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ABSTRACT: In the context of the ever-growing interest in the
cyclic diaryliodonium salts, this work presents synthetic design
principles for a new family of structures with two hypervalent ., | Selectfiuor ]
halogens in the ring. The smallest bis-phenylene derivative, CHCON. ¢ J
[(C¢H,),L,]*, was prepared through oxidative dimerization of a
precursor bearing the ortho-disposed iodine and trifluoroborate
groups. We also report, for the first time, the formation of cycles
containing two different halogen atoms. These present two
phenylenes linked by hetero-(I/Br) or -(I/Cl) halogen pairs. = i ,

This approach was also extended to the cyclic bis-naphthylene o
derivative [(C;oHs),1,]*". The structures of these bis-halogen(III) @
rings were further assessed through X-ray analysis. The simplest
cyclic phenylene bis-iodine(IIl) derivative features the interplanar
angle of ~120°, while a smaller angle of ~103° was found for the analogous naphthylene-based salt. All dications form dimeric pairs
through a combination of 7—z and C—H/x interactions. As the largest member of the family, a bis-I(III)-macrocycle was also
assembled using the quasi-planar xanthene backbone. Its geometry enables the two iodine(III) centers to be bridged intramolecularly
by two bidentate triflate anions. In a preliminary manner, the interaction of the phenylene- and naphthalene-based bis-iodine (III)
dications with a new family of rigid bidentate bis-pyridine ligands was studied in solution and the solid state, with an X-ray structure
showing the chelating donor bonding to just one of the two iodine centers.
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Bl INTRODUCTION candidates.”® Recently, the ability of the Lewis acidic
iodine(III) center to engage in highly directional intermo-
lecular interactions, sometimes referred to as “halogen
bonding”,'’ has come under a spotlight in the fields of crystal
engineering, molecular recognition, and Lewis acid organo-
catalysts.""'> Another center of focus has been the revival
(after decades of relatively little interest) of the hypervalent
derivatives of the lighter two halogens: Br and CL">'* Fresh
examples include the bromonium-based cycloaddition reac-
tions from the Wencel—Delord laboratory (Figure 1, D),"*~*
as well as chiral Br- and Cl-centered onium salts as
enantioselective halogen-bonding catalysts by Yoshida et al.
(structure E)."*!

In this context, our attention was drawn to the scarcely
explored cyclic onium salts containing more than one iodine
atom in a ring. A notable example of such compounds is the
square-shaped macrocycle developed by Zhdankin and Stang,
in which the near-90° C—I-C angles are used as corner
pieces."> Another example is the planar 3-fold symmetric

The term “diaryliodonium salt” refers to iodine(IIl) com-
pounds in which the trivalent iodine center is bound to two
aromatic rings and a third typically weakly coordinating anion
(Figure 1). This structure class requires little introduction,
given that the prototypical diaryliodonium motif (Figure 1,
A)"? has been known for over 120 years,’ growing into an
important class of aryl transfer agents. Diaryliodonium salts
have been employed in a plethora of polar and radical
processes, including metal-catalyzed and light-induced aryla-
tion reactions." In this context, the cyclic diaryliodonium
derivatives containing mutually connected aryl groups have
been of particular interest, with the iodine-containing ring
structure imparting a series of new chemical and physical
properties. For example, while the archetypal five-membered
structure type B (Figure 1) is particularly stable toward
conventional nucleophilic attack,” this and the larger iodacycles
(e.g, type C) undergo all sorts of ring-opening and ring-
enlargement reactions under metal-catalyzed®” or single
electron transfer (SET) conditions.” Beyond this synthetic
potential, cyclic diaryliodonium cations are also known to Received:  March 6, 2023
interfere with a variety of biological electron-transport systems. Published: June 13, 2023
In fact, the parent diphenylene-iodonium (“DPI”) cation

(archetype B) is widely used as a broad-spectrum go-to

inhibitor of NADPH oxidases and other flavoenzymes,” either

as reporter/modulators of cellular activity”® or as therapeutic
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Figure 1. A sampling of cyclic diaryl-halogen(III) structures with
some applications. A: canonical diaryliodonium motif; B, C: most
common cyclic diaryliodonium structure types; D, E: recent

application of bromonium and chloronium salts; F, G: examples of
molecules presenting multiple diaryliodonium groups.

