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Abstract
Motivation: Signal peptides (SPs) are short amino acid segments present at the N-terminus of newly synthesized proteins that facilitate protein
translocation into the lumen of the endoplasmic reticulum, after which they are cleaved off. Specific regions of SPs influence the efficiency of
protein translocation, and small changes in their primary structure can abolish protein secretion altogether. The lack of conserved motifs across
SPs, sensitivity to mutations, and variability in the length of the peptides make SP prediction a challenging task that has been extensively pursued
over the years.

Results: We introduce TSignal, a deep transformer-based neural network architecture that utilizes BERT language models and dot-product atten-
tion techniques. TSignal predicts the presence of SPs and the cleavage site between the SP and the translocated mature protein. We use com-
mon benchmark datasets and show competitive accuracy in terms of SP presence prediction and state-of-the-art accuracy in terms of cleavage
site prediction for most of the SP types and organism groups. We further illustrate that our fully data-driven trained model identifies useful biolog-
ical information on heterogeneous test sequences.

Availability and implementation: TSignal is available at: https://github.com/Dumitrescu-Alexandru/TSignal.

1 Introduction

Signal peptides (SPs) are short amino acid chains found at the
N-terminus of newly synthesized proteins. Their role is to facili-
tate the translocation of proteins, after which they are cleaved
off from the mature protein by signal peptidases (SPases). SPs
may direct proteins to the secretory (Sec) pathway (in all organ-
isms) or twin-arginine translocation (TAT) pathway, which is
found only in prokaryotes and in plant chloroplasts. Proteins en-
ter the Sec pathway in an unfolded state, while those going
through the TAT pathway fold before the translocation.

Almost all SPs overall contain a tripartite structure with,
generally positively charged, N-region, H-region (hydropho-
bic region), and a cleavage site-containing C-terminal region.
In SPs cleaved by SPase I the cleavage site is preceded by a
generally polar C-region, while SPs cleaved by SPase II have a
three residue lipobox instead of the C region (Owji et al.
2018) (see Fig. 1) and also a cysteine residue after the cleavage
site (Tokunaga et al. 1982). SPs processed by SPase IV do not
have a tripartite structure, but instead contain a
translocation-mediating basic region (BR). Each of the afore-
mentioned SP regions, which can vary in length and residue
composition, dynamically interact with various components
of the Sec or TAT machinery in order to facilitate protein
translocation (Owji et al. 2018). While SPs have recognizable
regions, they lack clear consensus motifs. Consequently, the
exact sequence properties of functional SPs have not been de-
termined. This makes SP prediction challenging, which is evi-
dent in the problems of identifying translocation-abolishing
point mutations (Rajpar et al. 2002; Liu et al. 2012).

Many of the previous machine learning approaches for SP
detection and cleavage site prediction rely on different types

of hidden Markov models (HMMs; Käll et al. 2004;
Reynolds et al. 2008; Viklund et al. 2008; Tsirigos et al.
2015). Deep learning approaches have also been employed
for the feature representations of the sequence residues.
However, the final prediction is still carried out by struc-
tured prediction algorithms, using the deep residue represen-
tations as the inputs for conditional random fields (CRFs;
Savojardo et al. 2018; Zhang et al. 2020; Teufel et al.
2022). Non-machine-learning methods have also been
employed. Homology-based search algorithms are used to
detect the presence of SPs and report putative cleavage sites
by aligning the queries to annotated sequences (Frank and
Sippl 2008; Wishart et al. 2008). Despite several approaches
to design and optimize SP prediction methods, no single ap-
proach provides robust SP identification. This difficulty is
highlighted by the fact that protein database Uniprot relies
on four separate SP prediction programs for SP assignment
(UniProt Consortium 2019). An important aspect is that
both HMMs and CRFs rely on a matrix of transition proba-
bilities between consecutive amino acids. Using this matrix,
prior information about the structure of SPs can be hard-
coded into a model by constraining the transitions known to
be biologically impossible to have zero probability.
Although HMMs and CRFs can also work without hard-
coded constraints, to our knowledge, all SP prediction archi-
tectures found in the literature have incorporated such con-
straints. As a concrete example, state transition matrices can
be restricted to produce only contiguous SP predictions and
ensure they always start at the N-terminus of the sequence
(Owji et al. 2018), while cleavage sites for SPase II cleaved
proteins can additionally be constrained to always be
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followed by a cysteine residue (Tokunaga et al. 1982). While
incorporating such inductive bias is generally found useful
for classical HMM and CRF models, we do not enforce any
such prior information. Here, we developed a new data-
driven prediction method, TSignal, that uses transformer-
based architectures both for the residue representation, as
well as the prediction network. We utilize rich representa-
tions of amino acid sequences obtained from a BERT lan-
guage model (LM), and further train the BERT model
together with self-attentive prediction methods.

