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Abstract
Motivation: Analysis of allele-specific expression is strongly affected by the technical noise present in RNA-seq experiments. Previously,
we showed that technical replicates can be used for precise estimates of this noise, and we provided a tool for correction of technical noise in
allele-specific expression analysis. This approach is very accurate but costly due to the need for two or more replicates of each library. Here, we
develop a spike-in approach which is highly accurate at only a small fraction of the cost.

Results: We show that a distinct RNA added as a spike-in before library preparation reflects technical noise of the whole library and can be
used in large batches of samples. We experimentally demonstrate the effectiveness of this approach using combinations of RNA from species
distinguishable by alignment, namely, mouse, human, and Caenorhabditis elegans. Our new approach, controlFreq, enables highly accurate
and computationally efficient analysis of allele-specific expression in (and between) arbitrarily large studies at an overall cost increase of �5%.

Availability and implementation: Analysis pipeline for this approach is available at GitHub as R package controlFreq (github.com/gimel
brantlab/controlFreq).

1 Introduction

A highly informative approach to understanding gene regula-
tion is allele-specific expression analysis in RNA-seq data
from diploid organisms, including humans. The two parental
alleles share the environment of the same nucleus, making al-
lelic imbalance (AI) in gene expression reveal cis-regulation
(Wittkopp and Kalay 2011; Nica and Dermitzakis 2013). AI
analysis has been increasingly used for understanding regula-
tory variation (Pirinen et al. 2015; Moyerbrailean et al. 2016;
GTEx_Consortium, 2017; Mohammadi et al. 2019; Uechi
et al. 2020; Vierstra et al. 2020). Besides uncovering genetic
effects, allele-specific analysis can reveal epigenetic gene
regulation in cis, including imprinting (Tucci et al. 2019),
X-chromosome inactivation (Galupa and Heard 2018), and
autosomal monoallelic expression (Gimelbrant et al. 2007;
Zwemer et al. 2012; Gendrel et al. 2014; Chess 2016;
Vinogradova et al. 2019).

In a previous work (Mendelevich et al. 2021), we have
shown that substantial technical noise is present in RNA-seq
experiments and significantly varies between experiments,
but it is often not accounted for in the analysis. We demon-
strated that in the absence of technical replicates, it is impos-
sible to separate this technical noise from biological
variation. The resulting underestimation of the technical
noise leads to an increased number of false positives in AI
calls and limited reproducibility between different studies

(Fig. 1a). To quantify and account for this technical overdis-
persion (Fig. 1b), we have developed a statistical framework
and software tool, Qllelic, that takes advantage of the
production of two or more RNA-seq libraries for each RNA
sample, i.e. technical replicates (Mendelevich et al. 2021).
However, preparation and sequencing of replicate libraries at
least doubles the experiment’s costs. This complicates practi-
cal application of this approach, especially for large projects,
where cost of RNA-seq is a major component of the cost of
the study.

Here, we describe an alternative approach for precise allele-
specific analysis of large-scale RNA sequencing experiments
involving only a small increase in costs. The experimental
component of this approach consists of adding an aliquot of
foreign, easily distinguishable RNA to every sample (e.g.
RNA from heterozygous mouse to human RNA samples) as a
spike-in before starting library construction.

Non-allelic RNA spike-in standards have been previously
used to access technical noise in transcription levels measure-
ments in bulk RNA-seq (Jiang et al. 2011; Lovén et al. 2012),
and estimate background noise, technical batch effects, and
doublets in scRNA-seq experiments (Brennecke et al. 2013;
Grün et al. 2014; Kim et al. 2015). However, estimates of
non-allelic abundance variation are of limited utility for
allele-specific analysis (Mendelevich et al. 2021); thus, we
aimed to develop an RNA spike-in approach that captures
technical noise in AI measurements.
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The analytical part of our approach relies on the uniformity
of the spike-in RNA aliquots across all libraries. We extend
our previously described idea of processing data from repli-
cates to the spike-in portions of all the libraries in a batch.
Crucially, we experimentally show that allele-specific noise
properties of the spike-in portion reflect technical noise of the
whole sample. Thus, spike-in acts as the standard for estimat-
ing technical noise in each library. Adding a fraction of spike-
in RNA to the main sample of interest (e.g. mouse RNA to
human RNA at 1:10 ratio) removes the need for additional li-
braries, while only marginally increasing total depth of se-
quencing, as opposed to doubling or tripling experimental
costs.

