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Abstract
Motivation: The coronavirus disease 2019 (COVID-19) remains a global public health emergency. Although people, especially those with under-
lying health conditions, could benefit from several approved COVID-19 therapeutics, the development of effective antiviral COVID-19 drugs is still
a very urgent problem. Accurate and robust drug response prediction to a new chemical compound is critical for discovering safe and effective
COVID-19 therapeutics.

Results: In this study, we propose DeepCoVDR, a novel COVID-19 drug response prediction method based on deep transfer learning with graph
transformer and cross-attention. First, we adopt a graph transformer and feed-forward neural network to mine the drug and cell line information.
Then, we use a cross-attention module that calculates the interaction between the drug and cell line. After that, DeepCoVDR combines drug and
cell line representation and their interaction features to predict drug response. To solve the problem of SARS-CoV-2 data scarcity, we apply trans-
fer learning and use the SARS-CoV-2 dataset to fine-tune the model pretrained on the cancer dataset. The experiments of regression and classifi-
cation show that DeepCoVDR outperforms baseline methods. We also evaluate DeepCoVDR on the cancer dataset, and the results indicate that
our approach has high performance compared with other state-of-the-art methods. Moreover, we use DeepCoVDR to predict COVID-19 drugs
from FDA-approved drugs and demonstrate the effectiveness of DeepCoVDR in identifying novel COVID-19 drugs.

Availability and implementation: https://github.com/Hhhzj-7/DeepCoVDR.

1 Introduction

With the outbreak of COVID-19, the lives and health of peo-
ple worldwide have been seriously threatened. The pathogen
causing the disease has been named SARS-CoV-2 (Guan et al.
2020), and it is the most pathogenic human coronavirus ever
discovered (Cha et al. 2018). In order to prevent COVID-19
from further causing people’s health crisis, it is urgent to find
SARS-CoV-2 antiviral drugs. Several drugs and vaccines have
been approved, but there is still a lack of specific therapeutics
to block severe illness and mortality due to the emergence of
some new SARS-CoV-2 strains (Spinner et al. 2020).

Recently, certain drugs targeting the viral protein SARS-
CoV-2, such as remdesivir (Spinner et al. 2020; Yin et al.
2020), paxlovid (Owen et al. 2021; Hammond et al. 2022),
and molnupiravir (Wang et al. 2021b; Jayk Bernal et al.
2022), have been approved by the FDA, but their clinical effi-
cacy remains controversial. Therefore, targeting SARS-CoV-2
host receptors is emerging as another potential solution in the
search for specific COVID-19 drugs, in addition to the two
entry receptors ACE2 and TMPRSS2, Gordon et al. (2020)
identified 332 host–virus protein interactions between SARS-
CoV-2 and human proteins through affinity purification mass
spectrometry. Moreover, transcriptome profiling also pro-
vides an opportunity to predict antiviral drug response by
detecting quantitative changes in host gene activity and gene
regulation, and changes in the level of gene expression always

contribute to altered pathways, which play a crucial role in
determining the phenotypes of cells (Sharifi-Noghabi et al.
2019; Riva et al. 2020). Sometimes similar phenotypes can be
observed in different cells due to changes in the same gene ac-
tivity; For example, recent studies have shown increased ex-
pression of immune checkpoint receptors, including PD-1 and
CTLA-4, in lung tissue from COVID-19 patients, both of
which are associated with cancer development (Sharif-Askari
et al. 2021). The research on COVID-19 drug prediction
mainly focuses on drug repurposing. Traditional drug repur-
posing methods rely on expensive and time-consuming wet-
lab experiments (Avorn 2015), and computational methods in
drug repurposing can effectively alleviate these problems.