Our approach aims to solve the SP type and CS prediction
tasks using a neural machine translation setting, instead of
the typically employed sequence tagging approaches. We
note that translation is a generalization of tagging, since tag-
ging is, in fact, the translation of sequences with identical in-
put and output sequence lengths, where inputs and outputs
have a one-to-one correspondence. The main advantage of
our setting is that labels at all positions in a sequence are
predicted based on all input sequence embeddings from the
encoder, thanks to the inner workings of the transformer
encoder-decoder architecture. On the other hand, a classical
tagging setting like the one developed in SignalP version 6.0
(Teufel et al. 2022) has the advantage of a clear one-to-one
mapping from input token ai to its corresponding output la-
bel yi, since the model only ever receives the embedding cor-
responding to position i when predicting yi. We show that
concatenating the same positional encodings to both the
encoder’s outputs and the decoder’s inputs of a transformer-
based model allows it to easily identify such mappings, and
this plays a crucial role in our improved CS prediction per-
formance (please refer to Supplementary Section 3 for more
details). Lastly, although we have observed this to be highly
unlikely in practice, formulating the problem as a transla-
tion setting implies that label predictions may have different
lengths than the input. Nevertheless, solving this issue can
trivially be achieved by trimming the sequences that are too
long and by never predicting an “end of sequence” tag (i.e.
setting its probability to 0), such that output label sequences
have at least the sequence length of the input. Using data
from large databases of known SPs we demonstrate that our
model achieves state-of-the-art performance compared to

previous best approaches, including SignalP version 6.0
(Teufel et al. 2022).

2 Materials and methods

A protein is defined by its amino acid sequence a ¼
ða1a2 . . . anÞ together with an associated label for each amino
acid residue y ¼ ðy1y2 . . . ynÞ. We consider the following eight
labels, yi 2 Y ¼ fSec/SPase I, Sec/SPase II, Sec/SPase IV, TAT/
SPase I, TAT/SPase II, intracellular, transmembrane (TM),
extracellularg. The model distinguishes between five different
SP types: secretory pathway directed peptides cleaved by
SPase I, II, and IV, and TAT pathway-directed peptides
cleaved by SPase I and II. Our model solves the cleavage site
prediction task by predicting sequences of labels. The model
predicts residue ai to be part of an SP if its predicted label ŷi

corresponds to one of the five SP types we train for. The pre-
dicted SP type is inferred from the label ŷ1 associated with res-
idue a1, while the cleavage site is determined by the first
residue ac that is predicted to have one of the three non-SP
labels ŷc 2 fintracellular, TM, extracellularg following a se-
quence of predicted SP labels. This denotes that the cleavage
site is located between residues ac�1 and ac. Additionally,
each sequence a originates from one of the four organism
groups g 2 feukarya; gn� bacteria; gp� bacteria; archaeag,
corresponding to eukaryotes, gram-negative bacteria, gram-
positive bacteria, and archaea. Thus, each data item can be rep-
resented by a triplet ða; y; gÞ.

The structures of the SP types predicted by TSignal are
shown in Fig. 1. Although we do not explicitly utilize this in-
formation, we show that the model can intrinsically learn this
type of structural information and generalize on diverse pro-
tein sequences.

2.1 Transformer models

Contrary to previous approaches that use HMMs or CRFs,
our transformer model does not have any hard-coded knowl-
edge of SP structures. Instead, TSignal builds on the trans-
former model architecture which was initially developed for
sequence translation tasks in the natural language field
(Vaswani et al. 2017). We use a contextual protein embed-
ding model trained on 216 million protein sequences called
ProtBERT (Elnaggar et al. 2021). ProtBERT is a character-
level adaptation of the auto-encoder BERT LM that is trained
only on the masked-token prediction task. We use this model
to retrieve the 1024 dimensional representations of all resi-
dues in each amino acid sequence, resulting in an R

1024�N rep-
resentation for each sequence, with N being the maximum
sequence length. To further adjust the ProtBERT model for
SP sequences, we integrate the BERT model as part of our
model and train it together with the sequence prediction
model, using a similar approach to SignalP version 6.0. The
1024�N sequence representations retrieved by ProtBERT
are used as keys and values for the transformer decoder, along
with the label queries in the multi-head attention blocks of the
decoder. This way, we effectively train a sequence-to-
sequence transformer architecture, as described by Vaswani
et al. (2017). TSignal model architecture is shown in Fig. 2
and described in more detail below.

2.1.1 Encoder model

Transformer encoders use initial embedding layers to map
tokens from one-hot vectors to dense representations. The

Figure 1. Examples of input sequences and associated labels for TSignal.

Secretory path-directed SPs cleaved by SPaseI have all three of the N, H,

and C subregions. TAT-directed proteins present the twin-arginine (RR)

motif in their SPs and the SP also has its N and H regions delimited by the

RR motif. SPase II cleaved proteins do not present a proper C region but

instead have three amino acids belonging to a region called lipobox (L),

which is always followed by a Cys residue. SPase IV cleaved SPs only

have a small BR at the N-terminus. Amino acid sequence of an

intracellular protein that does not contain an SP is included as a reference.
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positional encoding and multi-head attention mechanism are
then able to extract contextual vector representations of these
input tokens.

