recognize which amino acid would fit in a given local
3D environment extracted from a protein–protein interface.
Our aim in doing so is to capture intrinsic patterns underlying
the atomic arrangements found in local interfacial regions.
Formally, the machine predicts the probability PðyjenvÞ of the
amino acid type y, for y 2 fA;C;D; . . . ;W;Yg, conditioned
on the interfacial local chemical environment env given as in-
put. In practice, we process the input cube before giving it to
DLA by masking a sphere of radius rcÅ centered on an atom
from the central residue (Supplementary Fig. S1 and Fig. 1A).
Masking a fixed volume prevents introducing amino acid-
specific shape or size biases. We experimented with different
values of rc (3 and 5 Å) and different choices for the atom
(Ca; Cb, random). We found that a sphere of radius of 5 Å
with a randomly chosen center yielded both good perfor-
mance and expressive embedding vectors.

For the supervised prediction of DDGBind, we combined the
embeddings of the volumetric maps with five pre-computed aux-
iliary features (Fig. 1C), among which four describe the wild-
type residue, namely its conservation level TJET determined by
the Joint Evolutionary Trees method (Engelen et al. 2009), its
physicochemical properties to be found at interfaces (PC), its
protruding character, as measured by its circular variance (CV)
(Mezei 2003; Ceres et al. 2012), and the structural region (SR)
where it is located: interior (INT), non-interacting surface (SUR),
or, if it is part of the interface, support (S or SUP), core (C or
COR), or rim (R or RIM) as defined in Levy (2010). We previ-
ously demonstrated the usefulness of these properties for predict-
ing and analyzing protein interfaces with other macromolecules
(protein, DNA/RNA) (Laine and Carbone, 2015; Raucci et al.
2018; Corsi et al. 2020; Mohseni Behbahani et al. 2022). The
fifth feature is a numerical score computed by GEMME (Laine
et al. 2019) that reflects the impact of the point mutation on the
function of the protein chain where it occurs, considered as a
monomer. GEMME combines the conservation levels TJET with
amino acid frequencies and the minimum evolutionary distance
between the protein sequence and an homologous protein dis-
playing the mutation. See Supplementary Data for more details.

2.2 DLA architectures

Our DLA framework is relatively simple, generic, and versa-
tile. Its main core architecture comprises a projector, three 3D
convolutional layers, an average pooling layer, and a fully
connected subnetwork (Fig. 1B and C). The purpose of the
projector is to reduce the dimension of each input cube vox-
el’s feature vector from 167 to 20. We apply batch normaliza-
tion after each 3D convolution. The average pooling layer
exploits scale separability by preserving essential information
of the input during coarsening of the underlying grid. To
avoid overfitting, we applied 40%, 20%, and 10% dropout
regularization to the input, the first, and the second layers, re-
spectively, of the fully connected subnetwork.

For the self-supervised task (Fig. 1B), the fully connected
subnetwork contains three successive layers (sizes 200, 20,
and 20) and the last activation function (Softmax) outputs a
probability vector of size 20 representing the 20 amino acids.
The categorical cross-entropy loss function measures the dif-
ference between the probability distribution of the predicted
output and a one-hot vector encoding the true amino acid
type of the central residue. We refer to this version of DLA to
build the pre-trained model as ‘self supervised-DLA’ or
‘ssDLA’.
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For the supervised DDGBind prediction (Fig. 1C), we used
the core DLA framework to build a Siamese architecture con-
stituted by two branches with shared weights. The network
processes two input cubes corresponding to the wild-type and
mutated residues. The average pooling layer is followed by
two fully connected layers of size 200 and 20, respectively,
within each branch. We then merge the two branches by sub-
tracting the computed embedding vector and concatenate the
auxiliary features (described above) to the resulting vector.
The last fully connected layer displays a linear activation func-
tion and outputs one value. The loss is the mean squared er-
ror. We refer to this architecture as ‘DLA-mutation’.

