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Abstract
Motivation: Millions of protein sequences have been generated by numerous genome and transcriptome sequencing projects. However,
experimentally determining the function of the proteins is still a time consuming, low-throughput, and expensive process, leading to a large
protein sequence-function gap. Therefore, it is important to develop computational methods to accurately predict protein function to fill the gap.
Even though many methods have been developed to use protein sequences as input to predict function, much fewer methods leverage protein
structures in protein function prediction because there was lack of accurate protein structures for most proteins until recently.

Results: We developed TransFun—a method using a transformer-based protein language model and 3D-equivariant graph neural networks to
distill information from both protein sequences and structures to predict protein function. It extracts feature embeddings from protein sequences
using a pre-trained protein language model (ESM) via transfer learning and combines them with 3D structures of proteins predicted by
AlphaFold2 through equivariant graph neural networks. Benchmarked on the CAFA3 test dataset and a new test dataset, TransFun outperforms
several state-of-the-art methods, indicating that the language model and 3D-equivariant graph neural networks are effective methods to leverage
protein sequences and structures to improve protein function prediction. Combining TransFun predictions and sequence similarity-based
predictions can further increase prediction accuracy.

Availability and implementation: The source code of TransFun is available at https://github.com/jianlin-cheng/TransFun.

1 Introduction

Proteins are essential macromolecules that carry out critical
functions such as catalyzing chemical reactions, regulating
gene expression, and passing molecular signals in living sys-
tems. It is critical to elucidate the function of proteins.
However, even though various next-generation genome and
transcriptome sequencing projects have generated millions of
protein sequences, the experimental determination of protein
function is still a low-throughput, expensive and time-
consuming process. Thus, there is a huge gap between the
number of proteins with known sequence and the number of
proteins with known function, and this gap keeps increasing.
As a result, it is important to develop computational methods
to accurately predict the function of proteins.

Given the sequence of a protein and/or other information
as input, protein function prediction methods aim to assign
the protein to one or more function terms defined by Gene
Ontology (GO) (Huntley et al. 2015). GO organizes function
terms into three ontology categories: Biological Process (BP),
Molecular Function (MF) and Cellular Component (CC). The
terms in each of these ontology categories can be represented
as a directed acyclic graph, in which parent nodes denoting
broader (more general) function terms point to child nodes
denoting more specific function terms.

Many protein function prediction methods use sequence or
structure similarity to predict function, assuming proteins
with similar sequences and structures likely have similar

function. For example, GOtcha, Blast2GO (Martin et al.
2004; Conesa and Götz 2008), PDCN (Wang et al. 2013),
and DIAMONDScore use sequence alignment methods such
as BLAST (Altschul et al. 1997) to search for homologous
sequences with known function for a target protein and then
transfer their known function to the target. COFACTOR and
ProFunc (Laskowski et al. 2005; Zhang et al. 2017) use struc-
ture alignment to search for function-annotated proteins
whose structures are similar to the target protein to transfer
the function annotation. There are also some methods
leveraging interactions between proteins or co-expression be-
tween genes to predict function, assuming that the proteins
that interact or whose genes have similar expression patterns
may have similar function. For instance, NetGO (You et al.
2019) transfers to a target protein the known function of the
proteins that interact with it. All these nearest neighbor-based
methods depend on finding related function-annotated pro-
teins (or called templates) according to sequence similarity,
structure similarity, gene expression similarity, or protein–
protein interaction, which are often not available. Therefore,
they cannot generally achieve high-accuracy protein function
prediction for most proteins.