Initial embedding: Each amino acid ai of a sequence a ¼
ða1a2 . . . anÞ is initially one-hot encoded into 21-dimensional
standard unit column vector cðiÞ (from 20 unique amino acids
and one additional padding token). For the whole sequence a
this results in a binary one-hot encoded matrix A ¼
ðcð1Þ; . . . ; cðnÞÞ of size 21-by-n. If n is smaller than the maxi-
mum sequence length N in a mini-batch, then A is padded
with N—n one-hot vectors corresponding to an additional
padding token, forming a matrix of size 21-by-N. The initial
embedding involves a linear transformation that maps each
one-hot encoded amino acid to a dense d-dimensional (we use
d¼ 1024 but we use symbol d in method description for clar-
ity) representation using a matrix Wa 2 R

d�21. Collectively
for the whole sequence a this can be written as a matrix multi-
plication I ¼WaA 2 R

d�N.
Positional encoding: The encoder model uses a linear posi-

tional encoding (this linear transformation is a very large in-
put embedding layer that can encode positions in much larger

sequences, but we preserve linear algebra notation for consis-
tency). Since the amino acid indices will always be ordered
from 1 to N (we assume the left-most amino acid is always
the first N-terminus residue), we can directly define our posi-
tional representation for the amino acids as WP 2 R

d�N. With
the above definitions, the initial positionally encoded embed-
ding matrix for a sequence is:

E0 ¼ I þWP ¼WaAþWP: (1)

Transformer encoder: Representation ET
0 ¼ ðe0;1; . . . ;

e0;NÞT 2 R
N�d from Equation (1) is then passed to multiple

transformer block layers, where e0;i is the d-dimensional ini-
tial representation of amino acid residue at position i. The
core idea of transformer blocks is to process sequential infor-
mation using only attention mechanisms, without any
recurrent neural networks. In particular, transformers use
dot-product attention. In one attention head h of layer l, at-
tention weights wl;h

ij for a query residue i and key residue j are
computed using the d-dimensional residue representations
from the previous layers el�1;i and el�1;j. This is done by first

Figure 2. TSignal architecture consists of ProtBERT encoder and multi-head attention-based transformer decoder. Initial embedding involves a dense

representation and a linear positional encoding. ProtBERT embeddings are concatenated with organism group and positional representations prior to

using them as key and value vectors in the decoder, together with query vector from dense representations of the sequence labels. See Section 2.1 for

an in-depth description of the TSignal model.
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mapping the two vectors el�1;i and el�1;j into a dot-product
suitable space and then computing their dot product

wl;h
ij ¼ ðeT

l�1;iWQ;l;hÞ � ðeT
l�1;jWK;l;hÞ 2 R; (2)

where � denotes the vector dot-product and WQ;l;h;WK;l;h 2
R

d�d=H are the query and key linear layers of attention head h
at layer l, and H is the total number of heads per layer (model
dimension d is usually chosen to be exactly divisible by H).
For a given query residue i, the attention weights wl;h

ij ; j 2
f1; 2; . . . ;Ng are normalized with softmax transformation,
denoted as ~wl;h

ij . These attention weights are then used to com-
pute a weighted average of the vectors formed by a third lin-
ear mapping (called value matrix) WV;h;l 2 R

d�d=H of the
intermediate vectors that map the previous layer representa-
tions el�1;j into value vectors

e0l;h;i ¼
XL

j¼1

~wl;h
i;j ðeT

l�1;jWV;l;hÞ: (3)

Multiple such attention “heads” are used in each layer,
allowing the model to attend, at each step, to various parts of
the sequences using different pairs of linear mappings
ðWQ;l;h;WK;l;hÞ, where h 2 f1; . . . ;Hg and l 2 f1; . . . ;Lg.
Let’s define the key, query, and value matrices computed by
an attention head at layer l as

Kl;h ¼ ET
l�1WK;l;h

Ql;h ¼ ET
l�1WQ;l;h

Vl;h ¼ ET
l�1WV;l;h:

(4)

Note that the product Ql;hKT
l;h gives all the unnormalized

weights wl;j
ij from Equation (2). The weighted average from

Equation (3) for head h can be written compactly, for the
whole sequence as

E0l;h ¼ AttentionðQl;h;Kl;h;Vl;hÞ ¼ Softmax
Ql;hKT

l;hffiffiffiffiffiffiffiffiffiffi
d=H

p
 !

Vl;h;

(5)

and the resulting sequence representations E0l;h 2 R
N�d=H from

all heads h 2 f1; . . . ;Hg are stacked ðE0l;1; . . . ;E0l;HÞ 2 R
N�d,

and then multiplied with an output matrix WO;l 2 R
d�d to ob-

tain the intermediate matrix representation E0l 2 R
N�d.

Finally, the intermediate representation E0l given by the
multi-head attention at layer l is passed to a two-layered feed-
forward network of the form FðE0lÞ ¼ ReLUðE0lW1ÞW2.
Usually, W1 is chosen to expand the model’s dimension from
d to ed, W1 2 R

d�ed , with ed being some expanding dimen-
sion, ed > d, and W2 2 R

ed�d maps the vectors back to di-
mension d (the network applies this transformation to each
residue, individually). Skip connection and layer normaliza-
tion layers are also added from El�1 to E0l and from E0l to the
output of the feed-forward network block, giving the layer’s
output representations El. The whole process is repeated for
each layer of the network. For notational simplicity, we omit-
ted the bias terms in our notations, but all linear operators ex-
cept the initial embedding, positional encoding, and the linear
transformations in the multi-head attention block use a bias

term. We refer to Vaswani et al. (2017) for further details of
attention mechanisms and to Elnaggar et al. (2021) for details
of the ProtBERT model.