2 Materials and methods
2.1 Measuring overdispersion using extended

beta-binomial model

In this article, we revised and expanded the procedure de-
scribed in Mendelevich et al. (2021). We recall that we define

technical replicates as a set of separate libraries prepared from
the same RNA, and thus capturing technical noise that
accumulates starting from library preparation. Having several
technical replicates, we can calculate pairwise Quality
Correction Coefficients (QCCs), which one may consider as a
widening coefficient of the expected binomial quantiles,
for the replicates with similar library sizes. We made
pairwise comparisons, and assigned an averaged overdisper-
sion value to each replicate, considering QCC results for
relevant pairs.

Here we describe the new procedure, which operates with
lots of samples at once (Fig. 2a) and assigns individual values
of overdispersion measure, individual QCC (iQCC), to each
sample in the batch (Fig. 3a). It might be applied in both sce-
narios: spike-ins use case and technical replication use case
(see the respective subsections at the end of this section).

2.1.1 Extended beta-binomial distribution

Beta-binomial family of distributions is commonly used to
model an “overdispersed” binomial distribution. One way to
parameterize this family is using the real parameters a � 0
and b � 0 which stand for the number of different balls in the
Pólya urn model. Using this parameterization, the probability
mass function of the beta-binomial distribution can be written
as follows:
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Figure 1. Allele-specific signal from RNA-seq can substantially vary

dependent on technical noise. Analysis of replicates can be leveraged to

account for this experiment-specific overdispersion. RNA-seq data: 12

technical replicates from the same RNA (129xCastF1 mouse kidney; from

Mendelevich et al. (2021)). “Batch 1” and “Batch 2” were denoted

Experiment 2 and Experiment 3 in that paper; both used the same library

preparation kit (SMART-Seq v4 Ultra Low Input RNA Kit) with amounts of

input total RNA bracketing recommended range: 10 ng per library for

Batch 1, and 100 pg for Batch 2. (a) Shown are all genes (coverage >10
allelic counts) with conflicting assignment of allelic bias across 12 RNA-

seq libraries from the same RNA. Gray—no AI, i.e. null hypothesis of

AI¼ 0.5 cannot be rejected at P< 0.5 in the binomial test with Bonferroni

correction. If null hypothesis rejected (i.e. gene is called as having AI):

blue—significant prevalence of paternal allele; yellow—significant

prevalence of maternal allele. Marker sizes reflect coverage (in total allelic

counts); Allelic counts and statistical analysis performed using commonly

used approach (e.g. GTEx_Consortium 2017); (b) Same data as in (a), with

allelic counts table analysed using modified binomial test with

overdispersion correction (AI overdispersion discussed in Mendelevich

et al. (2021); (c–d) AI for one of the genes (ENSMUSG00000038188,

mean coverage of 110645 allelic counts) denoted in red in (a–b). AI is

defined as (maternal counts)/(sum of maternal and paternal counts), so

that AI¼ 0 is maternal expression only, AI¼ 1 is paternal only, and

AI¼ 0.5 is exactly biallelic. Diamond marker denotes the point estimate

for this gene in each replicate library, which is by definition unchanged

between (c) and (d). Confidence interval is determined by the statistical

test used. Note overdispersion correction (b, d) has much more

pronounced effect on confidence intervals in replicates from the more

noisy datasets (Batch 2) compared to less noisy datasets (Batch 1); (e)

Schematic representation of super-binomial overdispersion (solid line) as

compared to binomial (dashed line).
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Figure 2. In libraries using mixes of RNA from two distinct organisms,

both RNAs show similar allelic overdispersion. (a) Diagram of

experimental and computational steps in AI estimation pipeline. Spike-in

RNA (green) is added to the main sample (gray) prior to starting

preparation of RNA-seq library. (b) Within an RNA-seq library,

overdispersion statistic iQCC measured for the two distinct RNAs in a mix

is highly similar (Pearson correlation 0.97). For description of libraries in

Experiments 1-3, see Table 1. (c–e) Estimation of data loss due to cross-

species alignment in data from mixed RNA-seq libraries. Data used: three

human and three mouse biological replicates and one roundworm

biological replicate (three technical replicates each), from Experiment 1,

aligned on the individual or chimeric reference. Color represents reference

mixture used in alignment, pair encoding is the same as for RNA mix in

(b). (c) Percentage of misaligned reads to the wrong organism among all

uniquely aligned reads. (d) Percentage of allelicaly-resolved counts aligned

to the wrong reference. (e) Comparison of iQCC values calculated based

on alignment to a single or to a mixed (chimeric) reference. (Note also that

0 genes with differential AI were found for each of possible pairs).
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pmfBB mjn ¼ mþ p; a;bð Þ ¼ n
m