3 Databases

We computed the ground-truth DDGBind values from SKEMPI
v2.0 (Jankauskait_e et al. 2019), the most complete source for
experimentally measured binding affinities of wild-type and
mutated protein complexes. We restricted our experiments to
the data produced by the most reliable experimental techni-
ques, namely Isothermal Titration Calorimetry, Surface
Plasmon Resonance, Spectroscopy, Fluorescence, and
Stopped-Flow Fluorimetry, as done in Vangone and Bonvin
(2015). We selected a subset of 2003 mutations associated
with 142 complexes, referred to as ‘S2003’ in the following.
To provide ssDLA and DLA-mutation with input protein–
protein complex 3D structures, we created and processed two
databases, namely ‘PDBInter’ and ‘S2003-3D’. PDBInter is a

non-redundant set of 5055 experimental structures curated
from the PDB. S2003-3D contains 3D models generated using
the ‘backrub’ protocol implemented in Rosetta (Smith and
Kortemme 2008). We refer to each generated conformation
as a backrub model. We generated 30 backrub models for
each wild-type or mutated complex. This amount was shown
to be sufficient for estimating free energies in Barlow et al.
(2018). See Supplementary Data for more details.

3.1 Training and evaluation of ssDLA and

DLA-mutation

We trained and validated ssDLA on the PDBInter database. The
protein complexes in the train set do not share any family level
similarity with the 142 complexes from S2003, according to the
SCOPe hierarchy (Fox et al. 2014; Chandonia et al. 2022). We
generated 247 662 input samples (interfacial cubes) from the
train set and 34 174 from the validation set. Amino acids are
not equally distributed in these sets; leucine is the most frequent
one, while cysteine is the rarest (Supplementary Fig. S2). To
compensate for such imbalance and with the aim of penalizing
more those errors that are made for the less frequent amino
acids, we assigned a weight to the loss of each amino acid type
that is inversely proportional to its frequency of occurrence
(Supplementary Table S3). We trained ssDLA for 50 epochs
with the Adam optimizer in TensorFlow at a learning rate of
0.0001 (Supplementary Fig. S3A). We explored different hyper-
parameter values by varying the learning rate, applying different
normalization schemes, changing the compensation weights, etc.

A

C
D

B

Figure 1. DLA data representations and architectures. (A) A representation of a protein interface (green and yellow residues from each partner) as an

ensemble of cubes (IC). Each cube (rk 2 IC ) is centered and oriented around an interfacial residue. In the example cube on the right, the atoms displayed in

yellow and magenta sticks are enclosed in a 5-Å-radius sphere centered on a randomly chosen atom from the central residue. (B) Architecture of the self-

supervised model, named ssDLA. The input cube is the same as in panel (A). The atoms that were in yellow and magenta sticks are now replaced by an

empty space. Carbon atoms are colored in green, oxygen in red, nitrogen in blue, and sulfur in yellow. The training task is to recover the identity of the

residue lying at the center of the partially masked input cube. (C) Siamese architecture of the supervised model DLA-mutation predicting mutation-

induced binding affinity changes. The two parallel branches with shared weights apply 3D convolutions to the local 3D environments around the wild-type

and mutated residues and compute two embedding vectors. Auxiliary features are concatenated to the vector resulting from subtracting these two

embedding vectors. (D) Two-layer dense classifier taking as input the embedding vectors computed by the pre-trained ssDLA (panel B) and outputting a

probability vector whose dimension is the number of classes.
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We retained the hyperparameters leading to the best perfor-
mance on the validation set. The trained ssDLA model extracts
‘embedding vector’ ek of size 200 (Fig. 1B) for a given cube.