2.1.2 Decoder model

Transformer decoders use similar input embedding and posi-
tional encoding layers as the encoder, but their inputs are
now the labels.

Initial Embedding: In the first step, decoder processes the
output labels y ¼ ðy1; . . . ; ynÞ similarly as the encoder pro-
cesses the residues in the sequence a ¼ ða1; . . . ; anÞ. An impor-
tant difference is that we append y0 ¼ fBOSg (beginning of
sequence) token, which will be used by the model to predict
the first label y1. The matrix Y 2 R

9�ðNþ1Þ consisting of the
one-hot label representations as columns is mapped to a dense
representation using ID ¼WyY 2 R

d�ðNþ1Þ, where Wy 2
R

d�9 is the initial label embedding layer for all nine unique
labels (eight real labels and fBOSg).

Positional encoding: We use a different type of positional
encoding for the decoder part of our model. One alternative
to modeling positional vectors using a linear layer, as in
Section 2.1.1, is to use a sinusoidal function. The resulting
fixed matrix WS 2 R

dS�ðNþ1Þ (for a sequence of length N with
an additional element y0 ¼ fBOSg) is defined element-wise
as:

WSð2kþ 1; iÞ ¼ sin ði=100002k=dSÞ
WSð2kþ 2; iÞ ¼ cos ði=100002k=dSÞ;

(6)

where 2kþ 1 and 2kþ 2 refer to the odd and even dimen-
sions in our dS-dimensional positional encoding vector (here,
dS 6¼ d) with k 2 f0; . . . ; dS=2� 1g and i 2 f1; . . . ;N þ 1g is
the sequence residue index.

For the decoder, the fixed dS-dimensional positional informa-
tion WS is concatenated with the d-dimensional vector represen-
tations of the labels ID. The initial label sequence representation
matrix is given by D0 ¼ ID�WS 2 R

ðdþdSÞ�ðNþ1Þ, where �

denotes the concatenation operator and the sequence length is
increased by one to Nþ 1 because of the additional y0 token.
We choose this sinusoidal positional encoding for the decoder as
it does not need any further training. Because of the limited
amount of data, we hypothesize that another linear positional
encoding would be difficult to converge well (note that the linear
positional encoding in the encoder is already pre-trained on large
amounts of data).

We concatenate an additional d-dimensional vector g 2
R

d�1 representing the organism group of the input sequence
(obtained using a linear layer WG 2 R

d�4) to the encoder’s fi-
nal layer residue representations EL. The result is also
concatenated with the same sinusoidal positional encoding
WS, in order to have the same type of positional information
in the label and residue representations, forming
E ¼ ðEL�gÞ�WS 2 R

ðdþdSÞ�ðNþ1Þ, where the first concatena-
tion is along the sequence dimension N for EL 2 R

d�N and
gT 2 R

d�1 and the second one along the model’s dimension d
(see Supplementary Section 3 for the predictive performance
effect of the additional positional encoding used on the
encoder’s outputs).

Transformer decoder: Compared to the encoder layers, the
decoder contains both a self-attention module, as well as an
additional cross-attention layer which “looks” at the input
vectors from the encoder. The first step of a decoder layer is a
self-multi-head attention, similar to the transformer encoder.
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Label representations are contextualized using the matrix
from the previous layer Dl�1, as described in Equations
(4)–(5) (with El replaced by Dl). We denote this intermediate
matrix of the decoder as D0l 2 R

ðdþdSÞ�ðNþ1Þ. The label vector
representations of D0l are then used as queries in the second
multi-head attention layer, together with the representations
from the encoder E 2 R

ðdþdSÞ�ðNþ1Þ. Concretely, similarly as
in Equation (4), values from D0l mapped into queries are at-
tending to key and value mappings from E 2 R

ðdþdSÞ�ðNþ1Þ to
yield an additional intermediate representation D00l. Lastly, a
two-layered feed-forward network retrieves the next layer’s
representations of the decoder Dl 2 R

ðdþdSÞ�ðNþ1Þ, like the
ones in the encoder layers.

During training, the self-attention module in the decoder
layers computes all contextual values at once (all pairs (yi, yj) are
considered) and therefore vectors representing yi have access to
yj; j � i. This induces undesired behavior, as we wish to extract
the amino acid labels based only on the previous labels. This is-
sue is addressed by adding an additional fBOSg (beginning of
sequence) token at the start of the label sequences and using ap-
propriate masking. The mask is a matrix filled with zeros and
�1 above the diagonal and it can be added to the unnormalized
attention weights Ql;hKT

l;h (see Equation (5)). This ensures that
the attention weights of current and future labels will be 0, and
y1 will be predicted based only on the input retrieved by the en-
coder (as fBOSg does not contain any label information).
Padding also uses a similar masking approach, where the atten-
tion to fPADg tokens are zeroed.

The type of SP can only be correctly predicted when consid-
ering all residues forming an SP, and this requires the model
to capture long range context. In contrast, the exact cleavage
site prediction can be hindered by the fact that close residues
have similar representations because of the context, and there-
fore we concatenate a one-hot representation of residue k for
the associated label prediction ŷk. We hypothesize that this
allows the model more freedom in terms of the optimal
amount of context it can add in its representations, and we
observed consistent improvements when using this addition,
which supports this claim.