� �Qm�1
i¼0 aþ ið Þ �

Qp�1
j¼0 bþ jð ÞQn�1

k¼0 aþ bþ kð Þ
:

The variance of this distribution is

aþ bþ n

aþ bþ 1
� nab

ðaþ bÞ2
:

The second part is the variance of the binomial distribution

with AI ¼ a
aþb, so we capture the overdispersion aþbþn

aþbþ1 in a pa-

rameter we denote by Q. Given parameters 0 � AI � 1 and

1 � Q � n, we can reconstruct back a and b as a ¼ AI n�Q
Q�1

and b ¼ ð1� AIÞn�Q
Q�1.

Two edge cases of the possibility range for Q are 1 and n.
When Q approaches n, a, and b become close to 0, and the prob-
abilities of all outcomes except for 0 and n tend to 0. The limit
distribution assigns probability AI to 0, and probability AI to n.
When Q approaches 1, a and b tend toþ1, and the distribution
approaches the binomial distribution with the probability AI.

One drawback of the beta-binomial distribution family is
that it does not allow us to model “underdispersed” distribu-
tions, in other words, the distributions with Q< 1. While
most samples give overdispersed distributions, some could be
modeled better with underdispersed ones (see Subsection
2.1.4 for more details), and clamping them to one point
Q¼ 1 does not make computational sense. Fortunately, we
can overcome the problem by extending the probability mass
formulas past the edge Q¼ 1, essentially extrapolating the
family of beta-binomial distributions into hypergeometric dis-
tributions following (Prentice 1986).

Consider the following modified Pólya urn model with the
usual parameters a and b and an additional parameter d.
Place a � 0 balls of the first type and b � 0 balls of the second
type into the urn. Draw n balls from the urn as usual. The
modification is how we replenish the urn. In the beta-
binomial case, after drawing a ball we put two balls of the
same type in the urn, making the total number of balls in the
urn larger by 1 on each step. In our modified case, we put
dþ 1 balls instead of 2, increasing the total by d each time.

The probability mass function of this extended beta-binomial
distribution is quite similar to the usual one, except that the
increment in the multipliers is d instead of 1:

pmfeBB mjn ¼ mþ p; a;b;dð Þ ¼

¼ n
m

� �Qm�1
i¼0 ðaþ idÞ �

Qp�1
j¼0 ðbþ jdÞQn�1

k¼0ðaþ bþ kdÞ
:

We can see a few properties of this definition right away.

1) The extended distribution does not depend on the scaling
of the parameters, i.e. for any x > 0

pmfeBBðmjn ¼ mþ p; ax; bx;dxÞ ¼
¼ pmfeBBðmjn ¼ mþ p; a;b;dÞ:

2) If d¼ 1, the extended distribution coincides with the
beta-binomial distribution with the parameters a and b.

3) If d¼0, the extended distribution coincides with the bi-
nomial distribution with AI ¼ a

aþb.
4) A hypergeometric distribution pmfHGðmjn ¼ mþ p;M;PÞ

belongs to this family as

pmfeBBðmjn ¼ mþ p; a ¼M; b ¼ N;d ¼ �1Þ:

Therefore, this continuous family of distributions contains
all beta-binomial, binomial, and hypergeometric distributions.
From the property 1 we gather that the family is 2D rather
than 3D, and can be described using the parameters 0 �
AI � 1 and Q � n just by analytically continuing the de-
scription of the beta-binomial distribution. The reparametriza-
tion using AI and Q can be put in the following neat form:

pmfeBBðmjn ¼ mþ p;AI;QÞ ¼
¼ pmfeBB mjn ¼ mþ p; a ¼ AI; b ¼ 1� AI;d ¼ Q� 1

n�Q

� �
:

The binomial distribution with Q¼ 1 stops being an edge
case, since the range Q< 1 becomes treatable, and now we

(a) (b) (c)

Figure 3. Calculation of iQCC is robust to the number of replicates (spike-ins) and to variation in library sizes within a batch. (a) Scheme of the iQCC

calculation (using controlFreq) and previously described QCC calculation (using Qllelic) for a j-th sample in a batch. See Methods for details. (b) exclusion

and inclusion of j-th replicate result in, respectively, underestimation and overestimation of iQCC from the total pool of replicates. Left panel—as allelic

coverage increases, the upper and lower iQCCs estimates converge to ground truth (gold); right panel—extension of (a) shows symmetry for

overestimated and underestimated measures (lines connect same replicate combinations). (c) same data as in (b), geometric means of underestimated

and overestimated iQCC values clearly correlate with the generated levels of overdispersion. (b–c) Simulations of replicate data (all generative iQCCs

were similar for all replicates, which mimics technical replication, or similar experimental environment) with different total coverage and overdispersion

levels. For iQCC values between 1 (no overdispersion) and 4 (high overdispersion), gene allelic counts for 10 replicates (“libraries”) were generated using

predetermined “ground truth” AI distribution and coefficients for total allelic coverage; the procedure was repeated thrice for every set of parameters.

