
RYR2-ryanodinopathies: from calcium 
overload to calcium deficiency
Christian Steinberg  1*, Thomas M. Roston  2, Christian van der Werf  3†, 
Shubhayan Sanatani  4, S. R. Wayne Chen  5, Arthur A.M. Wilde  3†, 
and Andrew D. Krahn  2*
1Institut universitaire de cardiologie et pneumologie de Québec, Laval University, 2725, Chemin Ste-Foy, Quebec G1V 4G5, Canada; 2Centre for Cardiovascular Innovation, Division of 
Cardiology, St. Paul’s Hospital, University of British Columbia, 211-1033 Davie Street, Vancouver, BC, V6E 1M7, Canada; 3Amsterdam UMC, Department of Clinical and Experimental 
Cardiology, University of Amsterdam, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; 4Division of Cardiology, Department of Pediatrics, BC Children’s 
Hospital, University of British Columbia, Vancouver, Canada; and 5Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada

Received 19 February 2023; accepted after revision 2 May 2023

Abstract The sarcoplasmatic reticulum (SR) cardiac ryanodine receptor/calcium release channel RyR2 is an essential regulator of car
diac excitation–contraction coupling and intracellular calcium homeostasis. Mutations of the RYR2 are the cause of rare, 
potentially lethal inherited arrhythmia disorders. Catecholaminergic polymorphic ventricular tachycardia (CPVT) was first 
described more than 20 years ago and is the most common and most extensively studied cardiac ryanodinopathy. Over 
time, other distinct inherited arrhythmia syndromes have been related to abnormal RyR2 function. In addition to CPVT, 
there are at least two other distinct RYR2-ryanodinopathies that differ mechanistically and phenotypically from CPVT: 
RYR2 exon-3 deletion syndrome and the recently identified calcium release deficiency syndrome (CRDS). The pathophysi
ology of the different cardiac ryanodinopathies is characterized by complex mechanisms resulting in excessive spontaneous 
SR calcium release or SR calcium release deficiency. While the vast majority of CPVT cases are related to gain-of-function 
variants of the RyR2 protein, the recently identified CRDS is linked to RyR2 loss-of-function variants. The increasing number 
of these cardiac ‘ryanodinopathies’ reflects the complexity of RYR2-related cardiogenetic disorders and represents an on
going challenge for clinicians.

This state-of-the-art review summarizes our contemporary understanding of RYR2-related inherited arrhythmia disor
ders and provides a systematic and comprehensive description of the distinct cardiac ryanodinopathies discussing clinical 
aspects and molecular insights. Accurate identification of the underlying type of cardiac ryanodinopathy is essential for 
the clinical management of affected patients and their families.
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What’s new?

• This state-of-the-art review summarizes our contemporary under
standing of RYR2-related inherited arrhythmia disorders and pro
vides a systematic and comprehensive description of the distinct 
cardiac ryanodinopathies that have been identified over the past 
decades.

• Accurate identification of the underlying type of cardiac ryanodino
pathy is essential for the clinical management of affected patients and 
their families.

Introduction
The sarcoplasmatic reticulum (SR) cardiac ryanodine receptor/calcium 
release channel RyR2 is an essential regulator of cardiac excitation–con
traction coupling and intracellular calcium homeostasis.1 The RYR2 gene 
was first linked to cardiac disorders when studies by Swan et al. and 
Priori et al. identified RYR2 mutations as a genetic cause of catecholami
nergic polymorphic ventricular tachycardia (CPVT) more than 20 years 
ago.2,3 Since that time, other distinct inherited arrhythmia syndromes 
have been related to abnormal RYR2 function (Figure 1). The increasing 
number of these cardiac ‘ryanodinopathies’ reflects the complexity of 
RYR2-related cardiogenetic disorders and represents an ongoing chal
lenge for clinicians. In addition to CPVT, there are at least two other 
distinct RYR2-ryanodinopathies: exon 3 deletion syndrome (E3DS) 
and calcium release deficiency syndrome (CRDS; Figure 1). The patho
physiology of the different cardiac ryanodinopathies is characterized by 
complex mechanisms resulting in spontaneous diastolic SR calcium re
lease or SR calcium release deficiency.

The aim of this review is to provide an overview about the clinical 
aspects and molecular insights of the known cardiac ryanodinopathies.

