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Abstract
Motivation: Protein–ligand binding affinity prediction is a central task in drug design and development. Cross-modal attention mechanism has
recently become a core component of many deep learning models due to its potential to improve model explainability. Non-covalent interactions
(NCIs), one of the most critical domain knowledge in binding affinity prediction task, should be incorporated into protein–ligand attention mecha-
nism for more explainable deep drug–target interaction models. We propose ArkDTA, a novel deep neural architecture for explainable binding
affinity prediction guided by NCIs.

Results: Experimental results show that ArkDTA achieves predictive performance comparable to current state-of-the-art models while
significantly improving model explainability. Qualitative investigation into our novel attention mechanism reveals that ArkDTA can identify
potential regions for NCIs between candidate drug compounds and target proteins, as well as guiding internal operations of the model in a more
interpretable and domain-aware manner.

Availability: ArkDTA is available at https://github.com/dmis-lab/ArkDTA

Contact: kangj@korea.ac.kr

1 Introduction

Identification of drug–target interactions (DTIs) is a central
task in drug design and development. Due to the costly and
labor-intensive nature of traditional drug development pro-
cess based on in vivo and in vitro experiments, deep learning
models for protein–ligand binding affinity prediction have
gained recognition (Chen et al. 2018). However, limited
model explainability remains an obstacle to the adoption of
such models by domain experts (Preuer et al. 2019). With the
unique ethical and regulatory requirements, there is a growing
demand for interpretable deep models in the field of biomedi-
cine. In recent works, attention-based methods were studied
to address the issue of explainability (Liang et al. 2021).
Critical domain knowledge should be integrated to ensure
that the model’s implicit assumptions are compatible with ex-
pert opinions (Dash et al. 2022).

In DTI, one such key concept is that of protein–ligand non-
covalent interactions (NCIs). NCIs are essential for under-
standing how proteins and ligands interact and form com-
plexes with each other, which affects the mechanism of action
for drug compounds (Tang et al. 2017; Chen et al. 2019;
Anighoro 2020; Aljoundi et al. 2020). Most drug compounds
are small organic molecules that act as ligands and interact
with proteins to carry out their functions. The majority of
drugs deliver their effects by forming noncovalent bonds with

their biological targets. NCIs induce conformational changes
in target proteins which influences the overall binding affinity.
This is crucial for the stabilization of the protein–ligand com-
plex in its final form (Davis and Phipps 2017; Aljoundi et al.
2020).

Despite being highlighted as a fundamental concept in pro-
tein–ligand affinity prediction task, few studies have
addressed the importance of protein–ligand NCIs. While
MONN (Li et al. 2020) explicitly utilized NCIs in its auxiliary
task, the resulting pairwise interaction matrix between all
protein residues and all ligand atoms is limited in its capacity
to differentiate active and inactive binding sites. On the other
hand, AttentionDTA sought to distinguish active and inactive
residues using parameterized weights in their attention mecha-
nism without explicitly using NCI labels. However, its atten-
tion mechanism is based on the convoluted features from each
of its respective modality-wise encoder modules. We
addressed the limitations of both previous works by utilizing
NCI labels in the attention mechanism to identify active pro-
tein residues (Zhao et al. 2022a).

We present ArkDTA, an explainable deep DTI prediction
model with NCI-aware attention regularization. Taking as in-
put a set of protein residues and a set of ligand substructures,
our novel regularization method modulates the distribution of
cross-modal attention weights from the residues to chemical
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substructures in a manner that allows a distinction between
active and inactive residues. Our modified cross-modal atten-
tion module appends a pseudo-substructure embedding to the
set of key chemical substructures and focuses the attention on
the pseudo embedding where the query protein residue is in-
active. Examining the final attention weights yields qualitative
insights into the model’s internal operations.

Experimental results on three benchmark datasets reveal
that ArkDTA achieves predictive performance comparable to
the current state-of-the-art models while significantly improv-
ing model explainability. Qualitative investigation into the at-
tention maps demonstrates our model’s ability to identify
NCI-forming regions in seen and unseen protein–ligand com-
plexes as well as highlight chemical substructures commonly
used as pharmaceutical agents.

2 Materials and methods
2.1 Dataset

Three different benchmark datasets were used in this study
which are PDBbind version 2020 (PDBbind), Davis et al.
(Davis), Metz et al. (Metz) to conduct experiments on
ArkDTA and baseline models (Davis et al. 2011; Metz et al.
2011; Liu et al. 2017). The ith data instance Xi in each of
these datasets consists of a protein–ligand pair with its bind-
ing affinity score, expressed in one of the following measure-
ment types: inhibition constant (Ki), dissociation constant
(Kd) and inhibitory concentration 50 (IC50).

For the purpose of this study, the PDBbind was sub-divided
into two subsets according to the binding affinity measure-
ment type. The KIKD subset consists of all protein–ligand
instances whose binding affinity scores are expressed as Ki or
Kd value, and the remaining instances whose affinity scores
are expressed as IC50 value were combined to form the IC50

subset. The Davis and Metz dataset contains protein–ligand
pairs with only KIKD-based affinity scores.