Upper and lower iQCC estimates were computed for each selected replicate.
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can model underdispersed distributions alongside with the
overdispersed ones.

2.1.2 Finding Q which maximizes likelihood

For the purpose of using this distribution efficiently in our
models, we implement fast and accurate calculation of the
density function pmfeBBðmjn;AI;QÞ as follows.

The defining formula of the density function of the ex-
tended beta-binomial distribution is not suitable for the nu-
merical application right away. Both the numerator and the
denominator are orders of magnitude larger than the actual
value of the expression, so a straightforward implementation
would lose precision. To avoid that, we match each multiplier
in the numerator with a suitable multiplier in the denomina-
tor, calculate their ratio, and only then take the product. Also,
since we are usually interested in the log-likelihood function,
we employ one more trick to increase the accuracy of the cal-
culations. Instead of calculating the logarithm of each fraction
directly, we calculate it using the function logð1þ xÞ. In R
language, this function is called log1p. Overall, we have

log pmfeBBðmjn; a;b; dÞ ¼

¼ �
Xm�1

i¼0

log1p
b

aþ bþ id

� �
þ

þ
Xp�1

j¼0

log1p
�ðjþ 1Þaþmb�md

ðjþ 1Þðaþ bþ ðmþ jÞdÞ

� �
:

The differential of this expression is straightforward.
These calculations constitute a major building block in the

optimization problem which is at the heart of the top-level fit-
ting procedures.

Given a vector of allele counts ml;pl;0 � l � g� 1;

and a vector of corresponding AI estimations AIl;0 � l � g� 1;

Find Q which maximizes the likelihood function

LðQÞ ¼
Yg�1

l¼0

pmfeBBðmljml þ pl;AIl;QÞ:

We tackle the problem using the gradient ascent on the log-

arithm of the likelihood function. The calculation of d log LðQÞ
dQ

is straightforward and can be easily translated into code. The
rest of the implementation comes down to the “flavours” of
the gradient ascent.

2.1.3 Computing overdispersion with spike-ins

One of the most important features of the spike-in protocol
is a large number of samples involved in overdispersion
calculation. This implies that the total allelic counts in spike-
in batch are expected to be much higher than in each of the
samples. Modeling of the allelic counts in this case is challeng-
ing, since in general the sum of two beta-binomial random
variables does not need to be beta-binomial. To simplify, we
make an assumption that the overdispersion coefficients are
approximately the same, in which case the sum will still be
beta-binomial, so m1 þm2 � eBBðn1 þ n2;AI;Q ¼ iQCC2Þ
when Q1 ’ Q2, mi stand for the maternal counts, and ni

stand for the total counts. Spike-in samples do not meet tech-
nical replication criteria, but they share RNA source. Then

the best estimate of AI might be computed from the whole
spike-in batch:

AIj ¼
P

i 6¼j
mi

QiP
i 6¼j
ðmiþpiÞ

Qi

(1)

for a selected sample j and a set of ground truth Qi 6¼j values.
This estimate can be considered coming from a beta-binomial
distribution with N being the total coverage of the other sam-
ples. When N is of several orders of magnitude larger than n,
the estimate of AIj does have negligible variance, and the pro-
cedure for fitting the best Qj ¼ iQCC2

j will work well.
However, when n and N are of the same order or N is less
than n, the estimate may deviate from the real AIj, and the
value of Qj will inevitably be overestimated. This can be par-
ticularly challenging if the amount of samples is low. But usu-
ally in the spike-in case we have N � n. See Fig. 3a, b for
how much Qj will be overestimated depending on the ratio
n=ðnþNÞ.

If all of Qi values in a set of samples or N � n are of simi-
lar order, it should be enough to run the fitting algorithm
once. The first run of the algorithm sets all Qi to the same
value (Qi¼1). Thus Equation (1) simplifies to
AIj ¼

P
i 6¼j mi=

P
i 6¼jðmi þ piÞ.