To improve the generalization capability of protein func-
tion prediction, advanced machine learning-based methods
such as FFPred and labeler (Cozzetto et al. 2016; You et al.
2018) have been developed to directly predict the function of
a protein from its sequence. However, most of these methods
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use hand-crafted features extracted from protein sequences to
make prediction. Recently, several deep learning methods
such as DeepGO (Kulmanov and Hoehndorf 2020),
DeepGOCNN (You et al. 2021), TALE (Cao and Shen 2021),
and DeepFRI (Gligorijevi�c et al. 2021) were developed to pre-
dict protein function, leveraging deep learning’s capability to
automatically extract features from input data. For instance,
DeepFRI (Gligorijevi�c et al. 2021) predicts the functions of
proteins with a graph convolutional network by leveraging se-
quence features extracted by a long, short-term memory-
based protein language model and structural features
extracted from protein structures. However, DeepFRI uses ei-
ther true protein structures from the Protein Data Bank
(Berman et al. 2000) or homology-based structural models
built by SWISS-MODEL as structure input. Recently two
more deep learning methods (Lai and Xu 2022; Ma et al.
2022) also use predicted protein structures to predict func-
tion. As AlphaFold2 (Jumper et al. 2021; Varadi et al. 2022)
can predict high-accuracy structures for most proteins, it nec-
essary to leverage AlphaFold2 predicted protein structures ex-
tensively to advance protein function prediction.

Inspired by the recent advance, we develop a method to use
a pre-trained protein language transformer model to create
embeddings from protein sequences and combine them with a
graph representation constructed from AlphaFold predicted
3D structures through equivariant graph neural networks
(EGNN) to predict protein function. We leverage the ESM
language model (Elnaggar et al. 2021; Rao et al. 2021; Rives
et al. 2021) trained on millions of protein sequences to gener-
ate good feature representations for protein sequences. The
equivariant graph neural networks can capture the essential
features of protein structures that are invariant to the rotation
and translation of 3D protein structures to improve protein
function. Our experiment shows that combining protein
sequences and structures via the language transformer model
and EGNN outperforms several state-of-the-art methods.

2 Materials and methods
2.1 Datasets

We collected protein sequences with function annotations
from the UniProt/Swiss-Prot database, released by 23
February 2022, amounting to a total of 566 996 proteins. We
gathered their functional annotations from UniProt and the
ontology graph data from the Open Biological and
Biomedical Ontology (OBO) Foundry data repository. We
also collected predicted structures of 542 380 proteins from
the AlphaFold Protein Structure Database (AlphaFoldDB)
published on 12 January 2022. To ensure consistency be-
tween the predicted structures from AlphaFoldDB and the
corresponding proteins from UniProt, we compare their
sequences and UniProt ID. All but 301 proteins have the same
sequence. For the ones with different sequences, they usually
only differ in a few residues. To make them consistent, we use
the sequences extracted from the predicted structures as the fi-
nal sequences.

The protein function annotations are described in the Gene
Ontology (GO) terms. GO uses directed acyclic graphs
(DAGs) to model the relationship between GO terms. The
nodes represent the GO terms, and the links represent the re-
lationship between the terms. GO provides three separate di-
rected acyclic graphs (DAG) for each of the three ontologies
[Biological Process (BP), Cellular Component (CC), and

Molecular Function (MF)]. For each protein, the specific GO
terms provided in the UniProt function annotation file were
first gathered. Then, their parent and ancestor terms in the
GO DAG were also collected. The terms with the evidence
codes (EXP, IDA, IPI, IMP, IGI, IEP, TAS, IC, HTP, HDA,
HMP, HGI, HEP) were used as the function label for the pro-
tein according to the standard used in the Critical Assessment
of Protein Function Annotation (CAFA) (Zhou et al. 2019).

The entire dataset above was filtered to retain only proteins
with sequence length between 100 and 1022. We use a maxi-
mum length of 1022, because the pre-trained ESM model
used in generating sequence embeddings can accept a protein
sequence with the maximum length of 1022 residues. To
avoid rare GO terms, we use only GO terms that have at least
60 proteins for training and test.