We applied several data curation methods to our con-
structed datasets. For each dataset, protein–ligand pairs
whose number of amino acids in the protein sequence exceeds
1000 or the exact affinity value is unavailable (e.g. expressed
as inequality “>50000 M”) were excluded. We then normal-
ized binding affinity scores in each dataset into values in unit
“M” and subsequently transformed them into log space for
consistent comparison (Öztürk et al. 2018). Table 1 shows
the total number of proteins, ligands, and curated data instan-
ces in two measurement types (KIKD, IC50) for each dataset.
Overall, each ith data instance Xi in the binding affinity data-
sets is defined as the following,

Xi ¼ ðpi;ci; yiÞ (1)

where pi, ci, yi 2 R are input protein, ligand, and annotated
binding affinity value, respectively. Table 1 shows the statis-
tics of each dataset.

To regularize ArkDTA’s attention mechanism, we further
augmented the preprocessed PDBbind dataset with NCI
labels. We used Protein–Ligand Interaction Profiler (PLIP) to
extract the NCI labels from each binding complex structure
contained in the original PDBbind dataset (Adasme et al.
2021). The NCI labels for each protein–ligand pair are repre-
sented as a m� n 2D binary matrix to indicate the presence
of any type of NCIs (e.g. hydrogen bonding, salt bridges)
where m and n are the numbers of amino acid residues and
atoms in ligand, respectively. Since the attention mechanism
in ArkDTA is based on cross-modal interactions between the
protein residues and chemical substructures, we converted the
binary matrix into a m-dimensional binary vector k

!
where

each residue in protein is labeled as 1 if it has NCI with at
least one atom in its ligand partner. We use k

!
as ground

truth residue-wise NCI labels for attention regularization in
ArkDTA. The augmented ith data instance ’Xi in the
PDBbind dataset is defined as the following,

’X i ¼ ðpi;ci; yi; k
!

iÞ (2)

where k
!

i 2 ½0;1�n is the converted binary vector indicating
the presence of each residue’s NCI with the input ligand ci.

Despite having the least data instances, our preprocessed
PDBbind dataset is the primary dataset of this study since it
contains the residue-wise NCI labels. We randomly parti-
tioned the PDBbind dataset into 5-folds where 5% of the
training instances in each fold were used for validation. This
split method yields an ensemble of five models trained on dif-
ferent folds of this dataset. The Davis and Metz dataset used
for fine-tuning purposes was partitioned into training and test
instances (8:2) where 5% of the training instances were also
used for validation. The purpose of these two datasets is to
fine-tune each of the five models previously trained on the
PDBbind dataset.

2.2 Model architecture
2.2.1 Overview

Our ArkDTA model consists of ‘Protein Encoder Module’,
‘Ligand Encoder Module’, ‘Protein-Ligand Integration
Module’, and ‘Affinity Prediction Module’. The first two
modules encode input data into protein residue-wise and
chemical substructure-wise representations, respectively. The
‘Protein-Ligand Integration Module’ refines the residue-wise
representations based on their attention weights given the
substructure-wise representations and subsequently aggre-
gates them into a single binding complex representation.
Finally, the ‘Affinity Prediction Module’ takes the binding
complex representation as input and predicts the binding af-
finity value as output. The formal definition for ArkDTA is
the following,

ŷ ¼ ArkDTAðp;cÞ (3)

where the input are protein p and ligand (compound) c, and
output is the predicted binding affinity value ŷ. Figure 1
shows the overall model architecture of ArkDTA.

2.2.2 Protein Encoder Module

The ‘Protein Encoder Module’ takes a protein p as input and
encodes it into a set of m d-dimensional residue embeddings
as output. The initial representation for input protein is its
FASTA sequence. While such 1D-based representations may

Table 1. Statistics of the DTI datasets used in experiments.

Dataset PDBbind Davis et al. Metz et al.

No. of proteins 10 162 311 121
No. of ligands 13 015 68 240
No. of KIKD instances 9327 21 331 13 669
No. of IC50 instances 6 593 0 0
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have limitations in representing proteins, large-scale language
models have been introduced to alleviate these issues (Rives
et al. 2019). These models have shown promising results in
protein structure and function prediction tasks. We imported
a pre-trained protein language model called Evolutionary
Scale Model (ESM) and its tokenizer to obtain residue embed-
dings (Rives et al. 2019; Lin et al. 2022). The tokenizer con-
verts the input protein p into a sequence of tokens
subsequently fed to the ESM model. Finally, the ESM model
converts the input tokens to a set of protein residue embed-
dings R 2 R

m�d. The model version of its pretrained weights
is ESM-2 (8M) where its number of layers is 6.

2.2.3 Ligand Encoder Module

The ‘Ligand Encoder Module’ takes a ligand c as input and
encodes it into a set of n d-dimensional substructure embed-
dings as output. The initial representation for input ligand is
its SMILES string. The SMILES string is first converted into a
Morgan fingerprint represented as a 1024-dimensional bit
vector f

!
2 ½0; 1�1024. Each bit position in the vector indicates

the presence of its corresponding chemical substructure. The
‘Ligand Encoder Module’ leverages this information by gath-
ering the positional indices of that vector where its bit is 1 and
uses a lookup table to obtain a set of trainable d-dimensional
chemical substructure embeddings S ¼ fs1; s2 . . . snjsi 2 Sg
where n is the number of chemical substructures extracted
from f

!
. S is a set of 1024 trainable chemical substructures

where each of them corresponds to its bit position in the
Morgan fingerprint.