Molecular and genetic aspects of RYR2
The cardiac ryanodine receptor (RyR2) is a calcium-release channel 
encoded by the RYR2 gene which is located on chromosome 1 
(1q42.1-q43) and comprises 105 exons.1,4 RYR2 translates into a large 
protein of 565 kDa that forms a large homotetrameric channel 
(∼2.2 MDa) that is located within the membrane of the SR 
(Figure 2).1,4 The N-terminal part of the protein accounts for ∼90% 
of the entire protein mass, while the actual transmembrane pore re
gion accounts for only ∼10%.1,5 The complex regulation of the RyR2 
channel activity is mediated by Ca2+ itself and numerous other mod
ulators including complex protein interactions at both the cytosolic 
and intraluminal side (Figure 2B).5 An in-depth discussion of the com
plex function and regulation of the RyR2 channel would be beyond the 
scope of this article, and these aspects have been reviewed else
where.6–8

The vast majority of pathogenic RYR2 mutations are missense var
iants (86–92%) (Human Gene Mutation Database version 2022.1, 
ClinVar April 2021).9–11 Bioinformatic data and in silico tools suggest 
that RyR2 poorly tolerates genetic variants that induce loss-of-function 
(LOF) properties.12 However, limitations of these predictive data as 
well as the significant rate of genetic background noise in the healthy 
population are challenges that may lead to incorrect interpretation of 
rare RYR2 variants.13,14 To compensate for this problem, approaching 
CPVT diagnosis with a probabilistic mindset can help to overcome 
the estimated 3% incidence of benign heterozygous rare RYR2 variants 
in the general population.14–16 In the case of CPVT, it has been shown 
that using a Bayesian approach that considers the pretest probability of 
disease may be useful in reclassifying variants of unknown significance.17

Keeping in mind the inherent limitations of statistical genetic methods 
(including Bayesian), it is important to highlight that diagnostic certainty 

can eventually only been achieved using a comprehensive multifactorial 
approach integrating statistical genetics into phenotype information (in
cluding familial segregation) and ideally functional data from cellular or 
animal models.

Catecholaminergic polymorphic 
ventricular tachycardia
Clinical aspects
Cardiac ryanodinopathies are rare disorders, with CPVT being the 
most common and most extensively studied phenotype. The estimated 
prevalence of classical CPVT is probably less than 1:10 000.18

Catecholaminergic polymorphic ventricular tachycardia is a pure chan
nelopathy that is not associated with structural heart disease. 
Ventricular arrhythmia is characterized by multifocal and polymorphic 
ventricular ectopy and ventricular tachycardia/ventricular fibrillation 
that is frequently triggered by adrenergic stimulation. Typical clinical 
manifestations of CPVT include syncope or sudden cardiac arrest dur
ing exercise or with emotional triggers.18–20

In symptomatic patients, CPVT usually manifests during childhood 
with a median age of disease onset at 10–11 years; however, late onset 
during the 3rd or 4th decade has also been reported.21–24 Data from 
the international paediatric CPVT registry suggest that three quarters 
of symptomatic cases present with syncope and a quarter with sudden 
cardiac arrest.21,23,25 A family history of unexplained sudden cardiac 
death in individuals younger than 40 years is present in up to 30% of 
probands.20,26 However, the high symptom burden reported in many 
studies is often explained by proband-enriched cohorts and that the 
clinical spectrum of CPVT shows variable (typically mutation- 
dependent) phenotype expression and penetrance including a substan
tial proportion of more benign forms.27 For example, large CPVT kin
dreds, most notably related to the R420W variant in the Netherlands 
and the G357S variant in the Canary Islands, demonstrate that fairly be
nign familial forms of CPVT exist when extensive screening is 
undertaken.28,29

Unlike other hereditary channelopathies, the resting ECG in CPVT is 
normal. Prominent U waves and relative, asymptomatic sinus bradycar
dia on resting ECGs have been reported by some authors.19,24,30,31

Subclinical chronotropic insufficiency unmasked by exercise treadmill 
testing has been described in small series of paediatric patients with 
CPVT.32 At least in paediatric cohorts, subclinical sinus node dysfunc
tion off beta blocker therapy has been associated with increased ven
tricular arrhythmia score on treadmill testing and seems to be a risk 
predictor for arrhythmic events during follow-up.32

Exercise treadmill testing is the gold standard to unmask 
CPVT-related ventricular ectopy. Typical findings include a progres
sive burden of ventricular ectopy, with often a clear window of elec
trical vulnerability occurring early in exercise and before maximal 
exercise.33 The typical exercise threshold to unmask ventricular ecto
py or tachycardia is a heart rate window from 110–150 b.p.m.24,33,34

With ongoing exercise, the ectopy burden may eventually decrease in 
a subset of CPVT patients.35 Ventricular ectopy typically starts with 
isolated, late-coupled premature ventricular contractions (PVCs) 
with increasing complexity (multifocal and/or bidirectional PVCs, 
and ventricular couplets/triplets) that may result in non-sustained 
or sustained polymorphic or bidirectional ventricular tachycardia 
(Figure 3). Although bidirectional ventricular tachycardia has been re
cognized as a signature arrhythmia of CPVT (Figure 3), its true preva
lence remains unknown; it appears much less common than 
previously reported.20,23 QT dynamics at rest and during exercise 
are strictly normal in CPVT.23