To compare our method with existing methods, we use the
CAFA3 (Zhou et al. 2019) dataset as the independent test
dataset because many methods have been tested on it. We re-
moved all 3328 CAFA3 test proteins from our curated dataset
and removed any protein in the dataset that has �50% se-
quence identity with any protein in the CAFA3 test dataset.
After the filtering, the curated dataset was used to train and
validate TransFun. The trained method was then blindly
tested on the test datasets.

We collected the predicted structures for the proteins in the
CAFA3 test dataset (CAFA3_test_dataset) from AlphaFoldDB
in the same way as for our curated dataset. If no predicted struc-
ture was found for a protein, we used AlphaFold2 to predict its
structure. During the input feature generation, for a protein se-
quence with length >1022 in the CAFA3 benchmark dataset,
we divided it into smaller chunks of 1022 residues except for the
last chunk for the language model to generate sequence embed-
dings that were concatenated together as the sequence embed-
dings for the entire protein sequence.

To investigate how sequence identity influence the accuracy
of protein function prediction, we used mm2seq (Steinegger
and Söding 2017) to cluster the proteins in our curated data-
set at the sequence identity thresholds of 30%; 50%; 90%.
Table 1 reports the total number of proteins in each function
category, the total number of GO terms, and the number of
protein clusters at each identity threshold.

Our final curated dataset was divided into training and val-
idation sets. We randomly selected 5000 proteins with GO
terms in all three ontology categories for validation.

We also collected new proteins released between March
2022 and November 2022 in UniProt as our second test data-
set (new_test_dataset). This dataset has 702, 705, and 1084
proteins in CC, MF and BP respectively.

Given a set of proteins Dl ¼ f p1;O1ð Þ; p1;O2ð Þ; . . .
pn;Onð Þg, where pi is the ith protein and Oi is its true function

Table 1. The statistics of the curated protein function prediction dataset.a

Sequence identity threshold

Ontology No. of

protein

No. GO

terms

0.3 0.5 0.9 0.95

MF 35 507 600 14 667 19 512 26 876 28 067
CC 50 340 547 20 679 26 808 36 721 38 509
BP 50 320 3774 20 180 26 647 37 536 39 348

a The first three columns are the GO ontology category, the total number
of proteins in each category and the number of GO terms in each category.
The remaining four columns list the number of protein clusters at each
sequence identity threshold (0.3, 0.5, 0.9, 0.95).
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annotation labels (i.e. a set of GO terms). Our task is to predict
Oi as accurately as possible. The function annotations are repre-
sented hierarchically with a general root term at the top. If a GO
term x is associated with protein pi, then all the ancestor terms
of x in the GO graph are also associated with protein pi.
Therefore, the goal is to predict the sub-graph g in the GO graph
G consisting of all the GO terms associated with the protein
(Clark and Radivojac 2013).

2.2 Protein function prediction pipeline

We formulate the protein function task as a multi-label classi-
fication problem, where each protein may be assigned to one
or more labels (GO terms). TransFun takes as input the se-
quence and predicted 3D structure of a protein and predicts
the probabilities of GO terms for it in each GO category
(Fig. 1). TransFun consists of three main stages: (i) extracting
a protein graph from a predicted structure (PDB), (ii) generat-
ing the embeddings from a protein sequence, and (iii) using a
deep learning model to predict protein functions from the in-
put data, which are described in Sections 2.3, 2.4, and 2.5.

2.3 Protein graph extraction from predicted

structure

We construct a graph from the structure of a protein under
consideration, represented as a n � n adjacency matrix, where
n is the number of residues in the protein (Fig. 2). The nodes
in the graph represent residues of the protein. We test two dif-
ferent approaches of constructing edges between residues: a
distance threshold approach and a K-nearest neighbor (KNN)
approach. Given a protein graph G ¼ V;E;Xð Þ, where V ¼
fv1; v2; . . . vng represents the vertex set, E is the set of edges
and X 2 Rm� Vj j represents the node feature matrix of the
graph G, where m represents the dimension of the feature.
For the distance threshold approach, the condition for adding
an edge to connect two nodes u; vð Þ is the Euclidean distance
between their carbon alpha atoms u� vj j < /, where / is
the distance threshold. In this work, we tested five distance