So far, some computational drug repurposing methods for
screening SARS-CoV-2 antiviral drugs have been proposed,
which can be mainly divided into two categories. The first cat-
egory is the network-driven method, which analyzes the infor-
mation extracted from the similarity of drugs and other nodes
(such as viruses, proteins, etc.). Zhou et al. (2020) presented
an integrative antiviral drug repurposing methodology that
searches for potential SARS-CoV-2 antiviral drugs by com-
puting the network proximity among the drug’s target pro-
teins and HCoV-related proteins. Meng et al. (2021)
proposed the SCPMF method which integrated the known
drug–virus interaction, drug–drug similarity, and virus–virus
similarity network to construct a heterogeneous network, and
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used the similarity constraint probability matrix decomposi-
tion method to search for COVID-19 therapeutics. Peng et al.
(2021) constructed a new heterogeneous virus–drug network
and developed a novel random walk with restart method
(VDA-RWR) for identifying possible virus–drug association
related to SARS-CoV-2. The second category is based on deep
learning methods. Deepthi et al. (2021) proposed DLEVDA,
which inputs features incorporating the pairwise similarities
of drug chemical structures and virus genome sequences into
a convolutional neural network, and finally infers promising
candidates against SARS-CoV-2 infection through an
XGBoost classifier. Wang et al. (2021a) proposed the
COVIDVS1, COVIDVS-2, and COVIDVS-3. These three
models base on a directed message passing neural network.
COVIDVS1 first constructed a broad-spectrum anti-beta-co-
ronavirus compound prediction model, and then COVIDVS-2
and COVIDVS-3 were obtained by applying transfer learning
to fine-tune the model using the specific anti-SARS-CoV-2
compound datasets.

Although the prior studies have led to significant progress,
there is still room for improvement.

• Researchers have been exploring new potential drugs by
testing their antiviral activity against SARS-CoV-2
(Zaliani et al. 2022); therefore, the accurate prediction of
COVID-19 drug response is of great significance for guid-
ing the design of SARS-CoV-2 antiviral drugs and repur-
posing existing drugs in the treatment of SARS-CoV-2.
However, previous methods are not able to predict
COVID-19 drug response.

• The conventional drug feature lacks complete drug chem-
istry information. For example, the fingerprint-based drug
features and similarity network features are insufficient in
representing the structure information of drug molecules.

• Pharmacogenomics (Daly 2017) is a subject of exploring
the influence of genetic variation of genes on drug treat-
ment effects from the perspective of the genome. For ex-
ample, transcriptome profiling provides an opportunity to
predict antiviral drug response. However, the pharmaco-
genomics profiles have yet to be well utilized in the study
of anti-SARS-CoV-2 drug prediction.

• Due to the limited and sparse publicly available SARS-
CoV-2 data, it is challenging to apply deep learning meth-
ods to improve the predictive performance of drug
response.

In this study, we propose a transfer learning method with a
graph transformer for predicting COVID-19 drug response,
namely DeepCoVDR. First, we construct a graph transformer
that can simultaneously capture the information of neighbor
nodes and long-distance node information in drug molecules to
extract drug information. Second, we use a feed-forward neural
network (DNN) to learn the representation of transcriptomics.
Third, a cross-attention module is employed to produce new
embeddings of drugs and cell lines which can supplement the re-
lationship between each node in the drug molecule and the cor-
responding cell line. To solve the problem that the amount of
COVID-19 drug response data is very limited, we use cancer cell
lines, drugs, and their responses to pretrained our model and
then use Vero E6, which is highly permissive to SARS-CoV-2 in-
fection, drugs and their responses to fine-tune the model.
DeepCoVDR can not only predict the half-maximal inhibitory
concentration (IC50) sensitivity value in the regression task but

also classify a drug as sensitive or resistant in the classification
task. We have designed many experiments to test the perfor-
mance of DeepCoVDR. In the classification and regression set-
tings, our model achieves state-of-the-art performance. We also
apply our model to screen the FDA-approved drugs from Skuta
et al. (2017), and the drug candidates also confirm the accuracy
of DeepCoVDR.

2 Materials

Deep learning methods usually utilize a large amount of data
that provide a good basis for solving various problems.
Unfortunately, applying deep learning to predict COVID-19
drug response is a major challenge. SARS-CoV-2, as a newly
discovered virus, has very limited data available. This will sig-
nificantly affect the performance of a model in the potential
data space. According to the principle of similarity (Willett
2014; Kubinyi 1998), similar molecule structures may work
on the same genes. That shows the feasibility of adopting
transfer learning on this issue. A sufficient amount of data
helps the model to learn enough knowledge of drugs and cell
line during pretraining, so we choose cancer dataset which is
large enough for pretraining and easy to collect.