Otherwise, if Qi estimates from the first run show signifi-
cant dispersion, the fitting algorithm can be iterated. In the
grand scheme, we alternate between fitting Q’s, then fitting
AI’s, and so on. The AI fitting is run using the formula (1),
and the Q fitting is run using the gradient ascend algorithm.
After each Q-fitting step, Qi values are compared to previous
estimates, and iterations are repeated until convergence.

2.1.4 Computing overdispersion in case of technical
replication

In case of small number of samples, we need to take care of
the overestimation of Qj. To do that, we counter the previous
estimate with a different one. If one includes the sample j in
the AIj estimation, then the corresponding fitted Qj will be
underestimated. Moreover, on the simulated data we see that
the overestimated and underestimated iQCC values deviate
from the real value by the same amount in the logarithmic
scale, see Fig. 3b. We use this fact in the case of technical rep-
lication, where we fit iQCCj to be the geometrical mean of the
overestimate and the underestimate to get a more precise sta-
tistic (Fig. 3c; Supplementary Fig. S2). Using this more precise
fitting, we can safely use the pipeline on a small amounts of
samples, given a prior knowledge that the samples have simi-
lar overdispersion.

2.2 Data

Information on RNA-seq datasets generated for this work,
including sources of RNA, library preparation methods, se-
quencing, and data processing is summarized in Table 1.

2.2.1 Biological material

v-Abl pro-B clonal cell lines Abl.1 derived previously
from 129S1/SvImJ � Cast/EiJ F1 female mice (Zwemer et al.
2012) and human clonal pro-B cell line GM12878.DF1
(Nag et al. 2013) were cultured in RPMI medium (Gibco),
containing 15% FBS (Sigma), 1X L-Glutamine (Gibco), 1X
Penicillin/Streptomycin (Gibco) and 0.1% b-mercaptoethanol
(Sigma). Human peripheral blood monocytes from

i434 Mendelevich et al.
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Table 1. Description of the data used in this work

EXPT # 1 2 3

GEO SubSeries GSE228002 GSE228003 GSE228004
Samples 18 libraries with mixes of human (H), mouse (M) and C. elegans

(W) RNA. H1: M1, H1: W and M1: W (75:25 and 50:50 of total
allelic coverage), x3 tech. replicates each. W RNA is a 1:1 mix of
N2 and Haw RNA. 21 libraries with single-species RNA: (H1,
H2, H3, M1, M2, M3, W) x 3 technical replicates each. H1-3
and M1-3 are biological replicates (cells from separate wells).

12 libraries: mixes of RNA from 3 sepa-
rate mice with C. elegans spike-ins W1,
W2 and W3 (N2: Haw RNA mixes of
1:1, 2:1, 1:2, respectively). Including: 6 li-
braries M1 (spleenþW1, spleenþW2,
liver 1þW1, liver 1þW2, liver 2þW1,
liver 2þW3); 4 libraries M2
(spleenþW1, spleenþW2, liverþW1,
liverþW2); 2 libraries M3 (liverþW1,
liverþW3).

32 libraries: Lymphocyte RNA from 3 donors (H1-H3), with M
and W (1:1 N2: Haw) spike-ins. Including: set of (H1a, H1b,
H2, H3) x (M RNA 10% of total, M 25%, M 50%)—12 librar-
ies total; (H1a, H1b, H2, H3) x (W 10%, W 25%, W 50%)—12
libraries; (H1a, H1b, H2, H3) x 2 replicates w/out spike-ins—8
libraries. 9 libraries: ((H4, H5, H6, H7) þM 10%) x 2 biological
replicates, H1c þM 10%; 9 libraries—same with W 10%; 9 li-
braries of N2: Haw RNA mixes (1:1, 3:1, 1:3) x3 technical repli-
cates each.

Data Illumina 150PE Illumina 150PE Illumina 151PE
Lib prep kit NEBNext Single Cell/Low Input RNA NEBNext Single Cell/Low Input RNA SMART-Seq v4 PLUS
Organism Human Mouse C. elegans Mouse C. elegans Human Mouse C. elegans
RNA prepa Agilent Mini Agilent Mini Trizol Trizol Trizol Qiagen Mini Agilent Mini Trizol
Genotypesb NA12878 129xCastF1

(Abl.1 clone)
RNA mix

(N2þHawaii)
129xCastF1

(organs, bio
replicates)

RNA mix
(N2þHawaii)

Donors 1–7c 129xCastF1
(Abl.1 clone)

RNA mix
(N2þHawaii)