2.2.4 Protein–Ligand Integration Module

The ‘Protein-Ligand Integration Module’ consists of a
Multihead Attention Block (MAB) and a Pooling Layer. The
MAB refines an input set of protein residues R from ‘Protein
Encoder Module’ based on our novel attention mechanism
with another input set of chemical substructures S from
‘Ligand Encoder Module’. The Pooling Layer subsequently
aggregates the refined residue-wise embeddings into one sin-
gle binding complex embedding. The MAB’s operations re-
flect the conformational transitions proteins undergo when
bound to a ligand, while the Pooling Layer’s output corre-
sponds to the final protein–ligand complex that determines
the binding affinity value.

The MAB in ‘Protein-Ligand Integration Module’ employs
multihead attention mechanism and produces a set of ‘refined’
residues given R and S as inputs (Vaswani et al. 2017; Lee
et al. 2019). Following the definitions made by previous
works, the MAB takes R, S, and S as queries, keys, and val-
ues, respectively.

Let A 2 R
m�n be the calculated attention weights between

the query and key linear projections of R and S, respectively.
For each ith residue (i 2 f1;2; . . . ;mg), the attention weights
are distributed across all n corresponding chemical substruc-
tures where

Pn
j¼1 Ai;j ¼ 1. However, as most residues do not

form NCIs with the incoming ligand, it may be undesirable to
utilize all calculated attention weights.

Our modified version of MAB first appends a trainable uni-
versal d-dimensional pseudo-substructure embedding p

! 2 R
d

to current set of chemical substructure embeddings S. The
main purpose is to regularize the attention between the query
protein residues and key-value chemical substructures based
on their NCIs. Specifically, we devised a strategy that makes
the attention weights from non-binding query residues (i.e.

residues having no NCIs with ligand) skewed toward the key
pseudo-substructure embedding. For binding query residues
(i.e. residues having NCIs with ligand), the attention weights
are prevented from being skewed toward the pseudo-
substructure but distributed to actual chemical substructure
embeddings in an unsupervised fashion. We denote this modi-
fication as Attention Regularization based on NCIs in MAB
(ARK-MAB).

The ARK-MAB that takes R and S as input is mathemati-
cally expressed as follows,

Sþ ¼ S [ f p
!g (4)

R� ¼ ARKMABðSþ;RÞ (5)

ARKMABðSþ;RÞ ¼ LayerNormðHþ RFF2ðRÞÞ (6)

H ¼ LayerNormðRþ RFF1ðMultiAttnðR; Sþ; SþÞÞÞ (7)

where R� 2 R
m�d is a set of ‘refined’ residue embeddings,

‘LayerNorm’ is layer-wise normalization method (Ba et al.
2016) and RFF is row-wise feedforward layer. MultiAttn is k-
headed attention layer where X is linearly projected to query
vectors and Y is linearly projected to both key and value vec-
tors. For the calculation of attention weights, we employed
Additive Attention originally proposed by Bahdanau et al.
(2014) and used four attention heads.

We adopted Pooling by Multihead Attention (PMA) from the
Set Transformer framework (Lee et al. 2019) for the Pooling
Layer. The m refined residue embeddings R� 2 R

m�d are aggre-
gated based on a set of u trainable seed vectors U 2 R

u�d into a
set of u aggregated residue embeddings Ra 2 R

u�d. Following
the explanation in the Set Transformer paper, the PMA layer is
built based on the MAB that takes U, R�, and R� as queries,
keys, and values, respectively. Subsequently, the aggregated resi-
dues are concatenated vector-wise and reduced to a d-dimen-
sional binding complex embedding via a simple linear layer. The
order of vector-wise concatenation is determined by the fixed
order of seed vectors U.

The PMA layer that takes the refined residues R� as input is
mathematically expressed as follows,

Ra ¼ PMAðR�Þ (8)

PMAðXÞ ¼MABðU;XÞ (9)

C ¼ Linearð½ra
1� � � ��ra

u�Þ (10)

where C 2 R
1�d is the binding complex embedding built from

vector-wise concatenation (�) of the aggregated residues
fra

i 2 Raji ¼ 1;2; . . . ;ug. Linear is linear layer without nonlin-
ear activation that reduces the binding complex embedding’s
expanded dimension to d where the weights and bias are
Wlinear 2 R

d _u�d, blinear 2 R
d, respectively. Figure 2 shows the

detailed description of ARK-MAB and PMA.

2.2.5 Affinity Prediction Module

The ‘Affinity Prediction Module’ that takes the binding com-
plex embedding C as input for predicting the binding affinity
score ŷ is mathematically expressed as follows,

ŷ ¼MLPscoreðCÞ (11)

where ŷ 2 R. MLPscore is a two-layered MLP where the

i450 Gim et al.



intermediate layers use Dropout and ReLU as nonlinear acti-
vation. The weights, bias in the linear layers from top to bot-
tom are Wscore1 2 R

d�d, bscore1 2 R
d, Wscore2 2 R

d�1,
bscore2 2 R

1, respectively.

2.2.6 Training and optimization

The loss objective for training ArkDTA consists of two terms
which are the main and auxiliary loss objective. The main loss
objective is based on root mean squared error (RMSE) be-
tween the binding affinity predictions and each of their corre-
sponding values. The auxiliary loss objective was specially
designed to impose regularization on the attention mechanism
utilized in the ‘Protein-Ligand Integration Module’ using bi-
nary cross entropy as its criterion.

The batch-wise main loss objective for binding affinity pre-
diction is mathematically expressed as follows,

L1ðŶ;YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEðŶ;YÞ

q
(12)

Ŷ ¼ ½ ŷ1 � � � ŷb � (13)

Y ¼ ½ y1 � � � yb � (14)

where Ŷ is a b-sized batch of predicted binding affinities, Y is
a b-sized batch of ground truth binding affinities, and MSE is
mean squared loss criterion for binding affinity prediction.