For the cancer dataset, we extract the dataset from Jiang et al.
(2022). This dataset mainly uses the new version of the public
database GDSC (Yang et al. 2013), GDSC2, containing 135,
242 IC50 values (natural log-transformed) across 809 cell lines
and 198 compounds. It selects 17 777 gene expression values
from GDSC2 for each cell line and gets the SMILES strings of all
compounds from PubChem (Kim et al. 2019).

For the SARS-CoV-2 dataset, we collected a set of IC50 val-
ues of 318 drugs on Vero E6 from Zaliani et al. (2022). For
the omics data of Vero E6, we use the data from Riva et al.
(2020), which contain 16 122 gene expression values. To en-
sure the consistency of feature dimension, we filter the genes
that are different from the cancer dataset. Finally, only 11 793
gene expression values in both the cancer dataset and the
SARS-CoV-2 dataset are retained.

3 Methods
3.1 Overview of DeepCoVDR

DeepCoVDR is a deep learning method based on graph trans-
former, cross-attention, and transfer learning for COVID-19
drug response prediction. The flowchart of DeepCoVDR is
shown in Fig. 1. DeepCoVDR has three parts: features min-
ing, cross-attention module, and drug response prediction.

In the first part, we extract drug representation and cell line
representation from the molecular structure of drugs and gene
expression values. For the drug, we first use D-MPNN (Yang
et al. 2019) to aggregate information from neighboring atoms
and bonds, and then the node embeddings are fed into a
transformer encoder to obtain the final representation of the
drug. For the cell line, we get the representation through a
five-layer DNN network.

In the cross-attention module, we stack the drug node fea-
ture from D-MPNN and the broadcasting cell line feature.
Under the attention mechanism of the transformer, we get an-
other drug representation and another cell line representation.
Both of them contain fusion information.

Finally, we average two drug and two cell line representa-
tions separately and concatenate result features. After extrac-
tion of a three-layer DNN, we can obtain the predicted result.
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We take mean square error as the loss function for the regres-
sion task. For the classification task, we add an additional sig-
moid layer and use the cross-entropy as the loss function. The
optimizer in the back-propagation process is Adam. To re-
duce the impact of data scarcity on model performance, we
adopt transfer learning in the model. Transfer learning can
address data scarcity by leveraging existing knowledge from
source tasks to low-data target tasks (Pan and Yang 2010).
We first use the cancer dataset to pretrain the model. Then we
fine-tune the pretrained model with the SARS-CoV-2 dataset
and obtain the target model.

3.2 Drug information extraction

Drugs can be compiled into molecular graphs. Using the
open-source package RDKit (https://rdkit.org/docs/index.
html), the SMILES string of each drug can be converted into a
chemical structure with atom features and bond features. To
fully use drug structure information, we construct a graph
transformer framework that not only uses D-MPNN (Yang
et al. 2019) to learn the local representation of the immediate
adjacent structure of nodes but also uses transformer encoder
(Vaswani et al. 2017) as the global inference module. As an
extension of MPNN (Gilmer et al. 2017), D-MPNN uses mes-
sages associated with a directed edge to make use of key
attributes and avoid unnecessary loops in the message deliv-
ery path (Yang et al. 2019). Taking a drug D of n atoms as an
example, we first initialized edge hidden states:

h0
ab ¼ f ð½na; eab�WiÞ (1)

where Wi 2 R
hc�h is a trainable parameter, na is atom fea-

tures for atom a and eab is bond features for bond ab, and f is
the ReLU activation function (Nair and Hinton 2010). Then,
the message-passing process includes tf steps. The messages
and the hidden states of step tþ1 are respectively mtþ1

ab and
htþ1

ab :

mtþ1
ab ¼

X
i2fNa bgh

t
ia (2)

htþ1
ab ¼ f ðh0

ab þmtþ1
ab WmÞ (3)

where Na is the set of neighbors of a in graph D, Wm 2 R
h�h

is a trainable parameter. And the final messages and represen-
tation of the atom a are ma and ha:

ma ¼
X
i2Na

h
tf

ai (4)

ha ¼ f ð½na;ma�WoÞ (5)

where Wo 2 R
h�h is a trainable parameter.