References GRCh38.p13 GRCm38.68 PRJNA13758.
WS276

GRCm38.68 PRJNA13758.
WS276

GRCh38.p13 GRCm38.68 PRJNA13758.
WS276

Variants Illumina Pt
genomes, 2017

Sanger
dbSNP142,

2014

CeNDR,
soft-filtered,

2020

Sanger
dbSNP142,

2014

CeNDR,
soft-filtered,

2020

Imputed, this
study

Sanger
dbSNP142,

2014

CeNDR,
soft-filtered,

2020

a RNA prep: Agilent Absolutely RNA miniprep (Agilent Mini), Qiagen RNeasy miniprep (Qiagen Mini).
b Genotypes: 129S1/SvImJ x CAST/EiJ F1 (129XCastF1).
c Of donors: #1 present in 3 bio replicates, #2-5—in 2, #6-7—in 1; M1, M2, and M3 and W1, W2, and W3 notations are different for different experiments, see descriptions.
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deidentified donors were appropriately consented for generat-
ing genomic sequencing data for unrestricted deposition in
public databases. Caenorhabditis elegans strains N2 and
CB4856 (Hawaiian) were maintained at 20	C on nematode
growth medium plates with Escherichia coli OP50 bacteria
(Brenner 1974).

2.2.2 RNA preparation

Biological replicates for human and mouse clones (see
Table 1) were made by growing cells in separate wells of a 6-
well plate at a seeding density of 500 000 per milliliter
(1 500 000 total cell per well). RNA isolation and DNase
treatment for both clonal cell lines was performed using
Absolutely RNA Microprep Kit (Agilent) according to in-
struction. RNA from C. elegans was prepared using Trizol re-
agent (Invitrogen), with DNase treatment using TURBO
DNA-free kit (Ambion). RNA integrity was assessed using
Bioanalyzer and was quantified using Qubit RNA HS Assay.
DNase-treated RNA from N2 and Hawaiian strains was
mixed in proportions described in Table 1. For RNA prepara-
tion from mouse tissues, whole tissues were collected from
adult 129xCastF1 mice housed at the DFCI mouse facility,
with parent animals obtained from the Jackson Laboratories.
All animal work was performed under DFCI protocol 09-
065, approved by the DFCI Institutional Animal Care and
Use Committee. Animals were housed in accordance with
Guide for the Care and Use of Laboratory Animals. Collected
tissues were crushed using mortar and pestle in liquid nitro-
gen. This powdered tissue was either taken directly for RNA
isolation using Trizol reagent or stored in liquid nitrogen for
later use.

2.2.3 Library preparation and sequencing

For experiments 1 and 2 (see Table 1), aliquots of total RNA
were used to prepare libraries using NEBNext Single Cell/
Low Input RNA Library Prep Kit (NEB). The libraries were
sequenced at Novogene on the Illumina NovaSeq platform
and 150 bp paired-end reads were generated. For experiment
3 (see Table 1), libraries were prepared using SMART-Seq v4
PLUS kit (Takara), and PE-151 sequencing was performed on
Illumina NovaSeq at the High Scale Data Unit at Altius
Instutite for Biomedical Sciences.

2.2.4 Variant calling and imputation

Imputation on genotype calls for donor samples in experiment
#3 was performed on autosomes only. VCFTools was used to
split files per chromosome. Per chromosome genotype
files were submitted to the TopMed imputation server
(imputation.biodatacatalyst.nhlbi.nih.gov) with the following
parameters: imputation¼minimac4-1.0.2; phasing¼ eagle-
2.4; panel¼TOPMED.vR2; Mode: Quality Control &
Imputation. About 131 562 sites were excluded prior to impu-
tation, leaving 572 955 sites for imputation. About 131 452
of the excluded sites were due to monomorphic sites. After
imputation, only markers with a R2 value of >9 were kept.
De novo SNPs were annotated with dbSNP v151.

2.3 Generation of allelic count tables
2.3.1 Reference preparation

To receive in silico chimeric pseudogenome reference files
“containing” more than one organism, we first create a set of
respective pseudogenome reference files for each of them,
namely, pseudo-reference fasta files for both alleles (reference

genome with inserted SNPs related to one fixed haplotyped al-
lele), allelic VCF files (SNPs only, and 1st and 2nd alleles
playing role of reference and alternative respectively) and ref-
erence GTF files. The procedure is described in detail in
Mendelevich et al. (2021). Next, we merge them with a con-
sistent renaming of similar chromosome names via appending
the distinguishing suffixes (e.g. chromosome 1 may be
renamed to “1 m” in mouse and “1 h” in human). These
resulting files are used as “reference” files in all the next steps.
Finally we index an in silico chimeric pseudogenome with
STAR, setting sjdbOverhang parameter to the advised data-
specific len(read)-1.

