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Abstract
Motivation: Structural variation (SV) is a class of genetic diversity whose importance is increasingly revealed by genome resequencing, espe-
cially with long-read technologies. One crucial problem when analyzing and comparing SVs in several individuals is their accurate genotyping,
that is determining whether a described SV is present or absent in one sequenced individual, and if present, in how many copies. There are only
a few methods dedicated to SV genotyping with long-read data, and all either suffer of a bias toward the reference allele by not representing
equally all alleles, or have difficulties genotyping close or overlapping SVs due to a linear representation of the alleles.

Results: We present SVJedi-graph, a novel method for SV genotyping that relies on a variation graph to represent in a single data structure all
alleles of a set of SVs. The long reads are mapped on the variation graph and the resulting alignments that cover allele-specific edges in the graph
are used to estimate the most likely genotype for each SV. Running SVJedi-graph on simulated sets of close and overlapping deletions showed
that this graph model prevents the bias toward the reference alleles and allows maintaining high genotyping accuracy whatever the SV proximity,
contrary to other state of the art genotypers. On the human gold standard HG002 dataset, SVJedi-graph obtained the best performances, geno-
typing 99.5% of the high confidence SV callset with an accuracy of 95% in less than 30min.

Availability and implementation: SVJedi-graph is distributed under an AGPL license and available on GitHub at https://github.com/
SandraLouise/SVJedi-graph and as a BioConda package.

1 Introduction

Structural variants (SVs) are genomic rearrangements of at
least 50 bp that differ between the genomes of individuals be-
longing to the same species. This definition encompasses a
wide range of variations in terms of size and type. The most
frequent types are deletions and insertions, but there are also
balanced SVs such as inversions and translocations. Although
SVs are less frequent in numbers than punctual variations,
they often involve more base pairs in the genomes and have
long been shown to be involved in phenotypic variability, spe-
cies adaptation and evolution, and in many diseases and dis-
orders (Weischenfeldt et al. 2013; Mahmoud et al. 2019).

With the democratization of long-read sequencing technol-
ogies, there has been an increasing number of studies focusing
on the characterization and analysis of this type of genetic
variation on a genome-wide scale in various organisms.
Indeed, because of their large size and frequent localization in
repeated regions, SVs were very challenging variants to iden-
tify with short reads (Mahmoud et al. 2019; Delage et al.
2020). Long reads have really changed the game in this field,
allowing their reliable and accurate detection in resequencing
genome data (Chaisson et al. 2019; Zook et al. 2020). In par-
ticular, in recent years, numerous studies have been conducted
at the population level with large sample sizes, revealing asso-
ciations between SVs and phenotypes of interest or their in-
volvement in changes in gene expression in various
organisms, such as, for example, in plants (Alonge et al.
2020), in yeasts (O’Donnell et al. 2022) and of course in

human populations (Beyter et al. 2021; Porubsky et al. 2022),
to cite only a few of them.

In most of these studies, the input of the analyses is typi-
cally a matrix with variants in lines and samples or individu-
als in columns (or vice versa) containing in each cell the
genotype or number of each allele of the given variant in the
given individual. To obtain such a matrix, the commonly ac-
cepted approach is composed of two steps: the first one con-
sists in obtaining a most comprehensive and nonredundant
set of SVs. This is achieved by using SV discovery tools on all
or a subset of the samples to identify all structural variants in
samples compared to a reference genome. The obtained call
sets are then merged to obtain a nonredundant set of SVs
which defines the lines of the matrix. Then, the second step is
the genotyping and aims at filling the matrix with genotypes.
Genotyping one variant in an individual consists in counting
how many reads from this individual support each described
allele of the given variant. Based on these read counts, a geno-
type is derived, typically homozygous for the reference or al-
ternative allele or heterozygous for bi-allelic variants in a
diploid individual. In such a genotyping step, all samples are
thus evaluated through the same SV call set to obtain compa-
rable values.

Genotyping and discovery are therefore two distinct tasks
that necessitate different methods and we have witnessed a
strong increase in the number of tools developed in recent
years dedicated purely to the genotyping problem. While gen-
otyping appears as a simpler problem than discovery, since
variants are already known and the whole reference genome
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does not need to be blindly investigated, there are some issues
that deserve special attention. The first issue is named the ref-
erence bias. It is well known that the more similar two
sequences are, the easier it is to align them and this is empha-
sized in the context of structural dissimilarity and with reads
containing many sequencing errors. Therefore, when mapping
reads only to the reference genome, one may favor the refer-
ence allele. As the different alleles are well defined in the geno-
typing problem, the reference bias should be avoidable, by
mapping the reads on both reference and alternative alleles in
an equal manner. This can be achieved by generating allele-
specific subsequences and mapping the reads only on these
sequences. Typically, these sequences are centered on the SV
breakpoints and include neighboring sequences of size
depending on the average read size.