Label predictions yk are finally computed based on the
encoder’s last layer representations ðeL;1; eL;2; . . . ; eL;NÞ, the
previously predicted labels during inference (and previous
true labels during training) ðy0; ŷ1; . . . ; ŷk�1Þ, as well as an ad-
ditional one-hot encoded residue cðkÞ at the position where la-
bel k is being predicted. During inference, the model predicts
ŷk sequentially based on its own generated label sequence
ðy0; ŷ1; . . . ; ŷk�1Þ as well as the encoder representations

pðykÞ ¼ pðykjŷk�1; ŷk�2; . . . ; ŷ1; y0; eL;1; . . . ; eL;N; c
ðkÞÞ; (7)

and ŷ1 will be predicted based the special token y0 ¼ fBOSg,
that we also use during training. Concretely,
pðykÞ ¼ Softmax

�
ðD3;k�ckÞTWO

�
, where D3;k 2 R

dþdS�1 is
the decoder’s last layer representation of the previous residue
label (since the outputs are shifted to the right by one position
due to the fBOSg token), ck 2 R

21�1 is the one-hot represen-
tation of the kth amino acid and WO 2 R

dþdSþ21�8 is a linear
layer.

2.2 Architecture details

We use a dropout of 0.1 on all transformer decoder weights.
The position-wise feed-forward network of our decoder has
an almost fourfold expanding dimension, from the original

1152 to 4096 (d þ dS ¼ 1152, from the original representa-
tion d¼ 1024 and the concatenated sinusoidal positional in-
formation dS¼ 128). The ProtBERT encoder and transformer
decoder have 30 and 3 layers of 16 attention heads, respec-
tively. We initialize the decoder parameters with the Xavier
Uniform initializer described by Glorot and Bengio (2010).

For better generalization, we used stochastic weight averag-
ing which helps avoid sharp local minima solutions (Izmailov
et al. 2018). We chose constant learning rates of 10�5 and
10�4 for ProtBERT and decoder parameters, respectively, en-
suring as much exploration of the local minima as possible,
without risking divergence. SWA weights are updated after
each training epoch. For further details and insights on the ef-
fect of SWA we refer to Supplementary Section 4.

We also experimented with three other model variants that
utilize the ProtBERT model in different ways. Based on the F1
scores from a CS prediction comparison, we chose the model
setup presented in Section 2.1. See Supplementary Section 7
for details.

A crucial aspect of TSignal’s high performance was tuning
the LM that computes amino acid embeddings, ProtBERT.
Predicting a specific position where a CS occurs should evi-
dently account for the exact location of residues in a SP.
However, this information can become blurred due to the
heavy contextualization of ProtBERT. Therefore, further tun-
ing the LM significantly increases performance, as shown in
the Results Section 3.3.

2.3 Dataset

We use the same dataset D as Teufel et al. (2022), which con-
tains sequences from Uniprot (UniProt Consortium 2019) and
Prosite (Sigrist et al. 2013) for proteins containing SPs as well as
UniProt and TOPDB (Dobson et al. 2015) for soluble and TM
proteins, where only the expert-reviewed sequences are consid-
ered. The dataset contains 19 174 protein sequences grouped
into four organism groups: eukaryotes (1995 SPs and 14 095
non-SPs), gram-negative bacteria (1274 SPs and 898 non-SPs),
gram-positive bacteria (496 SPs and 223 non-SPs), and archaea
(84 SPs and 109 non-SPs). Every residue in each protein se-
quence has an annotated label that tells whether the residue
belongs to the mature protein or the SP which will be cleaved, as
well as the type of SP (yi 2 Y). We use the same three-fold ho-
mology-based partitioning D ¼ ðD1;D2;D3Þ, with the excep-
tion that we further split each partition into
Di ¼ ðDi;train;Di;testÞ, where Di;train have 90% of the original Di

and Di;test the remaining 10%. We then train the model on
Di;train;Dj;train, validate on Di;test;Dj;test and then test on
Dk ¼ ðDk;train;Dk;testÞ. We, therefore, train and validate on dif-
ferent homology partitions than the test partition, ensuring a fair
comparison against SignalP version 6.0.

We do not use all the sequences in D for the benchmark
comparisons. Instead, we compare the predictive performance
of TSignal and all other models on a benchmark subset
DB � ðD1 [ D2 [ D3Þ. DB was created in SignalP version 5
(Almagro Armenteros et al. 2019) such that sequences in DB

have at most 25% sequence identity to the training dataset
used by DeepSig (Savojardo et al. 2018), and therefore all
comparisons between TSignal, DeepSig, and SignalP version
6.0 are fair. Moreover, we point out that SignalP version 6.0
method has a similar complexity, as it also tunes the
30-layered transformer encoder ProtBERT. As such, the two
methods give an objective comparison between structured
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and unstructured computational methods’ performance on
the SP prediction tasks.