2.3.2 Data pre-processing

Note that we have revised recommendations on allelic counts
tables creation relative to Qllelic, to minimize effect of noise
coming from statistically dependent counts for nearby var-
iants while preprocessing RNA-seq data (see GitHub for
details: github.com/gimelbrantlab/controlFreq).
The unit of overdispersion analysis is a table with allelic
read counts per gene. In order to obtain that kind of
tables, we first align the reads to both pseudogenomes with
STAR (version 2.7.9a), which supports allele-aware alignment
(–outSAMattributes vA vG) when provided prearranged
reference fasta and vcf (see section above for details). For fur-
ther analysis, we select reads aligned at positions that include
at least one SNP to determine the allele, and filter out those
whose SNP signals or alignment positioning on two haplo-
types don’t show consistency. The remaining reads are
assigned to one of the alleles, according to SNP calls and
alignment quality. Finally, we assign allele-resolved reads to
genes and calculate gene counts using featureCount (ver-
sion 2.0.2) (with parameters –countReadPairs -B -C).
Autosomal genes were used for iQCC values calculation.

3 Results
3.1 Mixes of RNA from highly distinct organisms

show similar overdispersion in all components

We showed previously (Mendelevich et al. 2021) that AI over-
dispersion in poly-A RNA-seq experiments behaves like a
consistent multiplicative parameter from binomial expecta-
tions, across all genes in a sample. We hypothesized that if we
mix RNA from two highly distinct species, the overdispersion
will be similar for all components. We developed the experi-
mental and computational protocol (operating with evolved
overdispersion measure iQCC, individual QCC, see Fig. 2a),
and have shown the proximity of overdispersion measured
across different regions of the genome, including chromo-
somes of different species origins in our in-silico chimeras (see
Figs 2b and 4; Supplementary Fig. S2).

Notably, human, mouse and roundworm data can be
mapped simultaneously without too much interference. The
number of uniquely mapped reads changed by hundredths of
a percent (Supplementary Fig. S3) for mapping human sam-
ples to the mouse-human reference, while <0.03% of
uniquely mapped reads are crossed-mapped (see Fig. 2c–e).
There were no genes showing differential allelic imbalance
(AI) when comparing mapping to combined reference and
mapping to single-species reference.
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3.2 Use of one RNA across many samples can serve

as a “stand-in” for tech replicates

Overdispersion measurement analysis on spike-in components
differs from analysis of technical replicates, since here we
should not be bound by the strict assumption of shared over-
dispersion between all samples present in a batch. Aiming to
meet the changed criteria we had to modify and improve our
previous overdispersion calculation pipeline, which currently
takes advantage either from same overdispersion (technical
replicates case) or from replicates quantity (spike-in case), and
utilizes the assumption of shared initial state of allelic propor-
tions in RNA prep in both scenarios (see Fig. 3a, and
Methods). Finally, overdispersion estimates (iQCC) obtained
with the current procedure are highly correlated with
Qllelic results (see Supplementary Fig. S1).

3.3 Spike-in protocol is flexible and allows variation

of parameters

Aiming to determine the limitations of spike-in methodology,
we varied and tested different conditions. Combinations of
different organisms pairs, mixed in different proportions,
resulted in comparable overdispersion measurements on both
components (see Fig. 4a). More specific, the only limitation is
total allelic coverage (see Fig. 4b, f), which clearly depends on
the spike-in proportion, total number of sequenced reads and
SNP density in an organism (for human it is on the order of
1/1000, for mice and roundworm samples we used it is 1/100
and 1/500, respectively). Moreover, mixes of RNA prepared
from individual parental strains of C. elegans (N2 and
Hawaiian (CB4856)) performed as a spike-in just as well as
N2xHawaiian F1 heterozygous cross (see Figs 2b and 4a). We
also showed that N2 and Hawaiian RNA could be mixed in a

range of proportions with similar overdispersion estimates
(see Fig. 4c and Discussion). This makes experimental prepa-
ration of spike-ins much easier than worm or mouse
husbandry.

4 Discussion

The spike-in approach we describe here, including the data-
processing pipeline, is much more accurate and precise in esti-
mating allele-specific expression than the common single-
replicate design (Fig. 1). In fact, it is at least as accurate as
Qllelic, the approach with technical replicates for each
sample we described previously, but rather than costing
several-fold higher, the cost increases only by �5–10%.