The second issue concerns closely located or overlapping
SVs for which representing the sequences of the different
alleles is not so trivial. For a given SV, the neighboring
sequences are not uniquely defined as they depend on the al-
lele states of neighboring SVs. Intuitively, moving from a lin-
ear to a graph-based representation solves this issue. In a
variation graph, each node is a sequence, edges represent ad-
jacencies between sequences observed in an allele and each
combination of alleles is represented by a path in this graph.
As a matter of fact, numerous implementations for building
variation graphs or also named pangenome graphs, analyzing
such graphs or mapping reads on them are now available and
commonly used (see Paten et al. 2017; Garrison et al. 2018;
Li et al. 2020, Rautiainen and Marschall 2020; Guarracino
et al. 2022 to cite only a few). Importantly, they have been
shown to improve read mapping and small variant genotyp-
ing (Eggertsson et al. 2017; Garrison et al. 2018). As concerns
SVs, the last generation of SV genotypers for short Illumina
reads, Paragraph (Chen et al. 2019), graphTyper2
(Eggertsson et al. 2019), the latest Giraffe (Sirén et al. 2021),
and PanGenie (Ebler et al. 2022), are all based on such se-
quence graphs.

As genome sequencing is more and more achieved with
long-read technologies, even for population scale studies
(Coster et al. 2021), and because the large size of the reads
has an undeniable benefit on the quality of SV analyses (for
genotyping as well as for discovery) (Mahmoud et al. 2019,
Duan et al. 2022), a few tools dedicated to SV genotyping
with long-read data have been proposed these last years,
namely VaPoR (Zhao et al. 2017), SVJedi (Lecompte et al.
2020), and LRcaller (Beyter et al. 2021). However, none of
them uses a graph representation of the variants. All three
tools explicitly represent the allelic sequences, but as linear
sequences, and map the reads on both reference and alterna-
tive allele sequences. However, only SVJedi strictly avoids the
reference bias by mapping all the reads on all allelic sequen-
ces, whereas VaPoR and LRcaller perform first a selection of
the reads to be mapped on alleles based on a whole reference
genome alignment given as input. Additionally, Sniffles
(Sedlazeck et al. 2018) and CuteSV (Jiang et al. 2020), which
are discovery tools, also provide a genotyping mode as an op-
tion, but the methods implemented for these optional modes
have not been described in any publication. As these tools re-
quire a mapping on the reference genome as input, we can hy-
pothesize that they mainly rely on the split-read signatures
used also in their discovery mode and may thus be subject to
the reference bias.

We present here the first SV genotyper for long-read data
that is based on a variation graph. By avoiding the mapping
on the reference genome only and using a variation graph rep-
resenting the whole reference genome complemented by all
described alternative alleles given in the input SV call set, our
method is not reference-biased and improves the genotyping
of distant, as well as closely located and overlapping SVs.

2 Materials and methods

Our method relies on the representation of structural variants
with a variation graph, which is then used as “reference” to
map the long reads on.

It takes as input the set of SVs to genotype in VCF format,
the sequence of the reference genome in FASTA format, and
the long reads from which the SV genotypes will be estimated
in FASTQ or FASTA format (compressed or not). The main
output is a VCF file, corresponding to the input VCF file with
an additional column containing the predicted genotypes of
the SVs. It also outputs the variation graph representing the
whole genome and alternative alleles of the input SVs in GFA
format.

Our method is composed of four steps, illustrated in Fig. 1.
First, we build the variation graph from the reference genome
and the SV set. We then use an external tool, minigraph (Li
et al. 2020), to map the long reads on the graph we produced.
The alignment results are filtered to identify genotype-
informative reads, which are stored by covered SV and sup-
ported allele. Finally, the read counts are normalized and we
attribute the genotype with the maximum likelihood to each
SV of the input set.

2.1 Constructing the variation graph

A variation graph is a directed graph whose nodes are labeled
with nonoverlapping genomic sequences. Edges represent se-
quence adjacencies observed in a genome or allelic sequence.
A path in the graph represents a possible haplotype in a
genome.

In our method, we construct a variation graph from the se-
quence of the reference genome and a set of SVs characterized
by their type, their breakpoint positions on the reference ge-
nome, and their sequence in the case of insertions. The first
step is to list and sort all breakpoint positions for each chro-
mosome of the reference genome, then use them in the second
step to fragment the reference sequence of the chromosome
into reference nodes. Reference edges are added between each
pair of successive reference nodes, forming the path of the ref-
erence genome in the graph.

The third step is to add additional edges for each SV de-
scribed in the input VCF according to its type to form the
path of the alternative allele. We call such edges alternative
edges. In the case of insertions, an alternative node is also
added, labeled with the sequence of the insertion. Thus, in our
variation graph, all edges represent breakpoints of the input
SVs, that is sequence adjacencies that are specific to one of the
alleles.

The resulting variation graph is output in the GFA format.
In our graph, we currently can represent deletions, inser-

tions, inversions, and intra-chromosomal translocations. The
first step of the construction allows for the representation of
overlapping SVs.
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2.2 Mapping the reads on the graph

The long reads are mapped on the constructed variation
graph with minigraph (v0.19) (Li et al. 2020), with the “-x lr”
argument for aligning long reads and without base-level align-
ment to increase speed since only the read position on the
graph is needed in our method to predict the SV genotype.
Minigraph outputs the alignments’ results in the GAF format,
which is a variation of the PAF format adapted to sequence
graphs.

We have also tested another mapper, GraphAligner
(Rautiainen and Marschall 2020) and the base-level align-
ment mode of minigraph. We chose minigraph without base-
level alignment which gave the best results.