2.4 Evaluation

For cleavage site prediction, we use precision and recall as our
main performance evaluation metrics. The precision and re-
call are computed for each SP type and organism group indi-
vidually. We report the CS prediction scores at various
tolerance levels as this should give a more detailed perfor-
mance evaluation of the models (e.g. it allows us to distin-
guish between models predicting a CS within a distance of 1
and 2 from the true CS). Additionally, CS positions can have
erroneous or uncertain annotations (Almagro Armenteros
et al. 2019). If this happens, we assume it would be likely for
the true, biological cleavage sites to be within a small distance
of these annotations. We consider a cleavage site prediction to
be correct if ip 2 ½ic � tol; ic þ tol�, where ip is the predicted in-
dex of the cleavage site, ic is the true (annotated) index and
the tolerance tol 2 f0;1;2;3g. Additionally, a cleavage site is
only considered correct if the predicted SP type is correct. For
example, in the case where an SP exists in a sequence but the
predicted SP type is not correct, the CS prediction is
accounted as both a false positive (for the SP type which is
wrongly predicted) and a false negative (for the true SP type).
To have a single metric for the model’s performance, we use
F1 score defined as F1 ¼ 2�prec�rec

precþrec . To summarize the results
across all SP types and organism groups, we report the aver-
age F1 score and weighted F1 score (weighted by the number
of data points in each group).

To assess the SP presence prediction performance, we use
Matthew’s correlation coefficient (MCC). We compute two
separate metrics, MCC1 which considers only soluble and
TM proteins as negative samples, and MCC2 which also
counts other SP types as negative samples.

3 Results

In Sections 3.1 and 3.2, we report benchmark comparisons
on Sec/SPase I and II and TAT/SPase I sequences (because
only these SP types have numeric results reported in Teufel
et al. (2022) from DB described in Section 2.3. This allows us
to directly compare our results to the results of the previous
state-of-the-art method, SignalP version 6.0. The CS-F1 per-
formance on the whole data D is reported in Supplementary
Section 8, where we also report the Sec/SPase IV and TAT/
SPase II performance.

In addition to SignalP version 6.0 comparisons, we also re-
port the performance of a few other popular HMM-based SP
prediction methods: DeepSig (Savojardo et al. 2018), PRED-
TAT (Bagos et al. 2010), LipoP (Juncker et al. 2003), and
Phobius (Käll et al. 2004) on the DB data points. These addi-
tional results are obtained using their corresponding web serv-
ers. Since their training datasets likely contain similar
sequences to those found in DB, these results may be overesti-
mates when compared to TSignal, SignalP versions 6.0, and
DeepSig (please refer to the corresponding publications for
further details on the other methods’ datasets).

3.1 SP prediction comparisons

We first assess the SP prediction performance on the sequen-
ces found in DB using the MCC metric. We evaluate MCC1
for TSignal, SignalP version 6.0 and a few other popular mod-
els for SP prediction: (Savojardo et al. 2018), PRED-TAT

(Bagos et al. 2010), LipoP (Juncker et al. 2003), and Phobius
(Käll et al. 2004). For the task of separating various types of
SPs (MCC2), we only compare TSignal to SignalP version 6.0
(because other models were not trained to distinguish all SP
types considered in this work). Figure 3 shows the MCC val-
ues (we report the numeric values achieved by TSignal and
SignalP version 6.0 in Supplementary Table S4). We observe
small but consistent improvements on Sec and TAT SPase I,
and a slight decrease in Sec/SPase II SP type prediction perfor-
mance compared to most of the previous approaches. As we
show later, the model learns to detect the RR motif for TAT
predictions, so the increased TAT/SPase I performance sug-
gests our model finds causal features, important for good gen-
eralization. The weighted MCC1 and MCC2 scores across all
organism groups and SP types for TSignal are 0.8520 6 0.016
and 0.8312 6 0.013, respectively, while SignalP version 6.0
has 0.8532 and 0.8263. We, therefore, note similar, or even a
slight improvement, on the SP type prediction accuracy com-
pared to the previous state-of-the-art method.

To further test TSignal’s ability to recognize difficult-to-
predict SPs, we assessed its capability in identifying four SP-
containing sequences that were earlier identified in a separate
study that will be published separately (J.Kellosalo & V.
Paavilainen, Personal communication; see Supplementary
Section 2 and Supplementary Fig. S1). These four sequences
were identified in a screen for functional SPs that mediate pro-
tein secretion in mammalian cells and were not recognized to
contain an SP by existing prediction methods. Distinctively,
all of these sequences contain basic amino acids dispersed
throughout the SP sequence. Basic residues are typically con-
tained at the N terminus of SPs, yet these previously unidenti-
fied sequences are sufficient to facilitate protein secretion in
human cells (Supplementary Fig. S2). We postulate that in
this case imposing specific transitions through structured pre-
diction models may hinder the prediction of unusual sequen-
ces. Here, we tested the same models we compare against for

Figure 3. A comparison of SP predictions for TSignal and other models on

the benchmark dataset DB using the average MCC metrics: MCC1 on left

and, MCC2 on right. The height of the bar plots represent the mean MCC

result across five different runs, and the approximated 95% confidence

interval is shown by the black vertical lines plotted on top of the bars.