For attention regularization described in the ‘Protein-
Ligand Integration Module’, let A

þ 2 R
m�ðnþ1Þ be the calcu-

lated attention weight matrix averaged head-wise, given the
set of m protein residue embeddings R� 2 R

m�d as queries
and set of n chemical substructure embeddings S 2 R

ðnþ1Þ�d

appended with pseudo-embedding p
!

as keys. For each resi-
due in A

þ
, the summation of n attention weights correspond-

ing to n chemical substructures is equivalent to the NCI score
deemed as the predicted class probability having NCI with the
ligand compound. On the contrary, the attention weight cor-
responding to the pseudo-substructure is deemed as the pre-
dicted class probability having no such interactions.

Figure 3 illustrates how the attention mechanism in the ARK-
MAB works. If the ith residue does not have any NCI with the li-
gand, the ARK-MAB is guided to generate attention weights

A
þ 2 R

m�ðnþ1Þ where
Pn

j¼1 Ai;j < A
þ
i;nþ1. In other words, the

ith residue is expected to be mostly attended against the pseudo-

substructure p
!

and relatively less attended to the actual chemi-
cal substructures. On the contrary, if the residue has an actual
NCI, the guided attention weights are distributed to actual
chemical substructures in an unsupervised fashion.

The batch-wise auxiliary loss objective for attention regu-
larization is mathematically expressed as follows,

L2ðA;KÞ ¼ CrossEntropyðK̂;KÞ (15)

A ¼ ½Aþ1 � � � A
þ
b
� (16)

Ai
þ ¼ ðarcÞ1� r�mi;1� c� niþ1

(17)

k̂i ¼
Xni

c¼1

A
þ
i

Xniþ1

c¼1

A
þ
i ¼ 1

 !
(18)

K̂ ¼ ½ k̂1 � � � k̂b � (19)

K ¼ ½ k
!

1 � � � k
!

b
� (20)

where A is a b-sized batch of attention weight matrices aver-
aged head-wise, K is a batch of ground truth NCI labels, Ai

þ

is the ith attention matrix where number of rows and columns
are mi and niþ1 respectively, k̂ are the residue-wise predicted

Figure 2. Detailed description of ARK-MAB (a) and PMA (b). (a) The input queries is a set of m residues while the key values is a set of n chemical

substructures appended with a pseudo-embedding p. The output of this sub-module is a set of m refined residues R
� 2 R

m�d . (b) The input queries is a

set of u seed vectors while the key values is a set of m refined residues. The output of this sub-module is a set of u aggregated residues concatenated to

each other. Note that the order of vector-wise concatenation is determined by the fixed order of seed vectors.

Figure 1. Overview of ArkDTA. A refers to the Protein Encoder Module, B
refers to the Ligand Encoder Module, C refers to the Protein–Ligand

Integration Module and D refers to the Affinity Prediction Module. ŷ is the

predicted binding affinity value.
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NCI probabilities based on column-wise summation of Ai
þ

except the last ni þ 1th column which corresponds to the
pseudo-substructure p

!
, K̂ is a batch of predicted NCI proba-

bilities, and ‘CrossEntropy’ is the binary cross entropy loss
criterion for attention regularization based on NCI. For the
ith instance in batch, mi and ni are the number of residues in
protein and substructures in ligand, respectively. Recall that

k
!

is a m-dimensional binary vector where each bit indicates
the corresponding residue having a NCI with its ligand part-
ner. Supplementary Figure S3 provides an illustrative descrip-
tion for the auxiliary loss objective L2.

Overall, the total loss objective for training ArkDTA is
mathematically expressed as follows,

L ¼ L1 þ aL2 (21)

where L is a sum of two loss objectives. a is the NCI-based
auxiliary loss coefficient that determines the intensity of guid-
ing cross-modal attention mechanism in ArkDTA’s ARK-
MAB.

The base dimension size for all embeddings is set to d ¼320
while the number of trainable seed vectors U is 2. All
ArkDTA and its ablations were trained to a maximum of 100
epochs with batch size of 64 and early stopping. The hyper-
parameters including learning rate and auxiliary loss coeffi-
cient a for ArkDTA were determined by its prediction
performance on validation instances. We used the Adam opti-
mizer with weight decay 0.0 for training ArkDTA on the
binding affinity datasets. The learning rate was set to 0.00005
and 0.0001, while the auxiliary loss coefficient a was set to
5.0 and 1.0 for the KIKD-based (PDBbind KIKD Subset,
Davis, Metz) and IC50-based (PDBbind IC50 Subset) datasets,
respectively.

3 Results
3.1 Experiment settings

We trained ArkDTA on each subset (KIKD and IC50) of the
PDBbind dataset which contains the NCI labels necessary for
regularizing ArkDTA’s drug–target cross-modality attention
mechanism. Since the data partition method is based on 5-

fold cross-validation, we trained ArkDTA on each fold’s
training instances and subsequently evaluated its binding af-
finity prediction performance on the corresponding test
instances (Test PDBbind—KIKD). The evaluation metrics
used in the experiments are RMSE, mean absolute error
(MAE), Pearson’s correlation (PCORR), and concordance in-
dex (CI). All evaluation metrics were calculated using the
mean and standard deviation of the five folds.