2.3 Selecting the informative reads

In our method, we consider that a read aligning on at least
one breakpoint sequence of an SV gives information on that
SV’s genotype, since breakpoints are sequence adjacencies
specific to one or the other SV allele. Each SV has one or two
breakpoints for each of its alleles depending on its type. For
example, deletions have two breakpoints for their reference
allele, that we will call reference breakpoints, and one break-
point for their alternative allele, that we will call alternative
breakpoint. Inversions have two reference breakpoints and
two alternative breakpoints. Each breakpoint is represented
by a distinct edge in the variation graph. For each alignment
output by minigraph, we first verify that the read aligns on at
least two nodes, meaning that it overlaps at least one of the
breakpoints in the graph. Then, we list all SVs that have at
least one breakpoint included in the span of the read align-
ment on the graph. For each of the listed SVs, we determine
which allele is covered by the alignment and increment by one
the support value for this SV’s allele for each allele breakpoint
that the read alignment covers. A read is considered as cover-
ing a breakpoint if the alignment overlaps at least dover base
pair from each side of the breakpoint. We fixed the default
value of dover at 100 bp.

Each time a read is counted as allele support for an SV, the
support count for this SV’s allele is incremented by one in a
dictionary containing the SVs as keys. If a read covers both
breakpoints of an SV allele, it counts as two read supports.

2.4 Predicting the SV genotypes

Once all the alignments produced by minigraph have been
processed, the genotype of each SV is estimated using the read
support counts for its alleles. First, for SV types with an un-
balanced number of breakpoints between alleles (deletions
and insertions), the support count is normalized for each allele

by the allele’s breakpoint number (e.g. for a deletion, the ref-
erence allele count is divided by two). Then, the normalized
allele support counts are used to compute the likelihood for
each possible genotype in a diploid individual (homozygous
for reference 0/0, heterozygous 0/1, or homozygous for alter-
native 1/1). We use the same likelihood formula as in SVJedi
and CuteSV (Lecompte et al. 2020; Jiang et al. 2020), which
is described in Nielsen et al. (2011). Basically, the likelihoods
of the three possible genotypes given the observed normalized
read counts (c0 and c1 for reference and alternative alleles, re-
spectively) are computed based on a simple binomial model:

Lð0=0Þ ¼ ð1� peÞc0 � pc1
e � Cc0

c0þc1
(1)

Lð1=1Þ ¼ pc0
e � ð1� peÞc1 � Cc0

c0þc1
(2)

Lð0=1Þ ¼ 1

2

� �c0þc1

� Cc0
c0þc1

(3)

where pe is the probability that a read maps to a given allele
erroneously, assuming it is constant, and independent be-
tween all observations. pe was fixed to 5 � 10�5, after empiri-
cal experiments. The genotype with the largest likelihood is
assigned and all three likelihoods are also output (�log10
transformed) as additional information in the VCF file.

Finally, we report the genotype of an SV only if it is sup-
ported by a minimal amount of supporting reads (sum of al-
lele counts after normalization), otherwise a missing genotype
(“./.”) is reported. This is governed by a user-defined parame-
ter, whose default value is set to 3.

2.5 Implementation

The presented method is implemented in Python under the
name SVJedi-graph (v1.1.1) and is available on github
(https://github.com/SandraLouise/SVJedi-graph) and as a
conda package (https://anaconda.org/bioconda/svjedi-graph).
Currently, SVJedi-graph can genotype five types of SVs: dele-
tions, insertions, duplications, inversions, and intra-
chromosomal translocations. Insertions need to be sequence-
resolved with the full inserted sequence characterized and
reported in the ALT field of the VCF file. As duplications are
a special case of insertions, SVJedi-graph supports also dupli-
cations, as long as their duplicated sequence is characterized
and reported similarly to insertions.

2.6 Simulating close and overlapping SV datasets

In order to evaluate our method’s genotyping performances
on closely located or overlapping SVs, we simulated twelve
deletion datasets with varying distance ranges between

Figure 1. Illustration of the four steps of SVJedi-graph. The method takes three files as input: the sequence of the reference genome, the VCF describing

the SVs to genotype, and the long reads to genotype the SVs from. The first step is the construction of the variation graph, the second step is the

mapping of the long reads on the variation graph with minigraph (producing the GAF alignment file), the third step is the filtering of the reads, and the final

fourth step is the genotype prediction. Two files are output, with the main one being the genotyped version of the input VCF, and the other one being the

GFA containing the variation graph.
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deletions on the human chromosome 1 (assembly
GRCh37.p13). All those datasets shared the same 995 dele-
tions selected from the dbVar database (Phan et al. 2017),
ranging from 50 bp to 10 kb in size and distant of at least
10 kb from each other. These deletions were equally distrib-
uted over the three possible genotypes (0/0, 0/1, 1/1), resulting
in two synthetic haplotype sequences of chromosome 1.
These haplotype sequences were used to simulate a single
long-read sequencing dataset using simLoRD (Stöcker et al.
2016), with a PacBio error profile and error rate of 16% and
at a sequencing depth of 30�.