thresholds, 4; 6; 8; 10 and 12Å and chose 10Å as our final
distance threshold as it yielded the best result. For the KNN
approach, the condition is v 2 Nk, where Nk is the K nearest
neighbors of node u. We set K to

ffiffiffi

n
p

and
ffiffiffi

n3
p

, where n is the
number of residues. Since both thresholds produce similar
results, we use

ffiffiffi

n3
p

to reduce computational cost. We com-
pare the KNN approach and the distance threshold approach
on the validation dataset. They yield the similar results, but
the former has fewer edges on average. So, only the KNN
approach is used in this study.

The graph constructed from a protein structure is stored in
a binary adjacency matrix, where 0 means no edge and a 1
means there is an edge between two nodes. Self-loops (edges
from a node to itself) are not allowed.

2.4 Sequence feature extraction using transformer

language model

We generate embeddings for the sequence of a protein using
the ESM-1b (Rives et al. 2021) pre-trained protein language
model. Per-residue embeddings are extracted for each residue
(e.g. dimension: 21 � 1022) and per-sequence embedding for
each whole sequence (e.g. dimension: 1022). The ESM-1b
transformer takes as input the sequence of a protein and gen-
erates feature embeddings at several layers. We collect per-
residue and per-sequence embeddings from the 33rd layer.
The per-residue embedding for all the residues of a protein is
an Rl�d tensor, where l is the sequence length and d is the

Figure 1. The protein function prediction pipeline of TransFun. The pipeline is divided into two main components, feature preprocessing (left) and neural

network model (right). The input is a protein sequence. The output is the predicted probabilities of the GO terms for the protein.

Figure 2. Constructing a graph from a protein structure. A graph is

constructed by a K-nearest neighbor approach. The graph is stored in a

binary adjacency matrix.
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embedding dimension. The per-sequence embedding is an ag-
gregation over the per-residue embeddings and represents the
features for the entire protein. We use the mean aggregator to
compute the per-sequence embedding.

ESM-1b was trained with the 1024 residue limit including
start and end tokens (i.e. 1022 real residues without counting
the start/end tokens). For a protein sequence with length
>1022, we divide the sequence into n=1022 chunks of length
1022 except for the last chunk that has a length of n % 1022,
where n is the length of the sequence and generate an embed-
ding for each chunk. The embeddings for all the chunks are
concatenated as the embedding for the protein.

2.5 Rotation- and translation-equivariant graph

neural network (EGNN) model

The deep graph neural network architecture of TransFun is
composed of four blocks of rotation- and translation-
equivariant graph neural networks (Satorras et al. 2021)
(Fig. 1), labeled as EGNN1, EGNN2, EGNN3, and EGNN4
respectively, each separated by a RELU activation function
and Batch-normalization layer. Each EGNN block is made up
of four equivariant graph neural network layers.

Each EGNN block accepts a graph as input to update its
features. The initial node features include the per-residue
embeddings, and the (x, y, z) coordinates of each residue. We
tested two optional features for the edges: (1) the distance be-
tween the two nodes of the edge; and (2) a binary number 0/1
indicating if the two residues are two adjacent residues con-
nected by a peptide bond in the protein. However, the edge
features do not improve the prediction accuracy on top of the
node features and therefore are excluded in the final model of
TransFun.

In Fig. 1, EGNN1 has an input dimension of 1022, equal to
the feature embedding dimension for each node. It takes as in-
put the protein graph with the per-residue embedding to gen-
erate a new embedding of dimension C and the refined
coordinates of the nodes in the graph. C to set to the number
of GO classes to be predicted. EGNN2 takes as input the pro-
tein graph with the output of dimension of C from EGNN1 as
node embeddings and produces an output with dimension of
C=2. EGNN3 takes in the initial per-sequence embedding of
dimension 1022 for the protein to generate the new per-
sequence embedding of dimension C=2. The last EGNN block
(EGNN4) takes as input the output of dimension C/2 from
EGNN2 to generate an output of dimension of C/4.