In addition, we gathered each fold’s test instances where
each of its drug compound’s scaffold is not present in any of
the other drug compounds of the training partition. A scaffold
is a molecular core structure of a drug compound that deter-
mines its overall biochemical activity and is essential in drug
design. We extracted each ligand’s Bemis–Murcko scaffold
via the RDKit library (Bemis and Murcko 1996). If the input
ligand in a test data instance has a molecular scaffold that
does not overlap with those of all training ligands, we deemed
it as a test instance with unseen scaffold. To further evaluate
ArkDTA’s robustness on compounds with unseen scaffolds,
we additionally calculated the evaluation metrics on such
data instances (Test PDBbind—Unseen Scaffolds).

We then loaded each of its model checkpoint to conduct ad-
ditional experiments on the Davis and Metz dataset. By
means of transferring NCI-related knowledge, we fine-tuned
each of the models previously trained on the PDBbind dataset
and evaluated them on the same test instances of the Davis
and Metz dataset. The evaluation metrics were calculated
based on the mean and standard deviation of five sets of indi-
vidual model performances. Since only the KIKD-based
instances are present in the Davis and Metz dataset, we evalu-
ated its performance on only KIKD-based affinity predictions.
The same experimental setting was applied to ArkDTA’s
baselines and ablations as well.

3.2 Baseline models and ArkDTA ablations

The binding affinity prediction models used as baselines are
the following: DeepDTA (Öztürk et al. 2018), GraphDTA
(Nguyen et al. 2021), TransformerCPI (Chen et al. 2020),
MONN (Li et al. 2020), HyperAttentionDTI (Zhao et al.
2022b), AttentionDTA (Zhao et al. 2022a), BACPI (Li et al.
2022), and IIFDTI (Cheng et al. 2022). Details on each of the
baseline models can be found in Supplementary Table S1.
Among those that employed cross-modality attention, only
MONN and ArkDTA explicitly utilized the NCI labels to im-
prove this mechanism. While MONN introduced a secondary
downstream task for predicting ‘atom-residue pairwise’ NCIs,
our model alternatively used ‘residue-wise’ NCIs by means of
attention regularization since its ligand representation is
based on set of chemical substructures.

The model hyperparameters and implementation were
imported from each of their original works. Note that some
baseline models were originally implemented to predict binary
interaction outcomes instead of continuous binding affinity
values. To circumvent this issue, we replaced the downstream
classifier layers with the regression ones for TransformerCPI,
HyperAttentionDTI, and IIFDTI.

To investigate the effects of our model design choices, we
made the following model ablations for ArkDTA,

• Remove L2: We removed the auxiliary loss objective L2

by setting the loss coefficient a to 0 which leaves the model
being solely trained on the main binding affinity predic-
tion task (L ¼ L1). The purpose of this ablation is to

Figure 3. Schematic illustration of the ‘Protein-Ligand Integration

Module’ in ArkDTA which features attention regularization based on NCIs

between protein and ligand. The query and key projections of m residues

R and n chemical substructures S appended with p are fq1; q2; . . . ; qmg
and fk1; k2; . . . ; kn; kpg, respectively. The auxiliary loss objective L2

enforces ArkDTA to focus most of the attention toward kp when given a

query residue without NCI. On the other hand, the L2 encourages

ArkDTA to only distribute its attention on actual chemical substructures

from k1 to kn in an unsupervised fashion.
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probe the effects of attention regularization given the
residue-wise NCI labels as ground truths.

• Freeze ESM: We froze the pre-trained weights of the
imported ESM model used in ArkDTA’s ‘Protein Encoder
Module’. The purpose of this ablation is to investigate the
effects of fine-tuning which is a common practice in opti-
mizing large-scale language models on other downstream
tasks.

3.3 Binding affinity prediction results

Table 2 shows the 5-fold cross-validation results on the
PDBbind dataset. For the KIKD subset of the PDBbind data-
set, ArkDTA performed slightly better than its ablated version
without NCI-based auxiliary loss but fell behind one of the
baseline models AttentionDTA in all evaluation metrics in-
cluding the test instances with unseen scaffolds. For the IC50

subset of the PDBbind dataset, ArkDTA showed best perfor-
mance compared to its ablations and baseline models except
RMSE and MAE for all test instances.

Table 3 shows the additional results on the Davis and Metz
dataset. Among the baselines, we selected the top four per-
forming models DeepDTA, MONN, AttentionDTA, and
BACPI based on their performance in the KIKD subset of the
PDBbind dataset. Among the five models, AttentionDTA
overall showed best performance in both the Davis and Metz
dataset.

3.4 Analysis on attention weights

For qualitative analysis, we performed model inference and
visualized the attention weights using heatmaps and com-
pared them with actual binding complexes and ligand com-
pound structures obtained from the Protein Data Bank (PDB)
and PubChem database (Burley et al. 2023; Kim et al. 2023).

Given a protein–ligand pair input represented as a set of m
residues and n chemical substructures respectively, the atten-
tion weights between m protein residues (queries) and n chem-
ical substructures appended with a pseudo-substructure
(keys) in each head are represented as a 2D matrix A

þ
. We

calculated the NCI score for each protein residue as shown in
Equations (17) and (18). Since proteins are generally long
sequences, we transposed the 2D matrix and truncated resi-
due regions where both NCI scores and labels are deemed
negative (i.e. no NCI between the residue and ligand).