Then, we generated 12 different variant sets (VCF files) by
adding to each of those 995 “initial” deletions one simulated
deletion at different distance or overlapping ranges from its
companion deletion. The size of these additional deletions
ranged from 50 bp to 2 kb, and they were all recorded as ho-
mozygous reference genotype (0/0) in the variant file, meaning
that these additional deletions are not present in the simulated
sequenced individual. Therefore, the same set of simulated
reads can be used to genotype the different deletion sets. Six
of the deletion sets correspond to nonoverlapping deletions,
with random distance of: (i) 5–10 kb, (ii) 1–5 kb, (iii) 500–
1 kb, (iv) 100–500 bp, (v) 50–100 bp, and (vi) 0–50 bp. They
contain each 1990 deletions with a median size around 1 kb.
The other six sets simulated overlapping deletions, with ran-
dom overlapping of: (i) 0–50 bp, (ii) 50–100 bp, (iii) 100–
200 bp, (iv) 200–300 bp, (v) 300–400 bp, and (vi) 400–
500 bp. The size of the sets varies depending on the overlap
size range, since only the deletions larger than the minimal
overlap bound were kept. These overlapping deletion sets
contain between 1382 (400–500 bp overlaps) and 1990 dele-
tions (0–50 bp overlaps). Accordingly, deletions are larger in
the sets with the largest overlap sizes (the median deletion size
ranges from 1 to 1.3 kb). All simulated datasets are available
for download (see Supplementary Material).

2.7 Evaluation and comparison to state of the art

long-read genotypers

We evaluated and compared our method to other genotypers
on its genotyping quality and computing performances. To
evaluate the genotyping quality, we used two metrics: the gen-
otyping accuracy and the genotyping rate.

We define the genotyping rate as the percentage of input
SVs for which the tool was able to attribute a genotype. It
was calculated using Equation (4), where TP is the number of
SVs for which the predicted genotype corresponds to the true
genotype, FP is the number of SVs for which the predicted ge-
notype differs from the true genotype, and FN is the number
of SVs that could not be attributed a genotype. We define
the genotyping accuracy as the percentage of genotyped
SVs that were attributed their true genotype, calculated with
Equation (5).

Genotyping rate ¼ TPþ FP

TPþ FPþ FN
� 100 (4)

Genotyping accuracy ¼ TP

TPþ FP
� 100: (5)

We compared our method to four state of the art long-read
SV genotypers, namely SVJedi (Lecompte et al. 2020)
(v1.1.6), cuteSV (Jiang et al. 2020) (v1.0.13), Sniffles2
(Sedlazeck et al. 2018) (v2.0.6), and LRcaller (Beyter et al.
2021) (v1.0). SVJedi and LRcaller are tools dedicated to SV

genotyping, while cuteSV and Sniffles2 are primarily SV call-
ers. CuteSV and Sniffles2 were run with their “force call” op-
tion to genotype a given set of SVs, bypassing the SV
discovery steps. For each comparison, all tools were run with
the same variant file as input. SVJedi performs the read map-
ping internally using minimap2, while cuteSV, Sniffles2, and
LRcaller take as input the results of the read mapping done
externally. SVJedi was run on the ONT reads with the param-
eter “-d ont,” and on both PacBio datasets with the default
parameter “-d pb.” As SVJedi uses minimap2 (v2.17), we also
used minimap2 (Li 2018) (v2.17) to map the reads on the ref-
erence genome, as input to cuteSV, Sniffles2, and LRcaller.
Minimap2 was run on the PacBio CLR reads, PacBio HiFi
reads, and ONT reads with the parameters presets “map-pb,”
“asm20,” and “map-ont,” respectively. LRcaller has five
methods to genotype SVs, we used the joint method as done
in the benchmark paper for SV genotyping methods (Duan
et al. 2022) with the argument “–gtm joint.” All tools but
Sniffles2 were run using 20 CPU threads. Command lines
used to run the tools are given in Supplementary Material.

3 Results
3.1 Impact of SV proximity in simulated datasets

In order to evaluate the benefits of using a variation graph to
genotype SVs, and in particular close and overlapping SVs,
we first applied our method to several simulated datasets of
deletions in the human chromosome 1, in which we controlled
the distance or overlap size of consecutive pairs of deletions
(see Section 2).

Figure 2 shows the performance metrics of SVJedi-graph
and the other compared genotypers as a function of the dis-
tance between pairs of consecutive deletion segments. We

Figure 2. Genotyping performances of long-read SV genotypers on the 12

simulated deletion datasets on human chromosome 1, with varying

distances between pairs of consecutive deletions. The X axis represents

the different simulated datasets ordered by increasing distance between

pairs of consecutive deletion segments. Negative X values correspond to

datasets with overlapping deletions.
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observe that the distance between deletions and the fact that
some deletions overlap each other does not impact SVJedi-
graph performances. It maintains very high accuracy and rate
(above 99%) whatever the distance between the simulated
deletions and even for overlapping deletions.

On the contrary, all the other tested genotypers show de-
creasing genotyping qualities when the deletions are closer to
one another. CuteSV and Sniffles genotyping accuracy starts
decreasing as soon as deletions are <1000 bp apart, falling
�80% and 90%, respectively, for overlapping or adjacent
deletions. The drop in accuracy is smaller for LRcaller, which
maintains its accuracy above 97% for even very close dele-
tions, but falls below 90% for overlapping deletions with the
largest overlaps. On the other hand, SVJedi maintains its high
accuracy but its genotyping rate decreases regularly with the
deletion proximity. It is not able to assign a genotype to more
than 20% of the deletions that are <50 bp apart.