We used S2003 to train and test DLA-mutation. We set the
learning rate at 0.001 and we initialized the weights of the net-
work with those of the pre-trained ssDLA model. We first evalu-
ated DLA-Mutation through a 10-fold cross validation
performed at the mutation level. This evaluation procedure,
which is widely used in the literature (Geng et al. 2019;
Rodrigues et al. 2019, 2021; Wang et al. 2020; Zhou et al.
2020; Liu et al. 2022), considers each sample independently
when splitting the data between train and test sets (‘mutation-
based’ split). However, this assumption is problematic since the
same complex or even the same wild-type residue may be seen
during both the training and the testing phases. These cases are
expected to be ‘easy’ to deal with. For a more challenging and
realistic assessment, we held out 32 complexes displaying 391
mutations for the testing phase, and trained DLA-mutation on
the rest of the dataset (‘complex-based’ split).

For the comparison with iSEE, we used the same train and
test procedure as that reported in Geng et al. (2019)
(Supplementary Table S2), using the wild-type and mutant
3D models produced by HADDOCK (van Zundert et al.
2016) and available from Geng et al. (2019). For the compari-
son with the other predictors, we defined the test set from the
intersection between S2003 and the benchmark set used in
Geng et al. (2019). It amounted to 112 mutations from 17
complexes. We defined a new training set comprising 945
mutations from S2003 coming from complexes sharing less
than 30% sequence identity with those from this test set. In
the case of GraphPPI (Liu et al. 2020), TopNetTree (Wang
et al. 2020), and Hom-ML-V2 (Liu et al. 2022), the compari-
son remains qualitative due to the lack of complete readily
available software packages and already trained models.

3.2 Mapping the embeddings to residue and

interface properties

We trained a fully connected network composed of only one
hidden layer of size 20 to map the embeddings computed by
ssDLA to residue- and interface-based properties. The input
layer is of size 200 and the Softmax activation function of the
output layer computes a probability vector whose size is
the number of classes. We used categorical cross-entropy as
the loss function. In the first experiment, we mapped an input
embedding vector (ek, size 200, see Fig. 1D), representing a lo-
cal 3D interfacial environment, to an output amino acid phys-
icochemical class, among the seven defined in Laine et al.
(2019) (Supplementary Table S4). We directly gave the em-
bedding computed by ssDLA for a given input cube to the
classifier. In the second experiment, we mapped an input em-
bedding averaged over an entire interface to an output inter-
action functional class, among antibody–antigen (AB/AG),
protease–inhibitor (Pr/PI), and T-cell receptor—major histo-
compatibility complex (TCR/pMHC), as annotated in the
SKEMPI v2.0. For training purposes, we redundancy reduced
the set of 142 complexes from S2003 based on a 30% se-
quence identity cutoff. See Supplementary Data for details.

4 Results

The DLA framework deconstructs a protein–protein interface
to predict mutation-induced changes in binding affinity and
solve residue- or interface-based downstream tasks (Fig. 1). It

extracts embedding vectors from locally oriented cubes sur-
rounding wild-type or mutant interfacial residues and com-
bines them with auxiliary features, including SRs or
evolutionary information.

4.1 Can an interfacial residue be learnt from its

environment?

ssDLA was trained in a self-supervised way on experimental
complex structures (PDBInter database, see Section 2). Its
ability to recover the identity of the central residue in the in-
put cube can inform us about the extent to which an interfa-
cial residue’s 3D environment is specific to its amino acid type
or physicochemical properties. To investigate this possibility,
we analyzed the probability vectors computed by ssDLA
when given a partially masked cube as input (Fig. 2A).

To avoid any amino acid-specific bias, we masked a volume
of constant shape and size, namely a sphere of radius 5 Å, in
all training samples (see Section 2 and Supplementary Fig.
S1). ssDLA successfully and consistently recognized the amino
acids containing an aromatic ring (F, Y, W, H) and most of
the charged and polar ones (E, K, R, and to a lesser extent Q
and D), as well as methionine (M), cysteine (C), glycine (G),
and proline (P), whatever their SR (Fig. 2A). In contrast, the
location of alanine (A), isoleucine (I), and leucine (L) influ-
enced their detection. While they were ranked in the top 3 in
support and core, they were almost never recognized in the
rim. Inversely, the polar asparagine (N) was recognized when
located in the rim or the core, but not the support. The model
often confused the hydroxyl-containing serine (S) and threo-
nine (T) on the one hand, and the hydrophobic I and L on the
other hand.