As shown in Fig. 4a, the protein–ligand binding complex
(Schrödinger and DeLano 2020) and molecular structure of
the ligand are the left and right side, respectively. The follow-
ing details that describe the attention map displayed on the
center side are the following.

• The m columns correspond to the m-sized amino acid se-
quence of the input protein.

• The first n rows correspond to the chemical substructures
extracted from the input ligand’s Morgan Fingerprint.
Darker green colors indicate higher attention weights.

• The cell values in the row denoted as NCI Score are the
sum of all attention weights distributed from each residue
to all ligand’s chemical substructures. Darker red colors
indicate higher NCI scores.

• The cell values in the row denoted as Actual NCI Label
are the binary values indicating the actual presence of an
NCI in each residue (black).

After obtaining the attention maps and related visualiza-
tions, we performed three different case studies.

3.4.1 Seen protein & unseen ligand binding complex (4x6n,
3Y5)

In this case study, we selected an input protein contained in
both training and test partition of the PDBBind dataset and
a ligand that is only in its test partition. Figure 4a shows the
visualization results performed on a binding complex
structure (4x6n) of factor XIa with the inhibitor 1-f(1S)-1-
[4-(3-amino-1H-indazol-6-yl)-5-chloro-1H-imidazol-2-yl]-2-phe-
nylethylg-3-[5-chloro-2-(1H-tetrazol-1-yl)benzyl]urea. Based on
comparison between the calculated residue-wise NCI scores and
its actual ground truth NCI labels, ArkDTA was able to not
only identify the NCI positive residues but also identify their lo-
cal regions as well. The highlighted areas of the protein–ligand
binding complex structure also align with actual residue sites
that seem to bind the incoming ligand.

3.4.2 Unseen protein–ligand binding complex (6n77, KEJ)

In this case study, we selected a protein–ligand pair that is
only in the test partition of PDBbind dataset. Figure 4b shows
the visualization results performed on a binding complex
structure of the JAK1 kinase domain (6n77) with the inhibitor
ligand N-[3-(5-chloro-2-methoxyphenyl)-1-methyl-1H-pyra-
zol-4-yl]pyrazolo[1,5-a]pyrimidine-3-carboxamide (KEJ). In
this case, despite the test instance being a unseen protein–li-
gand pair, the protein residues predicted as having NCIs
based on their attention scores seemed to form plausible bind-
ing pockets for the ligand. Notably, ArkDTA highlighted the
cyclic regions containing pyrazole-based substructures
(cC(N)cn(C)n) which are renowned as important pharmaco-
logical scaffolds (Karrouchi et al. 2018).

3.4.3 Out-of-dataset binding complex (8bq4, QZR)

Figure 4c shows the visualization results performed on a crys-
tal binding complex structure (8bq4) of therapeutic target
phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) with
the inhibitor ligand 6-methyl-N-(4-methylsulfonylphenyl)th-
ieno[2,3-d]pyrimidin-4-amine (QZR) (Rooney et al. 2022).
We examined the attention map to see whether ArkDTA is
able to identify potential binding residues of an out-of-dataset
drug–target pair. Interestingly, some of the residues in
PI5PAks identified as having NCIs were located near the li-
gand. The surrounding residue sites may act as guidelines for
generating grids prior to docking simulation. This demon-
strates that ArkDTA has developed its own understanding on
active protein residues due to the NCI-based attention regu-
larization technique. One of the most highlighted substruc-
tures in the ligand is the sulfonyl functional group
(cc(c)S(C)(¼O)¼O), which is commonly used in synthesizing
drug compounds (Feng et al. 2016). Another highlighted sub-
structure is related to pyrimidine (cc(N)ncn), a therapeutic
scaffold which has various biological roles such as antiviral
and antimalarial agent Kumar and Narasimhan (2018).
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Table 2. Cross-validation results on the PDBbind dataset.

Model PDBbind KIKD PDBbind KIKD (Unseen Scaffolds) PDBbind IC50 PDBbind IC50 (Unseen Scaffolds)

RMSE MAE PCORR CI RMSE MAE PCORR CI RMSE MAE PCORR CI RMSE MAE PCORR CI

ArkDTA
(ours)

1.2941
(0.0673)

0.9618
(0.0375)

0.7671
(0.0194)

0.7898
(0.0073)

1.3452
(0.0734)

1.0231
(0.0440)

0.7362
(0.0227)

0.7717
(0.0108)

1.2073
(0.0522)

0.8536
(0.0288)

0.7752
(0.0169)

0.7366
(0.0040)

1.1689
(0.0586)

0.8368
(0.0340)

0.7406
(0.0249)

0.7122
(0.0119)

ArkDTA
(Remove L2)

1.3005
(0.0650)

0.9738
(0.0459)

0.7656
(0.0210)

0.7887
(0.0089)

1.3561
(0.0654)

1.0413
(0.0468)

0.7335
(0.0169)

0.7700
(0.0074)

1.1931
(0.0360)

0.8667
(0.0330)

0.7791
(0.0118)

0.7368
(0.0104)

1.1899
(0.0564)

0.8800
(0.0463)

0.7306
(0.0273)

0.7055
(0.0226)

ArkDTA
(Freeze ESM)

1.3457
(0.0396)

1.0170
(0.0222)

0.7512
(0.0089)

0.7806
(0.0024)

1.4059
(0.0645)

1.0905
(0.0446)

0.7147
(0.0215)

0.7601
(0.0086)