The output embeddings (features) from each of the three
blocks (EGNN1, EGNN2, and EGNN4) are aggregated by
using a global mean pooling on its node features to obtain the
overall features for each protein, separately. The overall
pooled features of EGNN1, EGNN2, and EGNN4 are then
concatenated with the per-sequence output of EGNN3, result-
ing in 2 � Cþ C=4 features. The concatenated features are
then passed through two fully connected (FC) linear layers,
separated by batch normalization and RELU function to re-
duce the dimension to C. A sigmoid layer is used in the output
layer to take the output of the last linear layer as input to pre-
dict the probability of each GO term.

We performed an ablation study on different numbers of
EGNN blocks, different ways of combining the features of the
EGNN blocks, and a multi-layer perceptron that uses only se-
quence information as input (see the Supplementary Section
“An ablation study of the deep learning architecture of

TransFun”). The final architecture in Fig. 1 works best on the
validation dataset overall.

2.6 Addressing class imbalanced problems

The numbers of examples for different GO terms are very dif-
ferent. We use class weights to scale the training loss for GO
terms appropriately to weigh less-represented GO terms (clas-
ses) more. The size of protein clusters in the training dataset is
also imbalanced, where some clusters are very large, but some
are very small. To reduce over the representation of proteins
in a large cluster during training, we randomly sample one
representative protein from each cluster for each training ep-
och. Although the representative protein sampled is similar in
sequence to all the other proteins in the same cluster, their
functional annotation may differ, especially when the se-
quence similarity is low. Therefore, we recompute the class
weights per training epoch so that classes represented in the
epoch are weighed appropriately.

2.7 Combining TransFun predictions with sequence

similarity-based predictions

Several previous works (Kulmanov and Hoehndorf 2020; Cao
and Shen 2021) combines an ab initio deep learning prediction
method and a homology sequence similarity-based method such
as DIAMONDScore (Buchfink et al. 2015, 2021) to improve
protein function prediction. DIAMONDScore uses BLAST to
search for homologous proteins and transfer their function
annotations to a target protein under consideration.

In this work, we also designed such a composite (or meta)
method to combine the predictions from DIAMONDScore
and the predictions of TransFun, which is called TransFunþ.
The score that TransFunþ predicts for a GO term is the
weighted average of the score predicted by TransFun and the
score predicted by DIAMONDScore. The weights were opti-
mized on our curated validation dataset.

2.8 Evaluation metrics

We mainly use the two widely used metrics—Fmax and the
Area Under the Precision-Recall curve (AUPR)—to evaluate
the performance of our methods. The Fmax is the maximum
F-measure computed over all the prediction thresholds. The
F-measure for each threshold is computed as the harmonic
mean of the precision (TP/(TPþFP)) and recall (TP/(TPþFN)),
where TP is the number of true positives, FP the number of
false positives, and FN the number of false negatives. The
AUPR is computed by using the trapezoidal rule to
approximate the region under the precision–recall curve.

3 Results and discussions

After training and optimizing TransFun on our curated train-
ing and validation datasets, we blindly evaluated it on the
new test dataset (new_test_dataset) and the CAFA3 test data-
set (CAFA3_test_dataset) together with other methods.