As previously discussed (Mendelevich et al. 2021), allele-
specific analysis of an RNA-seq experiment without technical
replicates is subject to a fundamental uncertainty regarding
the contribution of technical noise to false positive rate. This
risk is emphasized by the magnitude of technical noise that
can be encountered. For example, iQCC > 4 observed in
Fig. 2b is equivalent to overestimating allelic coverage over
16-fold by the binomial test. Thus, common thresholding
techniques (such as “at least 10 reads”) can be dangerously
misleading.

The new approach, controlFreq, supersedes our previ-
ous one, Qllelic, and incorporates its functionality.

The improvements of computation protocol include mov-
ing from pairwise overdispersion measure QCC, computed by
Qllelic on pairs of technical replicates, to batch-wide calcu-
lation of iQCC for each sample.

When controlFreq is used to analyse experiments with a
small number of replicates (e.g. 2 or 3), it has the same
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limitation as Qllelic, namely, the assumption of overdis-
persion similarity between replicates, even as it no longer
requires similarity in library sizes. However, when multiple
replicates are available (as spike-ins), the new approach ena-
bles confident detection of outliers, allows us to remove the
assumption of similarity of overdispersion in all samples, and
eliminates expectations of library size similarity. Overall, the
analysis is highly robust to fluctuations.

An important practical feature of the spike-in approach is
that the spike-in RNA must be identical only within the batch
of samples being analysed. Once the overdispersion correc-
tions are calculated for the batch of samples, they can be cor-
rectly compared to samples from any other batch, including
those using entirely different spike-ins (or, indeed, any sample
with properly estimated AI overdispersion). This means that
spike-in RNA can be prepared as needed, and does not have
to come from a single source. It should be possible to use
other spike-ins in parallel. For example, existing designs using
sequins (Hardwick et al. 2016) or ERCC for cell number con-
trol (Munro et al. 2014), could be used if desired, without in-
terference with the AI spike-ins described here.

As far as we can establish, the only requirements of the
spike-in material are (i) that it has significant density of poly-
morphisms (the higher the better) and (ii) its nature enables it
to undergo the same library preparation process as the main
sample. So, e.g. bacterial RNA should not be used for poly-A-
based libraries, or C. elegans RNA as a spike-in standard for
mammal samples when using library protocol with ribo-
depletion. Otherwise, spike-in material can be produced in
any convenient way; we posit that once the “snapshot” of al-
lelic proportions is captured for the whole library, the origin
of library components does not matter. For example, we used
“synthetic F1s”—mixes of RNA from homozygous C. elegans
strains (see Fig. 4c) as a spike-in, which is easier than breeding
F1 crosses. It might be possible to use yeast RNA as a spike-
in, or develop a set of synthetic molecules for allele-resolved
RNA-seq analysis, analogous to ERCC controls (Jiang et al.
2011). Notably, only a very modest coverage is needed for the
spike-in: as few as 125 000 allelic counts were sufficient for ef-
fective use of spike-ins (see Fig. 4a, b). One consequence is
that a spike-in with high SNP density requires few total reads.
As we discussed previously (Mendelevich et al. 2021), the
overdispersion correction appears equally applicable across
the genome.

The allelic counts depend on read length, both in terms of
total sequence data and unique alignment rate: e.g. with 50PE
reads, total allelic counts are about 1/4 of the counts with
150PE reads (Supplementary Fig. S3). The desired coverage of
the main sample depends on the study aims. A useful guide is
that to reliably detect 80:20 imbalance in a gene (accounting
for Bonferroni correction for analysis with 1000 genes), the
sufficient allelic count coverage is roughly 50� ðiQCC2Þ;
110� ðiQCC2Þ for 70:30 imbalance, and 420� ðiQCC2Þ for
60:40 imbalance.

We note that the experiments we described are focused on
poly-A-enriched bulk RNA sequencing. While we expect that
application of this approach can be extended into a variety of
other experimental settings where accurate measurement of
allelic signal is desirable, a pilot study should be performed in
each particular case to test the applicability of spike-in
methodology and tune it accordingly. A clear example of an
application is capturing technical noise in single-cell RNA-
seq; this is a question of great importance since otherwise

(Kim et al. 2015), no technical replication is readily available
at the single-cell level (attempts to split single-cell RNA into
two replicates are extremely technically challenging (Deng
et al. 2014)). It is known that the rate of overdispersion in
single-cell analysis is high, underscoring the need for reliable
methods for distinguishing technical noise from meaningful
biological variation. Finally, a similar approach might be ap-
plicable to other types of libraries besides RNA, such as ChIP-
seq, ATAC-seq, and analysis of DNA methylation.
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