1.2561
(0.0415)

0.9150
(0.0297)

0.7540
(0.0165)

0.7251
(0.0065)

1.2401
(0.0326)

0.9114
(0.0257)

0.7066
(0.0146)

0.6965
(0.0092)

DeepDTA 1.3589
(0.0534)

0.9761
(0.0405)

0.7657
(0.0145)

0.7879
(0.0077)

1.3651
(0.0338)

1.0354
(0.0517)

0.7278
(0.0225)

0.7687
(0.0119)

1.2131
(0.0468)

0.8794
(0.0291)

0.7687
(0.0259)

0.7349
(0.0124)

1.1963
(0.0655)

0.8721
(0.0439)

0.7195
(0.0453)

0.7071
(0.0160)

GraphDTA 1.5511
(0.0401)

1.1624
(0.0371)

0.6641
(0.0123)

0.7396
(0.0057)

1.5934
(0.0579)

1.2085
(0.0305)

0.6268
(0.0271)

0.7234
(0.0104)

1.5515
(0.1243)

1.1449
(0.1156)

0.6557
(0.0432)

0.6967
(0.0177)

1.5438
(0.1372)

1.1442
(0.1026)

0.5969
(0.0577)

0.6729
(0.0208)

TransformerCPI 1.4982
(0.0375)

1.1478
(0.0256)

0.6716
(0.0171)

0.7455
(0.0079)

1.5008
(0.0551)

1.1606
(0.0356)

0.6519
(0.0236)

0.7348
(0.0090)

1.3465
(0.0332)

0.9646
(0.0373)

0.7190
(0.0120)

0.7144
(0.0083)

1.2905
(0.0761)

0.9332
(0.0538)

0.6816
(0.0399)

0.6931
(0.0164)

MONN 1.3283
(0.0440)

0.9927
(0.0193)

0.7563
(0.0137)

0.7849
(0.0061)

1.3534
(0.0822)

1.0288
(0.0482)

0.7343
(0.0264)

0.7736
(0.0105)

1.3994
(0.0417)

1.0450
(0.0290)

0.6725
(0.0286)

0.6936
(0.0131)

1.3242
(0.0388)

0.9749
(0.0171)

0.6414
(0.0270)

0.6732
(0.0113)

HyperAttentionDTI 1.4028
(0.0186)

1.0888
(0.0192)

0.7257
(0.0149)

0.7683
(0.0061)

1.4480
(0.0418)

1.1399
(0.0351)

0.6899
(0.0153)

0.7510
(0.0067)

1.2994
(0.0293)

0.9816
(0.0265)

0.7371
(0.0142)

0.7233
(0.0047)

1.2652
(0.0406)

0.9594
(0.0332)

0.6879
(0.0295)

0.6962
(0.0049)

AttentionDTA 1.2711
(0.0454)

0.9410
(0.0297)

0.7726
(0.0125)

0.7908
(0.0063)

1.3213
(0.0500)

1.0074
(0.0341)

0.7372
(0.0169)

0.7716
(0.0063)

1.2131
(0.0639)

0.8420
(0.0425)

0.7721
(0.0254)

0.7446
(0.0136)

1.2071
(0.0712)

0.8456
(0.0437)

0.7211
(0.0369)

0.7151
(0.0171)

BACPI 1.3594
(0.0362)

1.0164
(0.0152)

0.7427
(0.0139)

0.7772
(0.0055)

1.4343
(0.0660)

1.0998
(0.0380)

0.6974
(0.0320)

0.7545
(0.0116)

1.3583
(0.0577)

1.0439
(0.0395)

0.7140
(0.0285)

0.7278
(0.0152)

1.3798
(0.0652)

1.0702
(0.0505)

0.6507
(0.0385)

0.7001
(0.0168)

IIFDTI 1.3832
(0.0590)

1.0513
(0.0594)

0.7332
(0.0242)

0.7701
(0.0123)

1.4340
(0.0817)

1.1169
(0.0662)

0.6891
(0.0383)

0.7474
(0.0166)

1.3027
(0.0554)

0.9326
(0.0436)

0.7345
(0.0235)

0.7116
(0.0173)

1.2868
(0.0625)

0.9261
(0.0446)

0.6774
(0.0380)

0.6827
(0.0179)

Main cross-validation results for ArkDTA’s performance binding affinity prediction compared with its baselines and ablations. The results for both KIKD and IC50 subsets of the PDBbind dataset are based on mean
and standard deviation of its five different test folds. Unseen Scaffolds refers to model’s performance evaluated on test instances where the ligands’ compound scaffolds do not overlap with those of the training
instances in each fold. Best performance values are shown in bold.
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3.4.4 Attention map comparison between ArkDTA and
without L2

Supplementary Figure S4 shows a comparison between
ArkDTA and its ablated version of not employing NCI-based
attention regularization. As shown in the ablated verion’s at-
tention map, all protein residues are treated as having NCIs
with the ligand. While this visualization may inform research-
ers with significant chemical substructures, it has limited
explainability on the protein side. This highlights the role of
NCIs in attention regularization which includes providing
more salient information of the binding complex leading to
better explainability. (Full-sized attention maps for the three
case studies are available in Supplementary Fig. S5.
Additional analysis on attention weights extracted from other
protein-ligand complexes for each of the case studies are
available in Supplementary Fig. S6.)