In addition to ventricular arrhythmias, individuals with CPVT may 
also develop various types of supraventricular arrhythmias including at
rial tachycardia, atrial flutter, or atrial fibrillation all reflecting the 
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underlying abnormal calcium handling.7,19,36 In the context of CPVT, 
this may even result in atypical clinical scenarios such as the manifest
ation of atrial fibrillation during early infancy.37

Diagnosis of CPVT relies on appropriate phenotype assessment in 
conjunction with comprehensive genetic testing. Additional tools like 
a recently published CPVT scoring algorithm (see Supplementary 
material online, Figure S1) may facilitate the accuracy of CPVT diagnosis, 
in particular in suspected CPVT patients with RYR2 variants of unknown 
significance.17 Referral to a specialized cardiogenetic clinic is recom
menced for all individuals with suspected or confirmed CPVT to ensure 
adequate diagnosis, including interpretation of genetic test results, 

optimizing medical treatment, stratification for the risk of sudden car
diac death, and appropriate family screening.38

The cornerstone of CPVT management is appropriate beta blocker 
treatment. Nadolol, an unselective beta blocker, is the most effective 
agent to prevent breakthrough arrhythmia in CPVT and should be ti
trated to target daily doses of at least 1 mg/kg, but a goal of 
≥1.5 mg/kg is ideal if tolerated and/or signs of CPVT are still present 
on exercise testing.33,39 Nadolol access can be challenging in some 
countries, and propranolol is a recommended alternative.

In the case of beta blocker intolerance or failure despite adequate 
dosing, flecainide should be added (target dose of 2.0–3.0 mg/kg per 

Cardiac
Ryanodinopathies (RYR2)

Exon 3 deletion
syndrome

(E3DS)

Catecholaminergic
polymorphic
ventricular

tachycardia (CPVT)

Calcium release
deficiency syndrome
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Figure 1 Cardiac ryanodinopathies. CPVT, catecholaminergic polymorphic ventricular tachycardia; CRDS, calcium release deficiency syndrome; 
E3DS, RYR2 exon-3 deletion syndrome.
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day).28,30,40,41 Some patients will experience cardiac breakthrough 
events despite optimized antiarrhythmic medication. Invasive treat
ment options include left cardiac sympathetic denervation (LCSD) 
that should be considered in individuals with drug refractory CPVT, in
tolerance or non-adherence to drug therapy, and some very high risk 
individuals in addition to standard medication.42–44 When performed 
by experienced centres, LCSD is highly effective, reducing the risk of 
major cardiac events by 70–90% and the risk of appropriate implantable 
cardioverter defibrillator (ICD) shocks by 93%.44–47

Exercise stress testing is integral to optimizing these therapies. Early 
data showed that suppression of ventricular ectopy during exercise test
ing was associated with a lower risk of events and that over time, serial 
exercise testing results are generally reproducible.39,48 Emerging data 
also suggest that an exercise stress test protocol involving an initial sprint 
may be more sensitive and could be useful to confirm adequate arrhyth
mia suppression after therapies appear to be optimized.49

The role and benefits of ICD insertion in CPVT remain controversial. 
Current guidelines recommend ICD insertion for secondary prevention 
after resuscitated sudden cardiac arrest or for primary prevention in in
dividuals with arrhythmic syncope while on appropriate antiarrhythmic 
medication.43,44 Special considerations may apply to paediatric CPVT 
patients given their particular vulnerability to device-related complica
tions in the short and long term. The 2021 PACES Expert Consensus 
Statement on the Indications and Management of Cardiovascular 
Implantable Electronic Devices in Pediatric Patients suggest that ‘In se
lected patients with aborted SCA as the initial presentation of CPVT, 

pharmacologic therapy and/or cardiac sympathetic denervation without 
ICD may be considered as a possible alternative.’50

In the absence of prospective, large-scale studies, the question of a 
survival benefit in recipients of a secondary prevention ICD remains un
answered. Several studies reported no survival benefit and a high rate of 
device-related complications including inappropriate shocks in 20–25% 
and hardware-related complications in 29–32% over a median follow- 
up of 4–5 years.51–53 This is in contrast to the findings of another group 
reporting lower rates of device-related complications and a potential 
survival benefit.54 Appropriate ICD therapies typically occur in patients 
without appropriate antiarrhythmic medication.51 On the other hand, 
1–4% of CPVT patients experience sudden cardiac death despite an 
ICD.51,52 This is in part due to shocks that are a powerful adrenergic 
trigger for recurrent polymorphic VT and subsequent degeneration 
to ventricular fibrillation, potentially leading to exhaustion of available 
ICD shock delivery (typically after six shocks). Overall, contemporary 
data suggest the importance of a careful and comprehensive patient 
evaluation in an expert setting with shared decision-making to avoid un
necessary, potentially harmful ICD implantation.55 If ICD implantation 
is inevitable, it is important to ensure adequate device programming in
cluding long detection delays and high cut-off rates for shock delivery to 
minimize the risk of inappropriate shocks and enabling spontaneous 
termination. In the absence of prospective ICD data in CPVT patients, 
the suggestions of device programming are extrapolated and adapted 
from the general concepts of adequate contemporary ICD 
programming.56,57