Transformer is a deep learning method with attention
mechanism for seq2seq tasks (Vaswani et al. 2017). By using
a self-attention module, the transformer can extract syntax in-
formation effectively. Herein, we use a transformer encoder
to mine pairwise message between atom encodings of drug
molecules. After we obtain the final pernode encoding hd 2

Figure 1. Flowchart of DeepCoVDR. We first use the cancer dataset to pre-train the model and then fine-tune the model on the SARS-CoV-2 dataset. The

model consists of three parts: feature representation extraction, cross-attention module, and drug response prediction. The drug’s chemical structure as a

graph is input into a graph transformer-based network and transformed into a high-level representation. And the gene expression data is used to extract

cell line feature representation by a feed-forward neural network. Then, we employ a cross-attention module to calculate the interaction between the drug

and cell line and obtain the representation of fusion information. In drug response prediction, we generate the final embeddings of the drug and cell line

and take them as input to predict drug response.
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R
n�h of drug D from D-MPNN, we input them into a trans-

former encoder. Transformer mainly includes two parts, a
multiattention layer and a feed-forward network. A multiat-
tention layer consists of several self-attention layers which
takes the keys, the queries and the values as input to calculate
scaled dot-product attention. We first get query Qd, key Kd,
and value Vd by

Qd ¼ hdWQ
d ;Kd ¼ hdWK

d ;Vd ¼ hdWV
d (6)

where WQ
d ;W

K
d ;W

V
d 2 R

h�z are learnable weight matrixes.
To allow model consider different subspaces, we run u paral-
lel self-attention layers and concatenate the output per-head
encodings.

head i ¼ AttentionðQd;Kd;VdÞ

¼ softmax
QdKT

dffiffiffi
z
p

 !
Vd

(7)

MultiHead ðhdÞ ¼ concatð head1; . . . ; headuÞWT (8)

where WT 2 R
uz�z is a weight parameter and 1ffiffi

z
p is a scaled

factor. To further adjust the representation, the output of the
multiattention layer is input into the feed-forward layer:

Ed
1 ¼ f

�
MultiHead ðhdÞWd

1 þ b1
d

�
Wd

2 þ b2
d (9)

where Ed
1 is the first drug representation, Wd

1 2 R
z�o;

Wd
2 2 R

o�o, and b1
d;b

2
d 2 R

o are weight parameters.

3.3 Cell line information extraction

For cell lines, we design a five-layer DNN to extract feature
representation from gene expression data. Taking cell line C
as an example, the first representation of Cell line Ec

1 is the fi-
nal output of DNN.

hc
i ¼ f ðhc

i�1Wc
i þ bc

i Þ (10)

where i 2 ½1; 5� is the number of layers,hc
i is the output vector

of layer i, Wc
i 2 R

di�1�di is weight parameter.

3.4 Cross-attention module

Although we have obtained drug feature representation Ed
1

and cell line feature representation Ec
1, which contain the in-

formation of their own characteristics, their mutual connec-
tion is ignored. Inspired by multimodality cross attention
network for image and sentence matching (Wei et al. 2020),
we present a cross-attention module based on a transformer
encoder that allows us to calculate the effect of each atom in
the molecule and the corresponding cell line, to generate Ed

2

and Ec
2 which are the second representation of drug and cell

line containing fusion information. The core operations are as
follows. We first use stacked features of drug and cell line to
obtain the query QF, key KF and value VF:

QF ¼
QD

QC

� �
¼

hdWQ
f

hcW
Q
f

0
@

1
A (11)

KF ¼
KD

KC

� �
¼

hdWK
f

hcW
K
f

 !
(12)

VF ¼
VD

VC

� �
¼

hdWV
f

hcW
V
f

 !
(13)

where WQ
f ;W

K
f ;W

V
f 2 R

h�f are learnable weight matrices
and hc 2 R

n�h is obtain from Ec
1 by broadcasting. Then the

output of head i is calculated as follows:

head F
i ¼ AttentionðQF;KF;QFÞ

¼ s
QD

QC

 !
KT

D KT
C

� � !
VD

VC

 !