3.2 Impact of breakpoint position precision in

simulated datasets

In practice, real SV call sets may not be defined at the base
pair resolution and can contain breakpoint positions shifted
from the real positions. In order to evaluate to what extend
this imprecision in breakpoint definition may impact the gen-
otyping performances, we applied the genotypers on the pre-
vious simulated long-read dataset but with imprecise input
VCF files, where the positions of the 995 deletions used to
simulate the reads were shifted. Both breakpoints of the dele-
tions were shifted by a fixed distance in the same direction to
preserve the deletion size and we retained only those deletions
where the deleted segment overlapped by at least 50% with
the deletion from which it was moved.

Figure 3 shows the performance metrics of SVJedi-graph
and the other compared genotypers when increasing the

breakpoint shift from 10 to 1000 bp. Except for cuteSV which
remarkably seems not to be impacted by breakpoints shifts,
all other genotypers show decreasing genotyping accuracies
when the imprecision increases. SVJedi-graph still maintains a
high accuracy as long as the imprecision is smaller than
200 bp (98.8% for 200 bp breakpoint shifts).

3.3 Results on real human benchmark datasets

To assess genotyping accuracy on real data, one needs a com-
prehensive set of well characterized SVs with their genotype
well ascertained in at least one individual. The consortium
Genome in a Bottle (GIAB), thanks to massive data produc-
tion and manual efforts, produced such a dataset dedicated to
SV tools benchmarking on the human individual HG002, son
of the so-called Ashkenazi trio (Zook et al. 2020). This highly
curated set, referred as High confidence, contains 5464 dele-
tions and 7281 insertions of at least 50 bp which are distant
from one another from at least 1 kb, whose genotypes are het-
erozygous or homozygous for the alternative allele in HG002
(Tier 1 set v.0.6 with the tag “PASS” in the VCF FILTER
field) We applied SVJedi-graph on this set with three long-
read datasets from the HG002 individual obtained with dif-
ferent sequencing technologies, namely PacBio CLR, PacBio
HiFi and Nanopore (ONT), and provided by GIAB (see
Supplementary Material for download links).

With the 30� CLR PacBio reads, SVJedi-graph was able to
genotype 99% of the SVs with a genotyping accuracy of
94.6% (Tables 1 and 2). This accuracy is slightly better for
deletions than for insertions for this set (1.3 point %), as well
as the genotyping rate (1.6 point %). Table 1 shows a contin-
gency table of the obtained genotypes compared with
expected ones for deletions and insertions. Most genotyping
errors happen on alternative homozygous (1/1) deletions or
insertions that end up predicted as heterogygous (0/1). Out of
the errors made on alternative homozygous variants, 99%
and 98% were wrongly predicted heterozygous deletions and
insertions, accounting for 56% and 77% of all genotyping
errors for each of these SV types, respectively. For heterozy-
gous deletions, the errors are well balanced between wrongly
genotyped reference homozygous and alternative homozy-
gous, especially for insertions (50% for each of the two

Figure 3. Genotyping performances of long-read SV genotypers on

simulated deletion datasets on human chromosome 1 with varying levels

of imprecision in the breakpoint definitions. The X axis represents the

distance in base pairs between the deletions breakpoints as simulated in

the input read dataset and their corresponding shifted breakpoints given

in the different input VCF files.

Table 1. Contingency tables of SVJedi-graph genotyping results on the

real 30� PacBio dataset of human individual HG002 with respect to the

high confidence GIAB call set.a

Deletions

SVJedi-graph predictions

0/0 0/1 1/1 ./.

GIAB
0/1 34 3322 75 2
1/1 2 142 1884 3

Insertions

SVJedi-graph predictions

0/0 0/1 1/1 ./.

GIAB
0/1 47 3397 46 15
1/1 6 324 3339 107

a Results for the 5464 deletions (top) and 7281 insertions (bottom) are
indicated in two separated tables, where columns indicate SVJedi-graph
genotypes and rows GIAB ones. Gray labeled boxes, in the diagonal, give
the amount of variants correctly genotyped by SVJedi-graph. The number of
genotypes that SVJedi-graph fails to assess is indicated by the “./.” column.
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possible wrong genotypes). For heterozygous deletions, 69%
of the errors were alternative homozygous genotype
predictions.

The four other tested genotyping tools present a lower ac-
curacy than SVJedi-graph on the global SV set (92.2%,
88.7%, 85.4%, and 83.6% for SVJedi, cuteSV, Sniffles2, and
LRcaller, respectively), as well as on both deletion and inser-
tion subsets (Table 2). The higher genotyping accuracy of
deletions over insertions observed with SVJedi-graph is also
observed with cuteSV, LRcaller and Sniffles2, at an even more
pronounced level, from 3.7 point % difference with cuteSV to
10 with Sniffles2.

SVJedi genotypes a lower proportion of deletions than
insertions (85.8% against 93.6%), while all other four geno-
typers show a relatively stable genotyping rate between both
SV types (at most 0.8 point % difference). It is to be noted
that cuteSV and LRcaller seem to systematically assign a ge-
notype to all input SVs, thus having a fixed genotyping rate of
100% whatever the SV set.