3.1 Performance on CAFA3 test dataset

We compare TransFun with a Naı̈ve method based on the
frequency of GO terms, a sequence similarity-based method
DIAMONDScore (Buchfink et al. 2015, 2021), and three re-
cent deep learning methods DeepGO (Kulmanov and
Hoehndorf 2020), DeepGOCNN (Kulmanov and Hoehndorf
2020), and TALE (Cao and Shen 2021) on the CAFA3 test
dataset in three function prediction categories (MF: molecular
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function; CC: cellular component, BP: biological process) in
terms Fmax score and AUPR (Table 2). The naı̈ve method uses
the frequency of GO terms computed from the training data-
set as the probability scores of GO terms predicted for any in-
put protein. In the naı̈ve method, the probability that a GO
term belongs to a protein is the number of occurrences of the
GO term in the training dataset divided by the total number
of occurrences of all the GO terms in the training dataset.
According to Fmax, TransFun performs best in MF and CC
categories and second best in BP category. According to
AUPR, TransFun performs best in MF and BP categories and
second best in CC category. These results demonstrate that
the sequence-based language transformer and 3D-equivariant
graph neural network in TransFun can use protein sequence
and structure together to improve function prediction over
the existing methods.

3.2 Impact of sequence identity on functional

annotation

We compare the performance of TransFun on our curated
validation datasets created using sequence identity thresholds
of 30%; 50%; 90%, respectively. The results are reported in
Table 3. There is a slight increase of Fmax and AUPR when
the sequence identify threshold is increased from 30% to
50% for molecular function (MF) and cellular component
(CC), while the Fmax and AUPR for BP slightly decreases. This
change may be also partially due to the difference in the test
datasets at the two different sequence identity thresholds.
However, the largely consistent results show that TransFun
can work well when the sequence identity between the test
protein and the training proteins is �30%. When the se-
quence identity threshold is increased from 50% to 90%, the
performance is very similar, indicating when the sequence
identity is higher than 50%, further increase sequence identity
may not have a significant impact on the prediction accuracy.

3.3 Performance on the new test dataset

Table 4 reports the results of TransFun, Naı̈ve,
DIAMONDScore, three recent deep learning methods—
DeepGOCNN, TALE, and DeepFRI, and three composite (meta)
methods—DIAMONDScore—DeepGOPlus, TALEþ, and
TransFunþ on the new test dataset in the three ontology catego-
ries (MF, BP, and CC) in terms of the Fmax score and AUPR score.
Naı̈ve, DIAMONDScore, DeepGOCNN, TALE, DeepFRI, and
TransFun are individual methods. DeepGOPlus, TALEþ and
TransFunþ are composite (or meta) methods that combine the
predictions of two individual methods (i.e. DeepGO þ

DIAMONDScore, TALE þ DIAMONDScore, and TransFun þ
DIAMONDScore).

Among the five individual methods (Naı̈ve, DIAMONDScore,
DeepGOCNN, TALE, DeepFRI, and TransFun), TransFun has
the highest Fmax score of 0.628, 0.608, and 0.413 for CC, MF,
and BP, the highest AUPR score of 0.569 and 0.366 for MF and
BP, and the second highest AUPR score of 0.603 for CC. TALE
has the highest AUPR score of 0.621 for CC.

The three composite methods (DeepGOPlus, TALEþ, and
TransFunþ) generally performs better than their individual
counterpart (DeepGo, TALE, and TransFun) in all the func-
tion categories in terms of both Fmax and AUPR except that
TransFun and TransFunþ has the same Fmax score (i.e. 0.628)
for CC. This indicates that combining the deep learning meth-
ods and sequence-similarity based methods can improve pre-
diction accuracy. Among the three composite methods,
TransFunþ performs best for CC and MF in terms of Fmax

and for MF and BP in terms of AUPR, while DeepGOPlus
performs best for BP in terms of Fmax and TALEþ performs
best for CC in terms of AUPR.

The precision-recall curves of these methods on the new
test dataset are plotted in Fig. 3. It is worth noting that the
deep learning methods such as TransFun, TALE, and
DeeoGOCNN perform much better than the sequence
similarity-based method—DIAMONDScore, particularly in
terms of AUPR. One reason is that DIAMONDScore has a
much shorter precision–recall curve spanning a smaller range
of recall values compared to the deep learning methods (see
Fig. 3 for details).