A B

C D

Figure 3 Catecholaminergic polymorphic ventricular tachycardia phenotype. (A) Exercise treatment test of a 32-year-old female patient with 
RYR2-related CPVT. Inducible ventricular ectopy with monomorphic bigeminal PVCs at Stage 2 (4:22 min) and a heart rate of 134 b.p.m. (B) Same 
patient as (A): at Stage 3 (6:11 min), intermittent manifestation of bidirectional PVCs. (C ) 67-year-old male with RYR2-related CPVT. Run of non- 
sustained polymorphic ventricular tachycardia at peak Stage 4 of an exercise treadmill test (11:00 min). (D) Shown are intermittent runs of non- 
sustained bidirectional ventricular tachycardia.
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Genetic and electrophysiological aspects
Pathogenic RYR2 variants account for at least half but probably over 
80% of all CPVT cases, and transmission is typically autosomal- 
dominant.21,58 In addition, there are rare cases of RYR2-related CPVT 
with autosomal-recessive transmission.59 Other genetic substrates of 
CPVT have been extensively reviewed elsewhere and will not be dis
cussed in this article.7,58 The majority of CPVT-associated RYR2 muta
tions are missense variants (96%) resulting in a gain-of-function (GOF) 
of the RyR2 channel.7,58 The distribution of CPVT RYR2 variants shows 
a clustering within four distinct mutational hotspot regions including 
exons 3–15 (amino acids 44–466), 44–50 amino acids (2246–2534), 
83–90 (amino acids 3778–4201), and exons 93–105 (amino acids 
4497–4959) (Figure 2C).15,25,60 Three of these cluster regions are lo
cated within the N-terminal portion of the RYR2 protein. Only 10% 
of CPVT-related variants are located outside these mutational hotspot 
regions.15 A substantial proportion of monogenetic RYR2-related CPVT 
cases is related to de novo variants.27,61,62 Interestingly, RYR2 de novo 
variants are more likely to be located within the C-terminus domain 
compared to familial RYR2 variants (more likely within the N-terminal 
domain).62 Limited data suggest that disease manifestation in probands 
harbouring de novo variants is earlier and phenotype traits seem to be 
more severe compared to probands with familial forms of CPVT and 
RYR2 variants at other locations.62 Interestingly, an association between 
C-terminal RYR2 variants and increased risk for ventricular arrhythmia 
has also been observed in familial forms of CPVT.25,27,54 Disease pene
trance is incomplete and may be mutation-dependent. Previous studies 
suggested a penetrance of 50–65%.27,63

The arrhythmogenesis of CPVT is complex and implies different, 
mutation-dependent mechanisms affecting the Ca2+ activation, protein 
folding, or binding sites of regulatory proteins of RyR2.7,18,64 At the cel
lular level, RYR2 GOF variants result in abnormal calcium handling with 
spontaneous diastolic calcium release which in turn triggers delayed 
afterdepolarizations that initiate ventricular arrhythmia.7,65,66

Corresponding cellular electrophysiological findings of CPVT are de
picted in Tables 1 and 2 and in the Central Illustration. One important 

mechanism is mediated by a reduced threshold for the occurrence of 
store overload-induced Ca2+ release (SOICR) which is favoured by 
an increased sensitivity of the RyR2 channel to the activation by luminal 
and/or cytosolic Ca2+ (Central Illustration).67,68 Typical conditions lead
ing to increased sarcoplasmic reticulum calcium load include stimulation 
with catecholamines, for example, isoproterenol.65,66 Another typical 
cellular electrophysiological finding of abnormal calcium handling is 
the enhanced response to caffeine-induced calcium release from the 
sarcoplasmic reticulum.66,68,69 Another prerequisite for the arrhyth
mogenesis in CPVT is the existence of an arrhythmic heart rate window 
as described above that determines the balance of SR calcium loading 
and spontaneous diastolic calcium release.35 Experiments in mice and 
humans showed that increasing the sinus rate through vagolytic pre
treatment with atropine or atrial overdrive pacing significantly reduces 
the occurrence of exercise-induced ventricular arrhythmia.35,70 A likely 
explanation for this observation is that shortening the diastole prevents 
spontaneous SR calcium release.7,70

RyR2 exon 3 deletion syndrome
Clinical aspects
First described in 2007,71 the RyR2 E3DS has now been recognized as a 
distinct entity among the different cardiac ryanodinopathies.72–77 With 
less than 50 cases published to date, E3DS represents a very rare 
RYR2-ryanodinopathy. Assuming that deletion of exon 3 accounts for 
∼1% of pathogenic RYR2 variants, the prevalence of E3DS might be es
timated at 1:100 000.