¼
sðQDKT

DÞ sðQDKT
CÞ

sðQCKT
DÞ sðQCKT

CÞ

 !
VD

VC

 !

¼
sðQDKT

DÞVD þ sðQDKT
CÞVC

sðQCKT
CÞVC þ sðQCKT

DÞVD

 !

¼
Edi

2

Eci

2

0
@

1
A

(14)

where s represent the softmax and scaled function, Edi

2 and Eci

2

are the hidden representation of drug and cell line. From

Edi

2 ¼ sðQDKT
DÞVD þ sðQDKT

CÞVC and Eci

2 ¼ sðQCKT
CÞVC

þsðQCKT
DÞVD, the cross-attention module is able to consider

the interaction of drug feature and cell line feature for the rep-
resentation of drug and cell line. Similar to formulas 9 and
10, we can get the output of the transformer encoder based

on multiattention module ðEd
2Ec

2Þ
T . Ed

2 and Ec
2 are the second

representation of drug and cell line.

3.5 Baseline methods

To test the performance of DeepCoVDR, we compared our
methods with six baselines: support vector machine (SVM)
(Hearst et al. 1998), a random forest (RF) (Breiman 2001),
XGBoost (Chen and Guestrin 2016), feed-forward neural net-
work (DNN), graph convolutional network (GCN) Kipf and
Welling (2016), and graph attention network (GAT)
(Veli�ckovi�c et al. 2017). The input feature of SVM, RF,
XGBoost, and DNN are the concatenation of Morgan finger-
prints (Morgan 1965) and gene expression data. GCN and
GAT can process graph structure data as graph neural net-
work methods, so their inputs are molecular structures that
contain atom features and bond features and gene expression
data. The two methods use the same way as DeepCoVDR to
process gene expression data. Their main difference lies in the
treatment of drug structure. The parameters of these baselines
are default or the best. The details are as follows. For SVM,
RF and XGBoost, we choose the default hyperparameters
from sklearn library (Pedregosa et al. 2011). And the hyper-
parameters of DNN, GCN and GAT are selected by experi-
mental results. For DNN, we set three hidden layers and the
dimension of hidden layers are [1024, 512, 128]. For GCN,
we use three GCN layers and the dimension are [78, 156,
312]. For GAT, we set six attention heads and two GAT
layers which dimension are [128, 128]. The optimizer of
DNN, GCN and GAT is Adam.
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4 Results
4.1 Experimental settings and model evaluation

We conduct five 5-fold cross-validations by five different ran-
dom seeds to evaluate the performance of DeepCoVDR and
the competitive methods. The final experimental results come
from the average of five 5-fold cross-validations.

For the model evaluation of regression experiment, we use
three metrics: Pearson’s correlation coefficient (PCC) (Benesty
et al. 2009), Spearman’s correlation coefficient (SCC) (Myers
and Sirois 2004) and root mean squared error (RMSE). PCC
is a statistic reflecting the linear correlation degree of observed
and predicted logarithm IC50. SCC is a nonparametric mea-
sure of ranked values and uses a monotone function to de-
scribe the relationship between two variables observed and
predicted logarithm IC50. And the RMSE is a traditional
measure to calculate the level of accuracy.

For the model evaluation of the classification experiment,
we use four common metrics: the area under the receiver op-
erating characteristic curve (AUC), the area under the
precision-recall curve (AUPR), accuracy (ACC), and F1 score.
The F1 score is a harmonic average of accuracy and recall.