These tendencies cannot be deduced from the relative fre-
quencies of occurrence of the different amino acids in the
three interface SRs (Supplementary Fig. S2). For instance,
ssDLA behaves very differently with N and Q (Fig. 2A), al-
though they display the same relative abundances and the
same SRs preferences (Supplementary Fig. S2). Hence, the
poor recovery rate for N suggests that the environments for
this amino acid are more ambiguous or diverse than those
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Figure 2. Performance of ssDLA model. (A) The predictive power of

ssDLA model is evaluated on the validation set of ‘PDBInter’. The three

logos represent the propensities of each amino acid to be predicted

(having maximum score in the output layer), depending on the true amino

acid (x-axis) and on its SR (see Section 2). Amino acids are colored based

on seven similarity classes: ARO (F, W, Y, H) in green, CAST (C, A, S, T) in

black, PHOB (I, L, M, V) in red, POS (K, R) in purple, POL-N (N, Q, D, E) in

blue, GLY (G) in gray and PRO (P) in orange (see Section 2). (B) Confusion

matrix for the prediction of the seven amino acid classes using

embedding vectors generated by ssDLA. The percentage values and the

colors indicate recall. The model is trained and tested on the interfacial

residues of X-ray crystal structures of S2003. See Supplementary Fig. S5

for the performance of ssDLA when only four channels corresponding to

the four amino acid-independent chemical elements (O, C, N, and S) are

considered to define the cubic volumetric maps.
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observed for Q. Likewise, ssDLA tendency to over-populate
the rim with aspartate (D) does not reflect its overwhelming
presence in this region. We hypothesize that D serves as a �
bin � class predicted when the environment is underdeter-
mined. Such underdetermination or ambiguity is more likely
to happen in the rim, where the residues are more exposed
and thus the cube contains more empty space. A previous
study reported different trends for a similar task and similar
data representation (Anand et al. 2022). In particular, it could
identify G and P with very high success, whereas it confused
F, Y, and W. These results may reflect a bias toward recogniz-
ing amino acid-specific sizes and shapes, due to masking only
the side chain of the central residue. Moreover, the model was
trained and evaluated on monomeric proteins.

The spherical mask of radius 5 Å may not always cover the
whole central residue, raising the question of whether the net-
work relies on the amino acid-specific types of the remaining
atoms in such cases. To test this, we removed any amino acid-
specific information by reducing the 167 feature channels
encoding the atom types to 4, corresponding to the four
chemical elements C, N, O, and S. Even with four channels,
ssDLA successfully recognized and distinguished the large ar-
omatic amino acids F, W, and Y, as well as the long posi-
tively, charged R and K, whatever the SR (Supplementary Fig.
S5). We also slightly lowered the weight of D in the calcula-
tion of the loss during training (Supplementary Table S3).
This small change shifted the tendency of ssDLA to predict D
for E, especially in the rim region (Supplementary Fig. S5).
Such instability highlights the under-determination of the
environments in this region.

4.2 DLA-mutation accurately predicts DDGBind

To build the DLA-mutation model, we fine-tuned the weights
of the pre-trained ssDLA model (Fig. 1B) to predict DDGBind

values in a supervised fashion (Fig. 1C). Starting from a set of
experimental structures of wild-type complexes, we generated
3D conformations for wild-type and mutated forms using the
‘backrub’ protocol implemented in Rosetta and we used them
to train and test DLA-mutation (S2003-3D database, see
Section 2 and Supplementary Fig. S6). For each mutation, we
combined information coming from the local 3D environ-
ments of the wild-type and mutant residues extracted from
the corresponding modelled 3D complexes with additional
structural and evolutionary information.