In contrast to the exclusive tachyarrhythmias of other cardiac ryano
dinopathies, E3DS is characterized by a complex pleiotropic tachycardia– 
bradycardia phenotype (Table 3). The mixed phenotype shows marked 
interindividual variability within affected families. A typical example of 
the marked phenotype variability is displayed in Figures 4 and 5, showing 
examples from a large French–Canadian family affected by E3DS.

Given its rarity and the paucity of published data, the frequency of 
the various electrophysiological and structural features of E3DS can 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Arrhythmogenesis and cellular electrophysiological findings of cardiac ryanodinopathies

Caffeine-induced 
Ca2+ release

SOICR Isoproterenol stimulation DAD EAD

CPVT ↑↑ ↑↑ ↑↑ DAD + ventricular arrhythmia + −
Exon 3 deletion syndrome ND Impaired termination ↑↑ DAD + ventricular arrhythmia? + −
CRDS ↓↓ ↓↓ − − +

CPVT, catecholaminergic polymorphic ventricular tachycardia; CRDS, calcium release deficiency syndrome; DAD, delayed afterdepolarization; EAD, early afterdepolarization; ND, not 
determined; SOICR, store overload-induced Ca2+ release.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Clinical features and ECG characteristics of cardiac ryanodinopathies

QTca Exercise-induced ventricular ectopy Syncope/presyncope prior to  
sudden cardiac arrest

Bidirectional VT

CPVT Normal Common Common Yes

Exon 3 deletion syndrome Normal Common Possible Yes

CRDS Normal Infrequent Possible No

CPVT, catecholaminergic polymorphic ventricular tachycardia; CRDS, calcium release deficiency syndrome; QTc, corrected QT interval. 
aAt rest and during/post exercise.
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Central Illustration Proposed mechanisms for RyR2-associated catecholaminergic polymorphic ventricular tachycardia (CPVT), exon 3 deletion 
syndrome (E3DS), and calcium release deficiency syndrome (CRDS). The different thresholds for store overload-induced Ca2+ release (SOICR) and 
Ca2+ release termination and the free sarcoplasmic reticulum (SR) luminal Ca2+ levels in CPVT, E3DS, or CRDS associated with RyR2 mutations are 
illustrated in the resting state (Rest, left panels) and in the stress states (Stress, right panels). The normal thresholds for SOICR and Ca2+ release ter
mination are depicted as red and yellow dashed bars, respectively. The reduced or elevated SOICR thresholds as a consequence of CPVT, E3DS, or 
CRDS RyR2 mutations are depicted as solid red bars. The reduced threshold for Ca2+ release termination as a consequence of E3DS RyR2 mutations 
are depicted as solid yellow bars. The SR free luminal Ca2+ level is represented as a blue area. The yellow areas above the blue areas in the right panels 
represent an elevation, even if only transient, in the free SR luminal Ca2+ levels, which, we propose, will occur when sarcoplasmic/endoplasmic reticulum 
Ca2+-ATPase (SERCA) activity is enhanced by catecholamines or during the long-burst, long-pause, short-coupled (LBLPS) programed electrical stimu
lation. When the SR-free luminal Ca2+ level surpasses, even transiently, the reduced SOICR threshold in the case of CPVT and E3DS, SOICR occurs, 
leading to a spillover of SR Ca2+ that can trigger spontaneous Ca2+ release, delayed afterdepolarizations (DADs) and ventricular arrhythmias (VAs). The 
reduced termination threshold in the case of E3DS will increase the fractional Ca2+ release, resulting in large Ca2+ transients at rest (left panels) and 
stress (right panels) that may promote cardiomyopathies in addition to cardiac arrhythmia. In the case of CRDS, the elevated SOICR threshold prevents 
spontaneous SR Ca2+ leak, leading to markedly elevated SR Ca2+ load upon LBLPS electrical stimulation and subsequently large Ca2+ transients that 
promote early afterdepolarizations (EADs), reentrant activity, and ventricular arrhythmias.
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only be estimated. Table 3 depicts the spectrum of relevant clinical fea
tures associated with E3DS. Sinus node dysfunction manifesting with 
symptomatic sinus bradycardia, chronotropic insufficiency, sinus arrest, 
or atrial stillstand represents the leading bradyarrhythmia in E3DS 
(58%) (Table 3). Atrioventricular (AV) node conduction disorders 
have been described in up to 22% of gene carriers. Atrial fibrillation/flut
ter and other supraventricular tachycardias are common and will de
velop in more than half of affected patients over time. Ventricular 
arrhythmia is characterized by a CPVT including exercise-triggered ven
tricular ectopy, bidirectional ventricular tachycardia, as well as poly
morphic VT/ventricular fibrillation.71–75,77,78 A family history of 
sudden cardiac death is present in at least 10% of affected individuals.