4.2 Performance comparison on regression

experiments

The performance comparison of DeepCoVDR on regression
experiment is shown in Table 1. DeepTTA is the state-of-art
transformer-based method to predict cancer drug response ac-
curately. To further prove the high performance of
DeepCoVDR, we train DeepTTA on our SARS-CoV-2 data-
set and add it to the comparison on the regression experiment.
From the comparison results, we can have the following
analysis: (i) Among the eight methods, DeepCoVDR outper-
forms other methods, including DeepTTA, by achieving
Pearson’s correlation of 0.942, Spearman’s correlation of
0.881, and RMSE of 0.509. Fig. 2 shows the P-values of PCC
and SCC between each method and other methods. The P-
value between DeepCoVDR and other methods is less than
.05, which proves the credibility of our experimental conclu-
sion and that the improvements of DeepCoVDR have statisti-
cal significance; (ii) The methods based on deep learning,
including DNN, GCN, GAT, DeepTTA, and DeepCoVDR,
perform better than the methods based on traditional machine
learning. That shows deep learning has the ability to discover
complex information in high-dimensional data. (iii) The meth-
ods that only use fingerprints as a drug feature perform worse
than the methods that use chemical structures. That shows
chemical structures contain more detailed and higher-level
drug information.

For runtime analysis, we benchmarked DeepCoVDR and
DeepTTA on the same server with a single RTX3090 GPU.

The training costs of DeepCoVDR and DeepTTA are 3.40 h
and 1.72 h, respectively. It is reasonable that DeepCoVDR
requires more training time because it utilizes a more complex
deep transfer learning approach to improve regression
performance.

4.3 Performance comparison on classification

experiments

In this study, we binarize the IC50 values through the thresh-
old 20 lM (Zaliani et al. 2022). In order to prove the classifi-
cation performance of our model, we use t-SNE (Van der
Maaten and Hinton 2008) to visualize the classification
results of DeepCoVDR. As shown in Fig. 3a–c, the green and
blue dots respectively represent the drugs with and without
antiviral activity in our dataset. It can be clearly seen that
with the increase in the number of training epochs, the dots
representing different types of samples are gradually distin-
guished, and the dots of the same type are gradually gathered.
This represents that our model can extract and distinguish
hidden knowledge in features. Then, we use AUC, AUPR,
ACC, and F1 scores to measure the model’s performance.
Figure 3d shows the ROC curves of DeepCoVDR and other
baseline methods. More results are shown in Fig. 3e.
DeepCoVDR outperforms other baseline methods by achiev-
ing significantly higher AUC, AUPR, ACC, and F1 scores of
0.954, 0.956, 0.962, and 0.946. From the above results, we
can see that DeepCoVDR has reached the state-of-art of all
comparison methods, demonstrating the superiority of
DeepCoVDR when performing classification tasks.

4.4 Drug response prediction on the cancer dataset

Before we use the SARS-CoV-2 dataset to predict the drug re-
sponse, we first train DeepCoVDR on the cancer dataset. To
demonstrate the high performance of DeepCoVDR, we com-
pare the performance of our model with some advanced can-
cer drug response models on the cancer dataset. As shown in
Table 2, DeepCoVDR achieves state-of-the-art performance
on PCC and SCC among the existing models where DeepTTA
is the state-of-art transformer-based method. Specifically, the
highest PCC 0.946 and SCC 0.935 proves a strong agreement
between observed and predicted IC50, and the high perfor-
mance on the cancer dataset shows our model has strong gen-
eralization ability.

4.5 Performance comparison on drug repurposing

To test DeepCoVDR’s ability of repurposing, we compare
DeepCoVDR with COVIDVS-1 and COVIDVS-2 on the
same ReFRAME actives dataset (Wang et al. 2021a) which
contains 17 identified ReFRAME (Riva et al. 2020) actives.
There is no overlap between the ReFRAME actives dataset
and our SARS-CoV-2 dataset. The result is shown in Fig. 4.
Among 17 compounds, 15 got predicted scores more than 0.8
by DeepCoVDR, approximately 82% of all ReFRAME
actives. While 6 got predicted scores greater than 0.8 by
COVIDVS-2, and no compounds got predicted scores greater
than 0.8 by COVIDVS-1. The results demonstrate that our
method has a strong ability to screen anti-SARS-CoV-2 drugs.

4.6 Ablation study

To further investigate the importance of components, transfer
learning, graph transformer framework, gene expression, and
the cross-attention module, we design the following variants
of DeepCoVDR:

Table 1. Performance comparison of DeepCoVDR and baseline methods

on regression experiments.