DLA-mutation achieved an overall very good agreement
with DDGBind experimental measurements (Fig. 3). It reached
a Pearson correlation coefficient (PCC) of 0.735 and a root
mean-squared error (RMSE) of 1.23 kcal/mol on 391 muta-
tions coming from 32 complexes (Fig. 3A and Table 1). All
testing complexes were different from the complexes seen dur-
ing training (see Section 2). Hence, this result emphasizes
DLA-mutation’s high generalization capability to unseen
complexes.

4.3 Evolutionary information and pre-training

matter

As auxiliary features, we used the SR of the wild-type residue
(Fig. 1C, SR), as well as other geometrical (CV), physicochem-
ical (PC), and evolutionary (GEMME, TJET) descriptors. We
performed an ablation study to assess the contribution of
these descriptors and of the pre-training step (Supplementary
Fig. S4 and Table 1).

In the baseline configuration, we used only the structure-
based SR auxiliary feature. The latter informs the model
about the location of the input cube’s central residue on the
interface. We have previously shown that the SR information
contributes significantly to the performance of the DLA
framework (Mohseni Behbahani et al. 2022). Hence, the
baseline version of the model does not include any sequence-
based auxiliary feature. In addition to this, we also consid-
ered evolutionary information, using either GEMME scores
(SR-GEMME) or TJET conservation levels (SR-TJET). We
found that the wild-type residue’s buriedness (CV) and inter-
face propensity (PC) contributed very little to the accuracy of
the predictions (Supplementary Fig. S4A–D and Table 1,
compare All with SR-TJET and SR-GEMME). Removing
them is essentially harmless. In contrast, evolutionary infor-
mation does significantly contribute to the model’s perfor-
mance, as attested by the rather low PCC (0.648) obtained
when using only SR (Supplementary Fig. S4B and Table 1).
By design, the mutation-specific GEMME score is correlated
to the position-specific conservation level TJET (Laine et al.
2019), and thus the two descriptors are redundant to some
extent. Nevertheless, we observed that the former was more
informative than the latter (Supplementary Fig. S4, compare
panels C and D). Finally, pre-training the architecture
through self-supervision with ssDLA clearly improved the
predictions (Supplementary Fig. S4, compare panels A and B
with panels E and F, and Table 1). The gain in PCC is of
0.08 compared with initializing DLA-mutation weights
randomly.
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Figure 3. Performance of DLA-mutation and comparison with iSEE. (A

and B) DLA-mutation scores versus experimental DDGBind values on

S2003 dataset. The models rely on fine-tuned weights, starting from

those of the pre-trained ssDLA, and exploits all auxiliary features (see

Section 2). (A) Test set of 391 mutations coming from 32 complexes that

were not seen during training and were randomly selected from the

S2003 dataset. (B) Mutation-based 10-fold cross validation procedure over

all 2003 mutations. (C and D) DLA-mutation (green) and iSEE (blue) scores

versus experimental DDGBind values for the test set of 487 mutations

from 56 complexes (S487 dataset). The input 3D models and training

and evaluation procedure were directly taken from (Geng et al. 2019).

(C) DLA-mutation (D) iSEE.
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4.4 Comparison with state-of-the-art predictors

We considered three recent deep learning-based approaches,
namely GraphPPI (Liu et al. 2020), TopNetTree (Wang et al.
2020), and Hom-ML-V2 (Liu et al. 2022). The reported per-
formance for GraphPPI using leave-one-structure-out cross
validation is similar to those we obtained for DLA-mutation
(Supplementary Table S2). TopNetTree achieves a much
lower PCC of 0.53 on the blind test. Both TopNetTree and
Hom-ML-V2 were mainly evaluated using mutation-based
cross validation (Supplementary Table S2, results marked
with *). Such evaluation likely leads to overly optimistic esti-
mates, since the same complex, or even the same mutation
site, can be shared between the train and test sets. The PCC
reported are as high as 0.85 on a set of 1131 mutations exclu-
sively coming from the SKEMPI v1 dataset (Supplementary
Table S2). By comparison, we obtained a PCC of 0.81 over
2003 single-point mutations following a mutation-based 10-
fold cross validation (Fig. 3B). The slightly lower performance
of DLA-mutation may come from the fact that by using
SKEMPI v2.0 (which includes v1.0) we cover a larger number
of complexes and experimental techniques for the estimation
of binding affinity (see Section 2).