In addition to Fmax and AUPR, we also evaluate the six in-
dividual methods using Smin (Clark and Radivojac 2013;
Radivojac et al. 2013) (see Supplementary Table S1). In terms
of Smin, TransFun performs best in the CC and BP categories
and second best in MF.

Finally, we select all the proteins in the new_test_dataset
that have <30% sequence identity with our training dataset

Table 2. The results of TransFun and several other methods on the CAFA3

test dataset.a

Method Fmax AUPR

MF CC BP MF CC BP

Naive 0.295 0.539 0.315 0.138 0.373 0.197
DIAMONDScore 0.532 0.523 0.382 0.461 0.5 0.304
DeepGO 0.392 0.502 0.362 0.312 0.446 0.213
DeepGOCNN 0.411 0.582 0.388 0.402 0.523 0.213
TALE 0.548 0.654 0.398 0.485 0.649 0.258
TransFun 0.551 0.659 0.395 0.489 0.634 0.333

a TransFun was pretrained on the curated dataset whose proteins were
clustered at sequence identity threshold of 50%. Bold numbers denote the
best results.

Table 3. The results of TransFun on the test datasets having different

identity thresholds with respect to the training data.

Score 30% 50% 90%

MF CC BP MF CC BP MF CC BP

Fmax 0.509 0.619 0.394 0.53 0.631 0.37 0.53 0.606 0.367
AUPR 0.461 0.599 0.333 0.489 0.614 0.327 0.487 0.61 0.3

Table 4. The results on the new test dataset.a

Method Fmax AUPR

CC MF BP CC MF BP

Naı̈ve 0.560 0.275 0.283 0.404 0.135 0.173
Diamond 0.473 0.564 0.392 0.089 0.115 0.080
DeepGOCNN 0.595 0.440 0.361 0.545 0.307 0.240
TALE 0.607 0.512 0.344 0.613 0.480 0.257
DeepFRI 0.494 0.454 0.324 0.324 0.303 0.169
TransFun 0.628 0.608 0.413 0.603 0.569 0.366
DeepGOPlus 0.623 0.635 0.460 0.562 0.549 0.339
TALEþ 0.619 0.635 0.431 0.633 0.613 0.344
TransFunþ 0.628 0.638 0.452 0.627 0.638 0.410

a Naı̈ve, Diamond, DeepGOCNN, TALE, DeepFRI and TransFun
(green) are individual methods. DeepGOPlus, TALEþ and TransFunþ
(blue) are composite methods. The best results of among the individual
methods or among the composite methods are bold.
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to test the six individual methods. The results are shown in
the Supplementary Table S2. TransFun performs better than
the other methods in all but one situation.

3.4 Performance on human and mouse proteins

We compare the performance of TransFun, TransFunþ, and
the other methods on human proteins (Table 5) and mouse
proteins (Table 6) in the new test dataset. In the dataset, there
are 70, 35, and 34 human proteins in CC, MF, and BP, re-
spectively, and there are 132, 87, and 158 mouse proteins for
CC, MF, and BP, respectively.

The similar results are observed on the human and mouse
proteins. Among the individual methods, TransFun performs
better than the other methods in almost all function categories
in terms of Fmax and AUPR. The composite methods generally
performs better than their corresponding individual methods.

Among the three composite methods, TransFunþ performs
best in most situations. These results are consistent with the
results on all the proteins in the new test dataset (Table 4).