Isolated left ventricular non-compaction (LVNC) without ventricular 
enlargement or left ventricular systolic dysfunction has been reported 
in up to 31% of patients with E3DS.75,78 True dilated cardiomyopathy 
with or without LVNC seems to be less common and is observed in up 
to 18% of cases (Table 3). A novel but potentially underreported finding 
is the co-association of mitral valve prolapse that was observed our 
French–Canadian cohort (Figure 5).

The mixed tachycardia–bradycardia phenotype of E3DS represents a 
major challenge for pharmacologic management. Patients with E3DS 
are extremely sensitive and often intolerant to various antiarrhythmic 
or heart rate slowing medication (personal, unpublished observations), 
which is typically required to treat the CPVT phenotype and the com
mon supraventricular arrhythmias. Even very small doses of cardiose
lective beta blockers or calcium channel blockers may result in 
excessive symptomatic bradycardia (personal unpublished observa
tion).76,77 Consequences of the marked pharmacological intolerance 
and the frequent severe sinus node dysfunction include early insertion 
of cardiac implantable electronic devices. Appropriate device selection 
may be challenging and requires a thorough and comprehensive evalu
ation as most E3DS patients will become recipients at young age.

Genetic and electrophysiological aspects
The deletion of exon 3 (c.161 to c.272) and the subsequent genetic re
arrangement result in an in-frame deletion of 35 amino acids of the 
RyR2 N-terminal domain A (p.Asn 57_Gly91del; NM_001035) 

(Figure 4A).71,79 The estimated size of genomic deletion is 241 bp affect
ing the entire exon 3 and the flanking introns 2 and 3.71,78 The molecu
lar mechanisms leading to exon 3 deletion remain incompletely 
understood. Bhuiyan and coworkers proposed polymerase slippage 
as a result of Alu-I transposon repeats.71

Structural modelling suggests that the altered RyR2 protein facilitates 
pore opening and in turn diastolic spontaneous calcium release.79 At 
the cellular level, E3DS increases the propensity for SOICR by reducing 
the threshold for SOICR activation. Exon 3 deletion syndrome also in
creases the amplitude of SOICR by impairing calcium release termin
ation or disinhibition of the RyR2 channel (Central Illustration).80

Exon 3 deletion syndrome shows full penetrance but variable disease 
expression. So far, no homozygous gene carriers and no asymptomatic 
carriers of E3DS have been reported. The marked phenotype variability 
even within a single family (Figure 5) may be related to yet unknown 
genetic modifiers and/or epigenetic factors. Transmission of E3DS is 
typically autosomal dominant, but de novo events have also been de
scribed.76 The age of onset is highly variable and can be as young as 7 
years. Virtually all gene carriers will present with some phenotype traits 
by 45 years of age (personal unpublished observations). The totality of 
the data strongly supports classifying E3DS as a unique overlap of inher
ited arrhythmia and cardiomyopathy that is distinct from CPVT.

RyR2 calcium release deficiency syndrome
Clinical aspects
The RyR2 CRDS represents a novel, emerging cardiac ryanodinopathy 
and has only recently been characterized.81–84 Given its infancy as an 
established syndrome and the challenges surrounding diagnostic testing 
that will be discussed, the prevalence of CRDS is unknown. Average age 
of presentation appears to be in early adulthood, but index events dur
ing childhood and preadolescence are not uncommon.82

Despite some overlapping clinical features, there is growing evidence 
that CRDS is a phenotypically and mechanistically distinct RYR2-related 
channelopathy that differs from classic CPVT. Individuals with CRDS 
are susceptible to malignant ventricular arrhythmia (polymorphic ven
tricular tachycardia and ventricular fibrillation) resulting in syncope or 
sudden cardiac death.81–85

Unlike classic CPVT, only 50% of arrhythmic events in CRDS seem to 
occur during adrenergic stimulation.82 Similar to CPVT, the resting 
ECG is normal in CRDS, although one group has suggested that 
some patients may also exhibit mild corrected QT interval (QTc) pro
longation.86 In contrast to CPVT, exercise treadmill testing has limited 
diagnostic value in CRDS and does not usually show complex 
polymorphic ventricular ectopy or bidirectional ventricular tachycar
dia.81–84 In the largest cohort of CRDS patients described so far (19 pa
tients including probands and relatives), exercise treadmill testing was 
negative in 64% and showed only isolated ventricular PVCs in 34%.82

This lack of sensitivity is most likely related to the particular electro
physiological mechanisms that have been identified in CRDS (see be
low). The same mechanisms may also account for the incomplete 
penetrance and an overall lower rate of cardiac breakthrough events 
compared to classic CPVT.81,82 Sudden cardiac arrest or sustained ven
tricular arrhythmia occur in at least 23% of individuals with CRDS, 
though there is clear ascertainment bias in this estimate.82