To provide a more controlled and precise comparison with
the competitive methods and to further assess DLA-mutation
generalization capabilities, we performed two experiments. In
the first one, we reproduced exactly the train and test proce-
dure described in Geng et al. (2019) for assessing iSEE and we
applied it to DLA-mutation (Fig. 3C and D). iSEE is a recently
developed machine learning-based method that, similarly to
DLA-mutation, directly estimates DDGBind values exploiting
structural information coming from the wild-type and mutant
complex 3D structures, as well as evolutionary information.
We used HADDOCK-generated 3D models available from
Geng et al. (2019) as input. The comparison is directly made
to the iSEE results reported in Geng et al. (2019). We found
that DLA-mutation generalized better than iSEE from
SKEMPI version 1 to version 2 (Fig. 3C and D). Specifically,
when DLA-mutation is trained on SKEMPI v1.0, it reached a
PCC of 0.423 on 487 mutations coming from 56 unseen com-
plexes from SKEMPI v2.0 (Fig. 3C). The correlation obtained
with iSEE was much lower, around 0.25 (Fig. 3D). The base-
line version of DLA-mutation, which relies only on structural

information, still compares favorably to iSEE (Supplementary
Fig. S7).

In the second experiment, we extended the comparison to
three other DDGBind predictors, namely mCSM (Pires et al.
2014), FoldX (Guerois et al. 2002), and BindProfX (Xiong
et al. 2017) (Fig. 4). mCSM directly estimates DDGBind values
by exploiting the 3D structure of the wild-type complex and
descriptors of the substituting amino acid within a machine
learning framework. FoldX estimates free energies of binding
DGBind of the wild-type and mutant complexes using a
physics-based energy function and then computes their differ-
ence. BindProfX combines FoldX with evolutionary interface
profiles built from structural homologs. Without relying on
machine learning, it achieves a good correlation with the ex-
perimental data from SKEMPI v1.0 (Supplementary Table
S2). We found that DLA-mutation outperforms all of the pre-
dictors on a set of 112 mutations coming from 17 complexes
sharing less than 30% sequence identity with those seen dur-
ing training (Fig. 4). DLA-mutation’s baseline version,
exploiting only structural information, still outperforms all
other methods except BindProfX (Supplementary Fig. S8).

In absolute terms, DLA-mutation’s performance is moder-
ate in these two experiments (PCC below 0.5). In the first
case, we may interpret the difficulty faced for generalizing
from an older to a more recent version of SKEMPI as reflect-
ing differences in the way these two versions were compiled
and in the quality of their data (see Section 5). The balance of
mutation types in the train and test sets may also play an im-
portant role. While the substitutions to alanine represent less
than half of the mutations in the train set (SKEMPI v1.0),
they amount to about 75% in the test set (SKEMPI v2.0). The
substitutions to alanine also represent a large proportion (83
out of 112) of the mutations in the second experiment’s test
set.

4.5 DLA-mutation performs better on core and rim

and is robust to size and sequence identity changes

The location of a mutation in a protein interface might be a
relevant indicator for the confidence in the estimation. We in-
vestigated this issue by describing an interface as three con-
centric layers of residues, the support (internal layer), the core
(the second layer), and the rim (the third and most external
layer) (Levy 2010). DLA-mutation better deals with

Table 1. Different experimental setups for DDGbind prediction with DLA-mutation.

Train/test No. (mutations) Weight Auxiliary PCC RMSE

split level Train Test initialization features (kcal
mol)

Mutation 2003 – Pre-training All 0.812 –

Complex 1612 391 Pre-training SR 0.686 1.31
SR-Tjet 0.712 1.32

SR-GEMME 0.726 1.27
All 0.735 1.23

Random SR 0.602 1.44
All 0.657 1.37

Complex and 945 112 Pre-training All 0.481 1.14
<30% seq. id.