We also assessed the genotyping performances on the same
SV set with two other long-read datasets, one of PacBio CCS
(HiFi) technology, and one of ONT technology. The results
obtained with the five genotypers are presented in Table 3,
along with those previously obtained with the PacBio CLR
dataset. SVJedi-graph shows similar genotyping performances
for both PacBio datasets, whereas a small decrease in accu-
racy with ONT reads (of about 4 points %) with a slight in-
crease in rate (of 0.5–1 point %). Contrary to SVJedi-graph,
all other genotypers but SVJedi show a higher genotyping ac-
curacy with HiFi and ONT reads compared to CLR reads,
Sniffles2 and LRcaller having their best genotyping accuracy
on this SV set with the HiFi reads (89.4% and 86.2%, respec-
tively), and cuteSV having its best genotyping accuracy with
the ONT reads (92.7%).

3.4 Applying SVJedi-graph on challenging SVs

As the High confidence set contains only distant SVs, we
wanted to explore our method’s performances on a more
challenging SV set and we applied SVJedi-graph on another
SV set from the HG002 GIAB callsets, called
“ClusteredCalls” (that are included in the more difficult Tier
2 regions). This set contains 7003 SV calls that were not in-
cluded in the High confidence set due to a characterization of
lower quality (on breakpoint position and/or genotype). As a
matter of fact, 99.5% of these SV calls are within 1 kb of at
least one other call. Notably, 58% of deletions overlap at
least one other deletion of the set. Additionally, 83% of these
SVs fall in regions of Tandem Repeats greater than 100 bp. As
the genotypes indicated in the set may not be fully considered
as ground truth, we will refer to the genotype quality in terms

of % of identical genotypes instead of genotyping accuracy
for this set.

All genotyping tools show difficulties to genotype this SV
set in comparison to the High confidence SV set, with a de-
crease of about 20 points of the % of identical genotypes,
resulting in around 61–71% of identical genotypes for all
tools (Table 4).

Our tool was able to assign a genotype to 81.5% of these
SVs, and 69.4% of them with an identical genotype to the
one indicated in the GIAB set, the highest value being 71.4%
obtained by CuteSV. SVJedi-graph results on deletions and
insertions are very contrasted, both on % of identical geno-
types and on genotyping rate. We were able to genotype al-
most all deletions (95.3%) but with only 51.5% of identical
genotypes, while we genotyped less insertions (74.9%) but
with the highest % of identical genotypes (80.7%) among the
five tools. Both SVJedi-graph and SVJedi showed better per-
formances on insertions than deletions, contrary to the other
three SV callers that have in common to rely primarily on
read mapping on the reference genome only. SVJedi showed
an impaired genotyping rate of 25.5%, which was to be
expected considering its difficulties to assign genotypes in the
context of close and overlapping SVs.

As concerns SVJedi-graph results, the regions with higher
densities of SVs and overlapping SVs did not harbor more
missing or different genotypes as in the GIAB set. We could
not find any association or relationship between missing and
error genotypes with SV size or Tandem Repeat context (as
was the case for SVJedi in their publication; Lecompte et al.
2020) to explain the lower concordance of genotypes.

3.5 Genotyping a real not curated callset

In addition to the GIAB benchmark SV sets, we tested our
method on “raw” SV calling results, which are more likely to
contain nested SVs and false positive calls. The idea was to
verify that the presence of “noisy” calls (either false positives
or poorly described SVs) did not disrupt the genotyping qual-
ity of nearby true positive SVs. We applied SVJedi-graph on
an SV callset obtained by running a single SV discovery tool,
Sniffles (Sedlazeck et al. 2018), on PacBio CLR reads data
from HG002 individual, containing 17 637 discovered SVs,
with 7921 deletions and 9517 insertions. In this uncurated
callset, 13% of the calls are <1 kb apart from another call
and 2.3% of the deletions overlap at least one other deletion.
SVJedi-graph attributed a genotype to 98% of the 17 637 dis-
covered SVs. To assess the accuracy of these genotypes, we
compared these SVs with the ones from the High confidence
GIAB HG002 callset, by merging the two sets with Jasmine
(Kirsche et al. 2021). Among the 9729 insertions and dele-
tions identified as common between the two sets, 96.4%
showed identical genotypes. This is similar and even higher

Table 2. Genotyping accuracy and rate of SVJedi-graph and state of the art genotyping tools on the deletions and insertions of the High confidence

HG002 SV set with the 30� CLR PacBio read dataset.

Global Deletions Insertions

Tool Accuracy (%) Rate (%) Accuracy (%) Rate (%) Accuracy (%) Rate (%)

SVJedi-graph 94.6 99.0 95.4 99.9 94.1 98.3
cuteSV 88.7 100 90.8 100 87.1 100
LRcaller 83.6 100 89.3 100 79.3 100
Sniffles2 85.4 99.5 87.9 99.9 83.6 99.1
SVJedi 92.2 90.2 91.7 85.8 92.5 93.6
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than the accuracy obtained on the curated high confidence set
and this indicates that the presence of noise in the SV set does
not prevent SVJedi-graph to accurately genotype true positive
calls.

Interestingly, common SVs between the two sets did not
share exactly the same breakpoint positions, with 57% of
them differing by more than 10 bp and 14% by more than
50 bp. This confirms that small imprecision on the breakpoint
definition does not impair SVJedi-graph genotyping quality.