4 Discussion
4.1 Effect of attention regularization guided by NCIs

Preliminary statistical analysis shown in Supplementary Fig.
S2 indicates that there is no obvious correlation between the
ratio of active and inactive residues in a given protein and the
binding affinity value of the protein–ligand complex. This
suggests that our model’s ability to incorporate key domain
knowledge such as NCIs in inference may not translate di-
rectly to improvements in binding affinity predictive perfor-
mance. Nonetheless, our model was one of the three highest
performing models in all evaluation metrics in above reported
experimental setups, maintaining robust performance while
significantly improving model interpretability. The auxiliary
loss objective L2 guides our model in identifying residues par-
ticipating in NCIs with ligand substructures, distributing at-
tention weights in a differentiated manner. The resulting
attention maps and weights can be further investigated in or-
der to gain insights on the potential interaction sites between
newly designed candidate drugs and novel target proteins.

4.2 Limitations of ArkDTA and future work

A simplifying assumption for the representation of NCIs was
that binary values indicating presence or absence of NCIs
would provide sufficient information on the underlying chem-
ical system. However, NCIs are typically sub-categorized
according to characteristics such as their geometrical configu-
rations, interaction strengths, and the kind of chemical force
involved. Future works can take into account how different

types of NCIs affect the overall binding behavior as proposed
by Choe et al. (2022).

Another potential limitation in our work is the restrictive
size of the training dataset. PDBbind is unique among publicly
available datasets in that it provides coordinate data for each
protein–ligand complex, which can be used to obtain NCI
markers using tools such as PLIP (Adasme et al. 2021).
However, PDBbind suffers a sparsity problem, containing
binding affinity values for only a limited number of protein–li-
gand pairs relative to other benchmark datasets such as Davis
and KIBA (Pahikkala et al. 2015; He et al. 2017). In future
works, adoption of transfer learning and data augmentation
methods can be explored to address this issue.

Despite the promising results from qualitative analysis,
ArkDTA’s performance in four quantitative evaluation met-
rics does not fully capture the benefits of our NCI-aware regu-
larization method in terms of model generalizability. We
speculate that this is partly due to the absence of dedicated
multi-objective loss function and optimization technique. In
future work, we plan to design a multi-objective loss function
and optimizer such that the relative weight given to each loss
objective can be determined to minimize the potential antago-
nism between two loss objectives. In addition, we will investi-
gate how changing the auxiliary loss coefficient a affects the
model’s performance on the binding affinity prediction task.

5 Conclusion

In this work, we introduce ArkDTA, a protein–ligand binding
affinity prediction model that employs a novel attention regu-
larization technique guided by NCIs. While there is still room
for improvements in the predictive performance, our model
achieves significant improvements in model explainability
over existing models. Furthermore, we found upon qualitative
analysis of attention maps that the final distribution of atten-
tion weights can be used to gain insights into the model’s in-
ternal understanding of the underlying chemical system as
well as suggest protein residues and chemical substructures of
high pharmaceutical relevance.
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Table 3. Additional results on the Davis and Metz dataset

Model Davis KIKD Metz KIKD

RMSE MAE PCORR CI RMSE MAE PCORR CI

ArkDTA (ours) 0.4979
(0.0132)

0.2863
(0.0105)

0.8176
(0.0104)

0.8684
(0.0053)

0.4127
(0.0066)

0.2559
(0.0063)

0.8336
(0.0049)

0.8430
(0.0034)

ArkDTA (Remove L2) 0.4959
(0.0071)

0.3041
(0.0072)

0.8193
(0.0061)

0.8647
(0.0034)

0.4177
(0.0099)

0.2748
(0.0084)

0.8299
(0.0085)

0.8240
(0.0079)

DeepDTA 0.4753
(0.0061)

0.2548
(0.0134)

0.8367
(0.0054)

0.8737
(0.0082)

0.4049
(0.0069)

0.2376
(0.0055)

0.8416
(0.0042)

0.8588
(0.0064)

MONN 0.5217
(0.0065)

0.3240
(0.0075)

0.7993
(0.0063)

0.8621
(0.0044)

0.4619
(0.0102)

0.3050
(0.0134)

0.7853
(0.0115)

0.8084
(0.0077)

AttentionDTA 0.4927
(0.0137)

0.2466
(0.0129)

0.8230
(0.0106)

0.8696
(0.0063)

0.3944
(0.0177)

0.2150
(0.0161)

0.8491
(0.0137)

0.8737
(0.0106)

The results are based on mean and standard deviation of its five different model’s performance on the same test instances.
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Figure 4. Visualization results on three protein–ligand pair examples. The left side shows a high-resolution 3D image of the co-crystallized binding

complex structure obtained from its pdb file format using PyMol (Schrödinger and DeLano 2020). The right side shows the molecular structure of the

ligand with its RCSB ligand identifier on the top and InChIKey on the bottom. The center shows the attention map extracted from ArkDTA. We truncated

the amino residues whose NCI score suggests no NCI present and actual NCI label is negative. On the contrary, the amino acid residues identified as

having NCIs (red-colored cells) correspond to the red-colored regions of the protein structure on the left side. The highlighted substructure SMILES

(darker green-colored cells) correspond to the highlighted regions of the whole molecular structure on the right side. Full-sized attention maps for each

cases can be found in the supplementary material. (a) Seen Protein & Unseen Ligand Binding Complex (4x6n, 3Y5), (b) Unseen Protein–Ligand Binding

Complex (6n77, KEJ), and (c) Out-of-Dataset Binding Complex (8bq4, QZR).
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