Complex 1102a 487a Pre-training All 0.423 1.31

a The input 3D models, generated by HADDOCK (van Zundert et al. 2016), were taken from Geng et al. (2019).
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mutations taking place in the core and rim, with PCCs as high
as 0.737 and 0.798, respectively (Fig. 5A, compare gold and
blue dots with red dots). The mutations in the core are also
the most frequent ones. These results may reflect the more
substantial mutation-induced conformational variations in
the core and rim, compared with the support, which are cap-
tured by backrub protocol. Very few mutations are located
outside of the interface and the associated range of experi-
mental DDGBind values is very narrow, making it difficult to
distinguish them (Fig. 5A, pink and green dots). In addition,
the prediction accuracy seems to depend on the function of
the complex, with the protease-inhibitor class displaying the
highest number of complexes and the highest accuracy

(Fig. 5B). However, this observation may be interpreted in the
light of the nature of the substitutions. The unbalance of sub-
stitutions to alanine we observed between train and test sets
above can also be observed between the different functional
classes. Indeed, the protease–inhibitor complexes display a
wide variety of substitutions, while the other classes mostly
display substitutions to alanine. More precisely, more than
95% of the mutations of protease-inhibitor class comprise
substitutions to non-alanine amino acids. In contrast, more
than 84% of mutations for other classes, particularly for T-
cell receptor—major histocompatibility complexes, are substi-
tutions to alanine. This is due to the unbalanced distribution
of mutation types in the SKEMPI databases. Overall the pre-
dictions are more accurate when the mutant amino acid is not
alanine (PCC of 0.790 versus 0.34). The amino acid size
change itself is not a determining factor (Fig. 5C). DLA-
mutation performs consistently well on small-to-large,
large-to-small, and size-neutral substitutions, with a slight
preference for the latter (PCC ¼ 0.793). The predictions are
robust to variations in the sequence identity between the test
and train complexes (Fig. 5D). Finally, we found that DLA-
mutation had difficulties in accurately estimating the effects of
substitutions to alanine. However, this trend is not homoge-
neous across complexes, as illustrated by the good predictions
obtained for complexes 3M62, 1CHO, and 1JCK
(Supplementary Fig. S9).

4.6 Predicting residue- and interface-based

properties

To evaluate the embedding vectors computed by the pre-
trained ssDLA, we tested whether they could be mapped to
per-residue and per-interaction physicochemical and func-
tional properties. To do so, we added a two-layer fully con-
nected network on top of ssDLA’s architecture (Fig. 1D), and
we trained it to perform two downstream tasks (see Section 2)
The first task consisted in assigning amino acid physicochemi-
cal classes to the input cubes. The amino acid classification
we chose previously proved relevant for predicting the func-
tional impact of mutations (Laine et al. 2019). It distinguishes
the aromatic amino acids (ARO: F, W, Y, H), the hydroxyl-
containing ones plus alanine (CAST: C, A, S, T), the aliphatic
hydrophobic ones (PHOB: I, L, M, V), the positively charged
ones (POS: K, R), the polar and negatively charged ones
(POL-N: N, Q, D, E), glycine (GLY), and proline (PRO)
(Supplementary Table S4). The per-class tendencies are con-
sistent with those observed for the pre-training task (Fig. 2,
compare the two panels). Specifically, the best performances
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Figure 4. Comparison between DLA-mutation and other DDGBind predictors. We report values for 112 mutations coming from 17 protein complexes not

seen during the training or optimization of any of the predictors. (A) DLA-mutation was trained on 945 mutations from S2003 coming from complexes

sharing less than 30% sequence identity with those from this test set. We used fine-tuning of the weights and all auxiliary features. (B and E) The scores

reported for FoldX (B), BindProfX (C), iSEE (D), and mCSM (E) were taken directly from Geng et al. (2019).
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Figure 5. Influence of residue-based and complex-based properties on

DLA-mutation accuracy. The predicted and experimental values are

reported for 391 mutations coming from 32 complexes not seen during

training (randomly selected from S2003 dataset). We used weight fine-

tuning and all auxiliary features. The overall PCC is 0.720 (Table 1). The

dots are colored with respect to the SR where the mutated residue lies

(A), the complex’s biological function (B), the amino acid size change upon

mutation (C), and the minimum sequence identity shared with any training

complex (D). We calculated the change of amino acid size as a volume

difference (dV) between wild-type and mutant following (Harpaz et al.