The most accurate clinical test to unmask CRDS is a specific protocol 
of programmed ventricular stimulation characterized by a long-burst, 
long-pause, and short-coupled ventricular extra stimulus (LBLPS) se
quence (Figure 6A, B).81–83 Current data on the sensitivity and specifi
city of a dedicated LBLPS protocol are still limited. Initial experience in a 
limited number of individuals showed inducible ventricular arrhythmia 
in up to 78% of CRDS patients.81 The LBLPS sequence also reflects 
the arrhythmia onset of spontaneous events (Figure 6C).82 There is 
also emerging evidence that the same protocol may be useful to deter
mine the efficacy of antiarrhythmic medication.81

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Phenotype findings in E3DS

Clinical findings in RYR2 exon 3 deletion syndromea

Sinus node dysfunction 58%

Atrial standstill 7%

AV node conduction disordersb 22%

Atrial fibrillation/atrial flutter 18%

Atrial tachycardia or other SVT 36%

CPVT-like ventricular arrhythmias 56%

Sudden cardiac death 11%

Dilated cardiomyopathy ± left ventricular non-compaction 18%

Mitral valve prolapse 4%

AV, atrioventricular; CPVT, catecholaminergic polymorphic ventricular tachycardia; 
SVT, supraventricular tachycardia. 
aAll estimates are based on a pooled analysis of published reports and the first author’s 
own cohort of E3DS patients. The definition of the different rhythm disorders and 
cardiomyopathies is based on current guidelines. Only rhythm disorders with 
appropriate clinical testing and description in the corresponding articles were 
retained for data collection and analysis. Given the variable extent of clinical testing 
and limited follow-up data in the reviewed literature, the pooled findings may only 
provide crude estimates of the frequency of E3DS-related rhythm disorders. 
bIncluding second-degree, third-degree, or high degree AV block.
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Figure 4 Exon 3 deletion syndrome clinical phenotype. (A) Alu repeat–mediated RYR2 exon 3 deletion. The diagram represents the Alu-Alu recom
bination. Alu sequences are located in intron 2, 190 bp upstream from exon 3 and also 536 bp downstream in intron 3. Adapted with permission from 
Bhuiyan et al.71 (B) 34-year-old female patient with E3DS. Resting ECG showing marked junctional bradycardia at 42 b.p.m. The patient had symptom
atic sinus node disease with chronotropic insufficiency. (C ) 48-year-old female patient with E3DS. Exercise treadmill testing showed inducible poly
morphic ventricular ectopy with intermittent bidirectional ventricular PVCs (arrows). (D) Same patient as (C ). Induction of supraventricular 
tachycardia at peak exercise. The echocardiogram showed a normal sized left ventricular with preserved ejection fraction. However, there was evidence 
of marked apical and apico-lateral trabeculation meeting criteria for LVNC. (E) and (F ) Cardiac magnetic resonance imaging of a 52-year-old female 
patient with E3DS. The patient developed dilated cardiomyopathy with LVNC and marked systolic dysfunction requiring the insertion of a cardiac re
synchronization therapy defibrillator. Note the marked left ventricular apical and apico-lateral hypertrabeculations (arrows).
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Data on the optimal medical management in CRDS remain sparse. 
Unlike CPVT, the benefit of beta blockers is less certain with break
through events in ∼20%,81,82 and experience with this class of medica
tion almost exclusively stems from the initial misdiagnosis of CPVT that 
occurs in most patients. Potential antiarrhythmics include flecainide and 
quinidine, which effectively suppress ventricular fibrillation in a CRDS 
mouse model.83 Flecainide monotherapy also suppressed 
LBLPS-inducible ventricular arrhythmia in 89% of human adults with 
CRDS.81 In contrast, the combination of flecainide with metoprolol 
seems to abolish the protective effect of flecainide in a significant pro
portion of patients; however, convincing follow-up data supporting 
these findings are yet missing.81 Clearly, further studies with larger co
horts and longer follow-up periods will be required to identify the best 
antiarrhythmic treatment strategies in CRDS. In addition to the knowl
edge gaps with regard to medical treatment, the role of primary pre
vention ICDs in CRDS remains undefined at this point.’

Genetic and electrophysiological aspects
The genetic substrate of CRDS is RYR2 mutations resulting in LOF. 
These LOF variants are predominantly located in the C-terminal 
Cluster 4 region, which is also a well-known mutational hotspot for 
CPVT.15,60,81–84 The vast majority of CRDS-related mutations are 
RYR2 missense variants with autosomal dominant transmission. An ex
ception is a particularly aggressive form of autosomal recessive CRDS 
that has been linked to a copy number variant mutation of RYR2.84

The tandem duplication including the 5′ untranslated region of the 
RYR2 promoter region and exons 1 through 4 has only been identified 
in Amish communities, so far.84 The resulting haploinsufficiency trans
lates into a highly penetrant and lethal phenotype (78% of sudden car
diac arrest or death).84,87

With the exception of this very aggressive phenotype, current data 
on other CRDS-associated variants do not yet allow the determination 
of mutation-dependent disease severity. Unlike CPVT, CRDS has only 

been linked to RYR2, and no other genetic substrates have been de
scribed, so far.