Methods PCC SCC RMSE

SVM 0.470 6 0.039 0.438 6 0.045 1.616 6 0.008
RF 0.812 6 0.036 0.730 6 0.033 0.921 6 0.061
XGB 0.847 6 0.032 0.783 6 0.028 0.826 6 0.087
DNN 0.887 6 0.018 0.798 6 0.027 0.843 6 0.040
GCN 0.878 6 0.025 0.805 6 0.031 0.626 6 0.063
GAT 0.829 6 0.024 0.733 6 0.022 0.926 6 0.219
DeepTTA 0.910 6 0.018 0.858 6 0.024 0.588 6 0.075
DeepCoVDR 0.942 6 0.011 0.881 6 0.017 0.509 6 0.031
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• NoTransfer remove transfer learning.
• NoGraphTransformer use transformer instead of graph

transformer.
• NoGene remove the gene expression feature.
• NoCrossAttention remove cross-attention module.

The results are shown in Table 3. The experiment on
NoTransfer shows that transfer learning can successfully

transfer the knowledge of drugs and gene expression values
from cancer to predict COVID-19 drug response. The perfor-
mance of NoGraphTransformer shows the importance of graph
transformers in drug information mining. When we remove
gene expression values, the degradation of model performance
indicates the information on the cell line is useful for prediction.
And the experiment on NoCrossAttention demonstrates the
cross-attention module is effective. The training time of

Figure 2. Heat maps of P-value obtained by performing t-test on the results of regression experiment. (a) is for Pearson’s correlation and (B) is for

Spearman’s correlation.

Figure 3. Performance of DeepCoVDR in the classification setting. (a–c ) are visualization of the final embeddings of DeepCoVDR, and they are from

epochs 20, 100, and 1000 respectively. The green and blue dots respectively represent the drugs with and without antiviral activity in our dataset. (d)

shows the receiver operating characteristic (ROC) curve of the seven comparing methods. (e) shows the AUPR, ACC, and F1 scores of DeepCoVDR and

baseline methods.
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NoTransfer, NoGraphTransformer, NoGene, and
NoCrossAttention is 3.24 h, 1.31 h, 2.79 h, and 2.29 h, respec-
tively. Although the training time of DeepCoVDR (3.40 h) is
slightly longer, the performance is significantly improved.

4.7 Screening FDA-approved drugs to identify novel

anti-SARS-CoV-2 drugs

Finding potential targets from existing drugs is still an impor-
tant way of finding a drug that can treat SARS-CoV-2. We
applied DeepCoVDR to screen the 1871 FDA-approved drugs
from (Skuta et al. 2017). We removed the drugs that are pre-
sent in our SARS-CoV-2 dataset, and finally, 1853 drugs are
left. To improve the performance, we integrated five models
through ensemble technique (Dietterich 2000) technology and
used the ensemble model for screening. To verify the

reliability of the prediction results of DeepCoVDR, we con-
ducted a nonexhaustive quality search on the top 100 com-
pounds and found that at least 11 compounds have been
proven effective against SARS-CoV-2 in previous studies
(Table 4).

We select the following examples for detailed descriptions.
Orlistat, a US FDA-approved drug, is used for the treatment of
obesity by preventing the absorption of dietary fat and fatty acid
synthase to reduce lipid synthesis (Kridel et al. 2004), which also
significantly inhibits the infectivity of the SARS-CoV-2 virus
with an EC50 of 0.39lM in vitro (Chu et al. 2021). Remdesivir
is a broad-spectrum antiviral compound and was approved for
the treatment of COVID-19 in 2020. With strong and stable
anti-SARS-CoV-2 activity, remdesivir was used as a reference
drug in several Vitro studies with IC50 of �10lM (Jeon et al.
2020; Jang et al. 2021). Lopinavir, ranked at position 61, is an
antiretroviral protease inhibitor against HIV infections, and its
antiviral effects on SARS-CoV-2 are found to have IC50 of
13.16lM in vitro (Raj et al. 2021). Ritonavir, ranked at posi-
tion 8, is an HIV-1 protease inhibitor and CYP3A inhibitor used
in combination with other antivirals to treat HIV infection and
shows some ability in the inhibition of SARS-CoV-2 Mpro with
IC50 of 13.7 nM (Mahdi et al. 2020). Notably, Ritonavir may
be regarded as a fixed-dose combination product with other
drugs to treat COVID-19, such as lopinavir or nirmatrelvir.
Nirmatrelvir/ritonavir, commercially named Paxlovid, was
granted emergency use authorization by the US FDA for the
treatment of COVID-19 in December 2021. Recent research
shows that symptomatic COVID-19 patients treated with nirma-
trelvir plus ritonavir, have a lower risk of progression to severe
COVID-19 compared with placebo (Hammond et al. 2022).
However, despite the antiviral effects on SARS-CoV-2 of lopina-
vir and ritonavir in vitro, a randomized trial found lopinavir/ri-
tonavir was not effective in treating COVID-19 patients in 2020
(Cao et al. 2020). Therefore, more effort is still needed to dis-
cover other effective antiviral medications. And above all, our
model can identify certain potential candidates with significant
antiviral activity in vitro.