1994). A mutation was classified as size-neutral if jdV j < 10Å
3
, as small-

to-large if dV > 10Å
3
, and as large-to-small if dV < �10Å3

.
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are observed for the aromatic (ARO) and positively charged
(POS) classes, with more than 70% recall, while the CAST
class is the most difficult to identify. Conformational sam-
pling influences the results. We observed improved perform-
ances when dealing with 3D models compared with
experimental structures (Supplementary Fig. S10). We may
hypothesize that the backbone rearrangements and side-chain
repacking performed by the backrub protocol lead to a better
fit between the central amino acid and its environment (com-
pare panels A and B). Averaging the embedding vectors over
30 models allows extracting with an even higher precision the
intrinsic properties of the central amino acid (compare panels
B and C). The second task was to predict the function of a
protein–protein interaction. The embedding vectors proved
useful to distinguish the protease–inhibitor assemblies (recall-
¼ 83.33%) from the two other functional classes
(Supplementary Fig. S11). The classifier tends to confuse the
antibody-antigens with T-cell receptor-major histocompatibil-
ity complexes. This behavior is expected, owing to the struc-
tural similarity shared between T-cell receptors and
antibodies.

5 Discussion

Knowledge acquisition and transfer from protein–protein
interfaces with deep learning approaches are useful to address
the fundamental questions about protein–protein interactions.
Our approach leverages the non-redundant set of experimen-
tally resolved protein complex structures to assess the impact
of mutations on protein–protein binding affinity, among
other applications. Compared with other state-of-the-art pre-
dictors, DLA-mutation generalizes better to unseen
complexes.

Despite the improvement over the state-of-the-art, the
DLA-mutation generalization capability from the first to the
second version of SKEMPI remains limited. This result likely
reflects differences in the protocols employed to produce, col-
lect and manually curate the data between the older version,
released in 2012, and the new one, released 7 years later. The
experimental methods used for measuring the binding affini-
ties are not reported in the first version; therefore the reliable
entries cannot be selected. Moreover, various strict checks
with up-to-date references were applied for the second version
to ensure its quality. In general, DDGBind measurements may
contain errors, e.g., coming from systematic bias or experi-
mental uncertainty. In SKEMPI v2.0, we observed that for
some mutations, distinct values of mutant binding affinity
were measured by different laboratories or using different ex-
perimental techniques (Jankauskait _e et al. 2019).

Future work will more thoroughly investigate the contribu-
tion of conformational sampling and the quality of the
DDGBind prediction. Alleviating the need for precise models
and substantial sampling would improve the scalability of the
approach. Expanding the train set for ssDLA could also help
the model learn residue-specific pattern variations and im-
prove the performance. DLA-Mutation is designed to measure
the changes of binding affinity caused by single-point muta-
tions. The model could be used as is to predict the effects of
multiple mutations, but only by predicting the effect of single
mutations and then summing them up, which would be a
crude approximation. Future improvements will aim at gener-
alizing the DLA framework to properly deal with multiple-
point mutations. Another direction for improvement concerns

the treatment of substitutions to alanine. DLA-mutation gen-
eralization capability is also limited for this type of mutation.
Overall, the results suggest that DLA-mutation would benefit
from a simplified version of the architecture for performing
computational alanine scans, which relies only on X-ray crys-
tal structure. Combining DLA-mutation with alanine scans
performed on the wild-type complex would open the way to
systematically assess mutational outcomes on protein–protein
interactions at a proteome-wide scale.
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