3.5 Performance on proteins longer than 1022

residues

Because TransFun and TransFunþ have to cut proteins longer
than 1022 residues into pieces for the ESM-1b model to gen-
erate the sequence embedding features, we evaluated them
and the other methods on the proteins longer than 1022 resi-
dues in the new test dataset. There are 49, 41, and 80 such
proteins in CC, MF and BP respectively in the dataset. The
results in Table 7 show that TransFun yields the best perfor-
mance in terms of AUPR for all three GO function categories
among the individual methods and yields the best perfor-
mance in terms of Fmax, for MF and BP. TransFunþ gives the
best performance for CC and BP in terms of AUPR and the
best performance for BP in terms of Fmax. DeepGOPlus gives
the best results for CC in terms of Fmax, and TALEþ gives the
best performance for MF in terms of Fmax. Compared with
the results on all the proteins in Table 4, the performance of
all the methods on the long proteins is generally lower than
that on all the proteins with some exceptions, indicating that
it is harder to predict the function of long proteins.

4 Conclusion and future work

In this work, we developed TransFun for protein function
prediction, using both protein structure and sequence

Figure 3. The precision-recall curves of the 9 methods on the new test

dataset. The dot on the curves indicates where the maximum F score is

achieved. The coverage is the percent proteins that a method makes

predictions for.

Table 5. The results of the nine methods on human proteins in the new

test dataset.a

Method Fmax AUPR

CC MF BP CC MF BP

Naı̈ve 0.620 0.292 0.28 0.538 0.135 0.163
Diamond 0.509 0.516 0.445 0.085 0.087 0.055
DeepGOCNN 0.648 0.419 0.363 0.636 0.253 0.245
TALE 0.675 0.406 0.367 0.714 0.324 0.279
DeepFRI 0.561 0.352 0.394 0.431 0.162 0.203
TransFun 0.686 0.538 0.468 0.694 0.471 0.445
DeepGOPlus 0.657 0.554 0.523 0.631 0.417 0.366
TALEþ 0.689 0.569 0.497 0.724 0.539 0.415
TransFunþ 0.684 0.612 0.553 0.719 0.557 0.499

a Green denotes the individual methods and blue the composite methods.
The best results in each type of methods are highlighted bold.

Table 6. The results of the nine methods on mouse proteins in the new

test dataset.a

Method Fmax AUPR

CC MF BP CC MF BP

Naive 0.503 0.235 0.280 0.333 0.100 0.163
Diamond 0.471 0.569 0.379 0.087 0.119 0.082
DeepGOCNN 0.522 0.430 0.333 0.434 0.272 0.195
TALE 0.519 0.564 0.298 0.502 0.518 0.198
DeepFRI 0.411 0.404 0.282 0.247 0.277 0.154
TransFun 0.558 0.576 0.355 0.517 0.532 0.289
DeepGOPlus 0.559 0.615 0.427 0.472 0.535 0.286
TALEþ 0.533 0.625 0.408 0.516 0.596 0.293
TransFunþ 0.557 0.624 0.403 0.529 0.618 0.352

a Green denotes the individual methods and blue the composite methods.
The best results in each type of methods are highlighted bold.
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information. TransFun uses transfer learning with a protein
language model to extract sequence features and a graph rep-
resentation to store structural features generated from
AlphaFold predicted structures. The features are used by
rotation/translation-equivariant graph neural networks to
predict GO function terms for any protein. The method per-
forms better than the sequence similarity-based and other
deep learning methods on the two benchmark datasets.
Moreover, TransFun can be combined with sequence
similarity-based method to further improve prediction
accuracy.

In the future, we plan to use the multiple sequence align-
ment (MSA) of a target protein for the MSA-based language
model (e.g. ESM-MSA) to generate extra embedding features
for TransFun to see if they can further improve prediction ac-
curacy. Another limitation of TransFun and other protein
function prediction methods is the lower prediction accuracy
for more specific GO terms (the nodes at the lower levels of
the gene ontology directed acyclic graph) because these terms
have much fewer proteins associated with them than more
general GO terms. More machine learning techniques and
data preparation techniques are needed to address this imbal-
ance problem because accurately predicting more specific GO
terms is more useful for biological research than more general
GO terms. Finally, we plan to incorporate the protein–protein
interaction information relevant to protein function predic-
tion into TransFun.
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