Organism groups are shown on the x-axis, and the SP-type i.e. tested on

the y-axis. The benchmark dataset DB is homology partitioned only

between the train and test set of TSignal, SignalP version 6.0, and

DeepSig, and results for other models are likely overestimates. Missing

bars in the plots correspond to the respective model not being trained on

that particular organism group or SP type.
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the SP type and CS predictive performance using their pub-
licly available webservers: DeepSig, PRED-TAT, LipoP,
Phobius, and SignalP version 6.0. DeepSig classifies three of
these sequences as containing a TM domain and Phobius
reports a TM domain in all four sequences, but none of the
methods classifies any of those four sequences as containing
an SP. In contrast, TSignal predicts a TM domain in two of
the four sequences and correctly determines an SP in the other
two. The four sequences and their TSignal predictions are
reported in Supplementary Fig. S2.

3.2 Cleavage site prediction comparison

We now test the CS prediction accuracy using the CS-F1
score. We only compare against SignalP version 6.0 as the
other methods do not predict all three SP types considered.
Figure 4 shows that our model compares favorably to SignalP
version 6.0 for most organism groups and SP types on DB (we
report the numeric values of the F1 score, precision, and recall
in Supplementary Tables S1, S2, and S3). Particularly interest-
ing is that the cleavage site of Sec/SPase II SPs is more accu-
rately predicted by our fully data-driven model, although the
presence of Cys residues restricts the number of possible
cleavage sites, and should help structured prediction models.
We additionally note that TAT CS predictions are also better,
even though the CRF model SignalP version 6.0 is explicitly
trained to detect the twin-arginine motif. In terms of overall
performance, TSignal outperforms SignalP version 6.0 on the
majority of SP types and organism groups with a weighted F1
score of 0.8127 6 0.005 compared to SignalP version 6.0
0.7976 (with weights given by the occurrence frequency of
each SP type and organism group in the test folds). The final
overall CS prediction performance is therefore about three
standard deviations higher.

We also compare TSignal to PRED-TAT, LipoP, Phobius,
and DeepSig on Sec/SPase I and no-SP sequences from DB.
We only use Sec/SPase I sequences since all these models have
been trained (at least) on Sec/SPase I and no-SP sequences. We
report these results in Fig. 5. Note that DB was homology par-
titioned to DeepSig’s training data in Almagro Armenteros

et al. (2019), so comparing TSignal to it is fair, while all other
results may be overestimates, due to the lack of homology-
based test set partitioning of this experiment.

The predictions of TSignal are carried on diverse sequences,
as we predict the sequences on the homology split test set, and
from those extract the no-SP and Sec/SPase I sequences pre-
sent in DB. Although the models we compare against in Fig. 5
are likely trained on sequences that are similar to those we use
to test them, we still notice considerable improvements across
most tolerance levels for Sec/SPase I CS predictions, and there-
fore we can be fairly confident that our model outperforms
these previous methods. Note that we could not include
SignalP version 6.0 here, as predicting using their publicly
available web server would mean testing SignalP version 6.0
with its own training data.

3.3 Model performance analysis

To assess the ability of TSignal model to learn and generalize
useful and interpretable information about an SP when pre-
dicting its type and CS, we employ a similar approach as
Simonyan et al. (2014). As our training procedure is fully
data-driven, we investigate the model’s ability to learn the in-
formation which can be useful for structured prediction
models.

We define importance scores as the gradients of the pre-
dicted SP type or CS wrt. the input residues. Specifically, we
compute the gradients wrt. E0, defined in Equation (1), which
are the last non-contextualized residue representations. These
gradient values reflect how much the predicted probability
would change for slight changes in the input sequences.
Therefore, by comparing the absolute values of these gra-
dients, we are able to tell which residues were most important
in the final prediction. For detailed explanations of this exper-
iment, we refer to Supplementary Section 6.

We compute the average input importance scores for each
residue in aligned sequences. We investigate 26 TAT/SPase I
sequences that have the “RRXFLK” motif and 1682 Sec/
SPase II sequences. We align the TAT/SPase I sequences wrt.
the RR motif and the Sec/SPase II wrt. the Cys residue i.e.

Figure 4. A comparison of CS predictions between TSignal and SignalP

version 6.0 on the benchmark dataset DB using the average F1 score. The

height of the bar plots represents the mean F1 result across 5 different

runs, and the approximated 95% confidence interval is shown by the

black vertical lines plotted on top of the bars. Organism groups and

tolerance levels are shown on the x-axis, and the SP-type i.e. tested on

the y-axis. SignalP version 6.0 results were computed using the precision

and recall scores reported in their manuscript.

Figure 5. A comparison of CS predictions between TSignal and other

popular models. We use the publicly available website tools for each of

the tested models. The height of the bar plots represents the mean F1

result across five different runs, and the approximated 95% confidence

interval is shown by the black vertical lines plotted on top of the bars.

Tolerance levels and organism groups are shown on the x-axis and y-axis,

respectively. The results were computed using only Sec/SPI sequences

from the benchmark dataset DB , since the other models were not trained

for all SP types considered here.
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always present in the first position after the CS. We denote
icþ1 to be the first residue after the cleavage site. We compute
the input importance scores of the predictions for the test set,
to investigate whether this information is generalized on
sequences that are dissimilar to those used in the training.