5 Conclusion and discussion

In this article, we propose a novel deep learning model to pre-
dict COVID-19 drug response based on graph transformer,
cross-attention, and transfer learning. To the best of our
knowledge, DeepCoVDR is the first computing method that
can accurately predict COVID-19 drug response value, and it
is also the first work to apply graph transformer and cross-
attention in a drug response prediction tasks. Our model

Table 2. Performance comparison of DeepCoVDR and advanced

methods on cancer dataset.

Methods PCC SCC

MOLI (Sharifi-Noghabi et al. 2019) 0.813 6 0.007 0.782 6 0.005
CDRscan (Chang et al. 2018) 0.871 6 0.004 0.852 6 0.003
tCNNs (Liu et al. 2019) 0.910 6 0.009 0.889 6 0.008
DeepCDR (Liu et al. 2020) 0.923 6 0.005 0.898 6 0.008
DeepTTA 0.941 6 0.003 0.914 6 0.004
DeepCoVDR 0.946 6 0.001 0.935 6 0.005

Note: The results of the comparison method are from DeepTTA.

Figure 4. Distribution of scores for 17 ReFRAME actives predicted with

COVIDVS-1, COVIDVS-2, and DeepCoVDR. The results of COVIDVS-1,

COVIDVS-2 are fromWang et al. (2021a).

Table 3. Ablation study.

Methods PCC SCC

NoTransfer 0.910 (# 3.40%) 0.873 (# 0.91%)
NoGrapghTransformer 0.912 (# 3.18%) 0.861 (# 2.27%)
NoGene 0.922 (# 2.12%) 0.853 (# 3.18%)
NoCrossAttention 0.925 (# 1.80%) 0.853 (# 3.18%)
DeepCoVDR 0.942 0.881

Note: The content in parentheses shows the performance delta percentage of
each variant of DeepCoVDR.

Table 4. Drugs predicted by DeepCoVDR in FDA-approved drugs with the

support of literature.

Compound name Status Ranking position PMID

Orlistat Preclinical 6 34580494
Ritonavir Phase 3 8 33243253
Artesunate Preclinical 17 34272426
Folic acid Phase 3 23 36060767
Artemether Preclinical 28 34527599
Valproic acid Phase 4 31 34635175
Adefovir dipivoxil Preclinical 34 34440200
Remdesivir Approved (FDA) 41 32366720
Lopinavir Phase 4 61 33290767
Diltiazem Preclinical 76 35176124
Bortezomib Preclinical 96 36335206
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achieves state-of-art performance in all metrics, according to
the comparison experiment results of regression and classifi-
cation tasks, compared with baseline methods. DeepCoVDR
also achieves high performance in cancer drug response pre-
diction, showing its high versatility. In addition, we demon-
strate DeepCoVDR can repurpose existing drugs for the
treatment of SARS-CoV-2 through screening FDA-approved
drugs to identify novel anti-SARS-CoV-2 drugs.

In the future, we will explore more multisource heteroge-
neous information for COVID-19 drug response prediction,
e.g. the priority of gene expression value in cell lines that is
significant in revealing the potential therapeutic targets of
anti-SARS-CoV-2 drugs.
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