Skip to main content
. 2023 Jun 30;39(Suppl 1):i448–i457. doi: 10.1093/bioinformatics/btad207

Table 3.

Additional results on the Davis and Metz dataset

Model Davis KIKD
Metz KIKD
RMSE MAE PCORR CI RMSE MAE PCORR CI
ArkDTA (ours) 0.4979 (0.0132) 0.2863 (0.0105) 0.8176 (0.0104) 0.8684 (0.0053) 0.4127 (0.0066) 0.2559 (0.0063) 0.8336 (0.0049) 0.8430 (0.0034)
ArkDTA (Remove L2) 0.4959 (0.0071) 0.3041 (0.0072) 0.8193 (0.0061) 0.8647 (0.0034) 0.4177 (0.0099) 0.2748 (0.0084) 0.8299 (0.0085) 0.8240 (0.0079)
DeepDTA 0.4753 (0.0061) 0.2548 (0.0134) 0.8367 (0.0054) 0.8737 (0.0082) 0.4049 (0.0069) 0.2376 (0.0055) 0.8416 (0.0042) 0.8588 (0.0064)
MONN 0.5217 (0.0065) 0.3240 (0.0075) 0.7993 (0.0063) 0.8621 (0.0044) 0.4619 (0.0102) 0.3050 (0.0134) 0.7853 (0.0115) 0.8084 (0.0077)
AttentionDTA 0.4927 (0.0137) 0.2466 (0.0129) 0.8230 (0.0106) 0.8696 (0.0063) 0.3944 (0.0177) 0.2150 (0.0161) 0.8491 (0.0137) 0.8737 (0.0106)

The results are based on mean and standard deviation of its five different model’s performance on the same test instances.