3.6 Running time and memory usage

The running time and memory requirement of SVJedi-graph
and the other genotypers compared on the GIAB HG002
High confidence SV set are shown in Table 5. When including
the mapping time, SVJedi-graph took less than half an hour
to genotype the whole High confidence HG002 SV callset
with 30� PacBio CLR reads. It is more than six times faster
than all other long-read genotypers (including the mapping
time). Notably, the total SVJedi-graph time is similar to the
genotyping time alone, for tools that require a mapping to the
reference genome (CuteSV, Sniffles2, LRcaller), considering
this file may have been obtained previously for other pur-
poses. In terms of memory requirements, SVJedi-graph was in
a similar order of magnitude than SVJedi and the two are the
less memory demanding tools of the five tested, while
LRcaller and Sniffles2 required about 1.5–2 times more mem-
ory, and cuteSV about three times more. For LRcaller and
Sniffles2, the most memory demanding step among the whole
genotyping process was the read mapping with minimap2.

For all genotypers, the most time-requiring step is the long-
read mapping on the reference genome or on the variation
graph for our method. The speed-up of our method is
explained by the fact that we chose to use minigraph in its
fastest mode, which outputs only alignment coordinates com-
puted over the chaining of minimizers without aligning all
bases in between. We also assessed the performances of our
method using base-level alignments obtained with minigraph
(option “-c”) and another long-read mapper on graph,
GraphAligner (Rautiainen and Marschall 2020). Our tests

showed that using base level alignments did not improve gen-
otyping rate and accuracy, while drastically increasing the
mapping time by at least 15 times.

4 Discussion and conclusion

We have presented here the first method and its implementa-
tion dedicated to SV genotyping with long reads that is based
on a variation graph. The use of a variation graph allows to
represent in a single data structure the whole genome along
with all described alternative SV alleles. In such a graph, refer-
ence and alternative alleles are represented in a strictly equal
manner, preventing a potential bias toward the reference al-
lele when mapping reads on it. We have shown on simulated
deletion datasets that this approach achieves highly accurate
genotyping and the few observed genotyping errors were bal-
anced over both alleles. When applied on a simulated dataset
with random inversions, we observed similarly a very high
genotyping accuracy without any reference bias (see
Supplementary Table S1). Further evidence of the absence of

Table 4. Genotyping rate and % of identical genotypes of SVJedi-graph and state of the art genotyping tools on the deletions and insertions of the

ClusteredCalls HG002 SV set.a

Global Deletions Insertions

Tool % of identical genotypes Rate (%) % of identical genotypes Rate (%) % of identical genotypes Rate (%)

SVJedi-graph 69.4 81.5 51.5 95.3 80.7 74.9
cuteSV 71.4 100 76.5 100 67.9 100
LRcaller 66.4 100 71.2 100 63.1 100
Sniffles2 61.1 99.7 62.4 100 60.2 99.6
SVJedi 70.3 25.5 47.7 16.9 78.5 31.2

a Genotyping was performed with the 30� CLR PacBio read dataset.

Table 5. Running time and memory requirements on the HG002 High

confidence SV set.a

Tool Running time

(min)

Memory (Go)

Total Mapping Genotyping

SVJedi-graph 29.7 24.8 4.3 19.1
cuteSV 201.9 176 25.9 65.2 (cuteSV)
LRcaller 196.6 176 20.6 29.2 (minimap2)
Sniffles2 233.9 176 57.9 29.2 (minimap2)
SVJedi 189.9 181.9 7.5 13.9

a All tools were run on 20 CPU threads when multi-threading was supported
(all but Sniffles2). The total running time shown for SVJedi-graph and SVJedi
includes the SV representation step (allelic linear sequences for SVJedi
and variation graph for SVJedi-graph) in addition to the mapping and
genotyping time. The memory requirement shown for cuteSV, Sniffles2 and
LRcaller is the maximum amount of memory used by either the genotyper
or minimap2.

Table 3. Genotyping accuracy and rate of SVJedi-graph and state of the art genotyping tools on the deletions and insertions of the High confidence

HG002 SV set, genotyped with PacBio CLR (30�), PacBio CCS (HiFi, 25�), and ONT (40�) reads.

PacBio CLR PacBio HiFi ONT

Tool Accuracy (%) Rate (%) Accuracy (%) Rate (%) Accuracy (%) Rate (%)

SVJedi-graph 94.6 99.0 94.1 99.5 90.4 100.0
cuteSV 88.7 100.0 91.3 100.0 92.7 100.0
LRcaller 83.6 100.0 86.2 100.0 84.8 100.0
Sniffles2 85.4 99.5 89.4 99.2 88.9 99.8
SVJedi 92.2 90.2 81.3 84.4 90.7 86.2
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reference bias in SVjedi-graph is the fact that it obtained simi-
lar performances between insertions and deletions in the real
human benchmark SV set, in contrast to LRcaller and
Sniffles.