In Fig. 6, the top panel shows how the model distinguishes
the twin-arginine motif. The twin-arginine motif clearly has a
high relative importance in the TAT prediction. We note that
the RR motif naturally has some sequence variation (Stanley
et al. 2000). Therefore changes in the corresponding residues
might give another valid RR motif configuration, which is
likely why the relative importance is not as high as the one
shown in the panel below. Additionally, the exact position of
the motif may also change without rendering the TAT SP
non-functional (note that the importance scores also depend
on the positional encoding). The bottom panel illustrates the
relevance of the cysteine residue (positioned at icþ1) for Sec/
SPase II CS predictions. We also align Sec/SPase I sequences
on the CS and plot them together. The red curve (Sec/SPase I)
shows no higher relative importance of the icþ1 residue com-
pared to the other residues surrounding the CS, whereas in
Sec/SPase II, there is a very clear spike on the position match-
ing the icþ1 (Cys residue).

Next, we evaluated how the performance of TSignal model
increases with the amount of training data. We do this by ran-
domly sampling an increasing number of sequences from the
datasets Di and Dj as the train-validation set and test on the
homology-split Dk. Figure 7 shows that the model perfor-
mance increases consistently as more training data is used,
while the variance of the score estimates decreases. Note that
at some point, newly added sequences (e.g. after using >50%
of the data) will likely have similar corresponding datapoints
(e.g. high sequence identity) already in the training data. The
curves, therefore, naturally flatten as less diverse sequences
are added to the training data. We assume that as more di-
verse SP-protein pairs become available, the performance of
our architecture will also steadily increase.

We also check the model’s probability calibration using the
expected calibration error (Guo et al. 2017). To a large de-
gree, the confidence scores of the model reflect the actual

probability of the given prediction being correct (see
Supplementary Section 5).

A crucial aspect of TSignal’s performance was determined
by ProtBERT’s fine-tuning. In Fig. 8, we show the test CS pre-
diction performance on Sec/SPase I peptides for all organism
groups, when the parameters of ProtBERT are tuned or fro-
zen, respectively. Notably, TSignal’s performance increases
faster with the tolerance when ProtBERT is frozen, which
supports the hypothesis that the high amount of context hin-
ders the CS predictions (the model is able to detect only a win-
dow where the CS occurs but cannot accurately predict
specific locations). A detailed overview of this experiment is
described in Supplementary Section 7.

Finally, we briefly analyse the effect of the organism
group information g, which we model as a d-dimensional
vector, and concatenate it along the residue embedding se-
quence (see Fig. 2). Similar to SignalP version 6.0 by Teufel
et al. (2022), the predictive performance difference is insig-
nificant (please refer to Supplementary Section 9 for the
analysis).

Figure 6. Input importance scores for (top) SP type predictions for TAT/

SPase I and (bottom) CS predictions for Sec/SPase I and Sec/SPase II. On

the top panel the sequences are aligned by the twin-arginine motif and it

is shown how the model distinguishes the input embedding

representation (denoted as E0 in this work) of the RR motif. On the

bottom panel the sequences are aligned by the residue icþ1 following the

CS. For Sec/SPase II residue icþ1 is cysteine and it has a high relative

importance compared to the Sec/SPase I.

Figure 7. Performance of the TSignal model as a function of the amount

of training data. F1 score is evaluated after training the model on 25%,

50%, 75%, and 100% of the full training data while keeping the validation

and test data fixed. The test-train procedure is repeated 5 times, and we

report the mean and 95% confidence interval (the shaded areas). Results

are plotted for tolerances zero and three, for Sec/SPase I SPs from all

organism groups.

Figure 8. Sec/SPase I CS prediction performance with and without the

parameters of ProtBERT being fine-tuned.
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4 Conclusion

We introduce, to our knowledge, the first deep learning model
for SP and cleavage site prediction, which does not use known
biological properties of SPs explicitly (see Fig. 1). Our results
show that a transformer-based model provides competitive SP
prediction results and improves the accuracy of cleavage site
prediction compared to the current state-of-the-art method.
Indeed, on several organism groups, our transformer-based
model outperforms previous methods. Our analysis also dem-
onstrates that the model performance increases consistently
with the amount of data. In other words, as more and more
experimentally verified SP sequences will become available,
data-driven end-to-end training of expressive deep learning
models is likely to further improve the predictive perfor-
mance. We also note that the amount of variability in
TSignal’s performance is small, which indicates reliable per-
formance evaluations as well as robust predictions.

TSignal correctly identifies the presence of SPs in two out of
four novel SP-protein sequences for which previously devel-
oped SP prediction methods could not make correct predic-
tions, showing that unstructured prediction methods have
complementary applications in the field.

Model interpretability is generally difficult to obtain for deep
learning models and they are usually regarded as “black-boxes.”
We show that our model generalizes biologically relevant infor-
mation on homology partitioned data. In addition to the state-
of-the-art cleavage site prediction performance, this further illus-
trates our model’s promising generalization potential on diverse
sequences. Furthermore, it represents another argument for fully
data-driven models, as information that was previously used in
structured prediction models is learned by a model using a fully
data-driven approach. We also note that hypotheses regarding
the importance of various other motifs or specific residues could
also be tested using the saliency map approach.

Supplementary data

Supplementary data are available at Bioinformatics online.
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