Functional data from cellular and animal models suggest an arrhyth
mogenesis distinctly different from CPVT. Loss-of-function is character
ized by a significant decrease of the propensity for stress-induced 
ventricular arrhythmia upon stimulation with caffeine or isoproterenol 
compared to wild type RyR2 channels.81–83,85 In a similar way, SOICR is 
markedly inhibited resulting in a decreased propensity for delayed after
depolarizations (Central Illustration).81 Additional findings of the electro
physiological remodelling include increases of ICa-L, Ito, and INCX currents 
and a hyperpolarization shift of the voltage-dependent activation of the 
cardiac sodium channel Nav1.5.83,88 The result is a prolonged duration of 
the cardiac action potential with increased propensity to early afterde
polarizations that may trigger reentrant ventricular arrhythmia.83,87,88

Other cardiac ryanodinopathies and overlap features
In addition to the distinct phenotypes of the classical RyR2 CPVT, 
CRDS, or E3DS, there is some evidence suggesting the existence of 
other forms of yet unclassified cardiac ryanodinopathies with atypical 
phenotypes and unusual electrophysiological properties85,86,89–92 (see 
Supplementary material online, Table S2). Although data on these atyp
ical cardiac ryanodinopathies are restricted to case reports with limited 
segregation and clinical follow-up, the published reports highlight the in
credible complexity of RYR2-related inherited arrhythmia syndromes. 
Many questions still remain unanswered. Some of the cardiac ryanodi
nopathies that present with atypical abnormalities on exercise testing 
may represent subtypes of CRDS, given that not all LOF carriers exhibit 
identical phenotypes. Thus, the clinical spectrum of cardiac ryanodino
pathies may be even broader than appreciated, with disease entities yet 
to be discovered. These concepts suggest that both the amount and 
timing of calcium release and inhibition from RyR2 play an integral 
role in the maintenance of cardiac rhythm and structure and thus is pro
cess prone to marked pleiotropy.
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Figure 5 Exon 3 deletion syndrome phenotype diversity. Shown is the pedigree of a large family with RYR2 exon-3 deletion syndrome; [-] indicates 
gene-negative individuals; filled circles or squares indicates heterozygous carriers with E3DS phenotype; AF, atrial fibrillation; CRT-D, cardiac resynchro
nization therapy with implantable cardioverter defibrillator; CRT-P, biventricular pacemaker; DCM–LCNV, dilated cardiomyopathy with left ventricular 
non-compaction; SCD, sudden cardiac death.
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Future directions
Large-scale international registries exist for CPVT and have provided 
the basis for much of our knowledge surrounding this condition. 
Similar collaborative approaches are also required for other cardiac 
ryanodinopathies to improve our understanding of the different pheno
types and clinical evolution of disease. Larger cohorts are also funda
mental to design future studies to shift our current approach 
towards genotype-based disease management.93 Refined disease mod
elling incorporating novel technologies such as three-dimensional 
human-engineered heart tissue may provide us with complementary 
functional data for tailored therapies.94,95 Human inducible pluripotent 
stem cell (hiPSC) platforms are already increasingly being used for 
CPVT research with similar utility anticipated for other cardiac ryano
dinopathies.96–99 Promising pathways for potential future curative gene 
therapy may include allele-specific gene silencing and targeted in vivo 
gene editing using viral vectors.100,101

Complementary functional genomic studies in conjunction with data 
from cellular models and clinical registries may help us to identify 

additional genetic and non-genetic cofactors that affect disease severity 
and prognosis.

In addition to gene-therapeutic strategies, a number of novel 
RyR2-specific pharmacological therapies are currently under investiga
tion, although very few of them have entered the stage of clinical testing 
so far. One of them is the oral RyR2 modulator S48168 (ARM210) that 
will be assessed in CPVT patients in an upcoming Phase II trial starting in 
2023 (NCT05122975). Other molecules with pharmacological proper
ties for potential RyR2-directed precision medicine like EL20, K201, or 
ent-(+)-verticilide are still at the preclinical stage.102–105

Supplementary material
Supplementary material is available at Europace online.
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Figure 6 Ventricular arrhythmia induction in CRDS. (A) Ventricular fibrillation induction in CRDS using programmed ventricular stimulation. Shown 
are the ECG tracings of a CRDS proband carrying the RYR2-T4196I LOF variant. Ventricular arrhythmia is reproducibly precipitated using the LBLPS 
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