The second major advantage of using a variation graph is
that it allows to represent close and even overlapping SVs effi-
ciently. In particular, for closely located SVs, this representa-
tion does not require to choose some haplotypes over all the
possible ones. We designed simulated datasets where we con-
trolled the distance or overlap between consecutive simulated
SVs in order to precisely assess the impact of such SV distribu-
tions on the genotyping performances of the tools. In these
simulations, we did not modify the simulated haplotypes and
resulting simulated sequencing reads, but we only added addi-
tional SVs in the input SV set. The latter are thus to be geno-
typed as homozygous for the reference allele (0/0). This is the
simplest case of close or overlapping variants, since the geno-
typing signals contained in the reads should remain the same
whatever the additional set of SVs. Even in this simplest case,
we observed a substantial decrease in genotyping rate or accu-
racy for all tools except SVJedi-graph as soon as SVs are
<500 bp apart or overlapping. It means that in these methods,
the quality of the genotyping of a given SV depends on the
other SVs present in the SV set, even if absent in the geno-
typed individual. This was to be expected for SVJedi as it con-
structs linear allelic sequences around each SV breakpoint
independently of the other SVs in the set. As these sequences
span up to 5 kb on either side, when the SVs are close, the
resulting set of sequences has a lot of redundancy, causing
many reads to be filtered out due to their non-unique map-
ping. This explains why the genotyping rate of SVJedi drops
drastically in these results. On the contrary, the stable per-
formances of SVJedi-graph on these datasets demonstrates
that the graph-based representation of SVs prevents such non
desirable behavior, and allows highly accurate genotyping of
clustered and even overlapping SVs.

The real HG002 High confidence benchmark dataset from
Genome in a Bottle consortium does not contain such clus-
tered or overlapping SVs, since all SV calls have been selected
to be at least 1 kb apart from one another in order to ensure
this high confidence in the SV descriptions and genotypes.
However, it still contains challenging insertions and deletions,
since for instance more than half of them are contained in
Tandem Repeat regions greater than 100 bp (Zook et al.
2020, Delage et al. 2020). On this dataset dedicated to the
evaluation of SV tools, SVJedi-graph obtained substantial im-
provement in genotyping accuracy and rate with PacBio CLR
and HiFi reads compared to the other tested genotypers and
in much less time. Although most other tools had better geno-
typing performances with ONT reads on this dataset, SVJedi-
graph showed a lower genotyping accuracy with respect to
the ones obtained with PacBio sequencing reads. This may be
explained by the fact that the mapping in SVJedi-graph was
performed with the same default parameters of minigraph for
all sequencing technologies, whereas the mapping used by
other tools was performed with sequencing technology spe-
cific parameter presets of minimap2. For the moment, mini-
graph does not provide parameter presets for the different
sequencing technologies, an exploration of mapping parame-
ters that would be best suited to the different technologies
could lead to improvements in SVjedi-graph.

On a more challenging SV set with many clustered and
overlapping calls, we could have expected based on the

simulation results that SVJedi-graph would make an even
greater difference with other tools. On the contrary, we
obtained poor concordance with the genotypes given as the
truth in the HG002 ClusteredCalls set of GIAB, with similar
or sometimes worse values than the other genotypers. We in-
vestigated numerous factors to explain these results, including
the proximity or overlapping of SVs, the genomic context of
SVs, the size or genotypes of erroneously genotyped SVs but
we did not find any significant association. This absence of re-
lationship with classical factors of errors may argue toward
problems of definition of SV breakpoints or inacurrate geno-
types in the input SV set. Indeed, the authors of this dataset
had deliberately distinguished them from the High confidence
set and had warned users that the proximity of the SVs pre-
vented them from being accurately characterized and that
they were “potentially complex, compound, or inaccurate”
(citation from the repository Readme). The fact that some of
the tested genotypers perform better on this particular dataset
could be due to biases or errors that are reproducible with
similar methods. Indeed, CuteSV and Sniffles genotypings are
derived from discovery methods and rely on the same input
data, namely reads mapped on the reference genome. They
probably use similar read signals that were used to discover
these SVs in the first place in GIAB protocols. For instance,
they may have used the variation of read depth along the ge-
nome to discover some deletions, whereas SVJedi-graph relies
exclusively on the breakpoint signals. Notably, those methods
performed worse for insertions, for which the signals that can
be extracted from mapping to the reference genome are the
weakest. In the case of insertions, we notably observed that
SVJedi-graph had the best genotyping accuracy but was not
able to genotype more than 25% of them due to insufficient
read support (less than three reads) for both alleles combined.
Interestingly, 85% of these not genotyped insertions are
reported as homozygous for the alternative allele in the input
set. Such absence of read support even for the reference allele
could be explained by inaccuracies in the reported inserted se-
quence which would be too divergent from the real insertion
sequence for reads to map on. These different hypotheses are
difficult to settle other than by a manual inspection of each in-
dividual case, which would be extremely time-consuming and
is outside the scope of this paper.

The uncertainties in this dataset make it therefore poorly
suited for precise assessment of tool performances.
Conversely, while the High confidence set is an ideal set for
benchmarking and comparing tools, it does not reflect the re-
ality of genotyped datasets in practice, which are usually not
manually curated and contain more closely located and nested
calls, as well as more imprecise and noisy calls. Our experi-
ment on a whole raw and uncurated discovery call set repre-
sents a practical and realistic intermediate between the high
confidence and the most challenging call sets and showed that
SVJedi-graph is usable and obtains good quality results in
practice in a few dozens of minutes on a whole human ge-
nome dataset.

In conclusion, SVJedi-graph is a fast and efficient tool to ge-
notype SVs with long-read data, that promises to be useful in
the ever-growing number of population-scale SV studies.
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