></l—x via

iodine-doped sumanene derivative (Figure 1, F)'® obtained via
an oxidation/E,S cyclization sequence. We note that routes
such as this one are commonly used to prepare a variety of
cyclic bis-diaryliodonium species,'”'® including the planar bis-
diaryliodonium dication G (Figure 1). Interestingly, the latter
exhibits exceptional Lewis acidity due to spatial convergence of
the two iodonium C—I ¢* vectors.'”

With these precedents, and prompted by our own recent
work on heteroatom-containing iodonium salts,”® we won-
dered about the properties of a hitherto unknown cyclic
structure related to the archetype C (Figures 1 and 2), but
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Figure 2. Principle bis-1*-halonium angle bars developed in this study.
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having not one, but two iodine(III) bridges. Beyond the sheer
synthetic challenge of making this cycle, this structure class
appears to be an interesting platform for new “angle bar”
molecular geometries (provided a near-90° C—I—C angle),
and for exploring other classes of interhalogen synergistic
effects. As part of this new program in our lab, we now report
the synthesis and X-ray structures of not only this bis-4*-iodane
architecture (I—I), but also the analogous heterohalogen six-
membered cycle with the I-Br and I—CI bridges. The latter
two represent, to the best of our knowledge, the first examples
of a bona fide hetero-4*-organo-halogen derivative. We also
report the synthesis and structure of larger (macro)cyclic bis-
A-iodane angle bars, as well as their interaction modes—

including chelating and bridging—with bidentate donor
structures.

B RESULTS AND DISCUSSION

Bis-Halogen-Linked Bis-Phenyelene Cores. Our initial
approach to the cyclic bis-iodonium 1** was an electrophilic
ring closing of the ortho-iodo-diphenyliodonium precursor 2.”!
However, attempts to cyclize 2 under oxidative conditions
commonly used in the formation of cyclic iodonium salts were
unsuccessful, likely due to the strongly electron-withdrawin
effect exerted by the already-present iodine(II) group.”
Seeking to overcome this reluctance to C—H cyclization, we
took notice of a recent report from the Legault laboratory on
the oxidative dimerization of the ortho- iodo -phenyltrifluor-
oborate 4 to the interesting zwitterion 3.”> Since the latter
contains both an iodine and an ortho trifluoroborate group, we
hoped that 4 might be directly dimerized to 1** via two
consecutive oxidation/transmetalation events. Our initial
attempts to accomplish this transformation using Selectfluor
as oxidant in CH;CN inevitably stopped at the intermediate 3,
mirroring the original report.”” In addition, attempts to use this
solvent at higher temperatures led to significant amounts of the
ortho-diiodobenzene side-product, ostensibly through the
breakdown of 3 or of the putative cyclic target. Nevertheless,
a breakthrough came thanks to the use of 1,1,1,3,3,3-
hexafluoro-2-propanol (HFIP) as solvent. Hence, exposing 3
to excess Selectfluor at 40—50 °C in HFIP suppressed the
formation of ortho-diiodobenzene, leading instead to a gradual
appearance of a new species with only two 'H NMR
resonances, found at 8.5 and 7.9 ppm (see Scheme 1, A and
B), in a pattern consistent with the C,,-symmetric bis-
diaryliodonium 1?*. Further corroboration came from HR-
MS(ESI+), which revealed a peak at m/z = 202.9358 for the
target dication [(C4H,),I,]*" (caled 202.9352 for z = 2). The
product was initially formed as the tetrafluoroborate salt, i.e., 1-
(BE,),. Nevertheless, given the crucial influence often exerted
by the counterions in the chemistry and applications of a
diaryliodonium fragment, the family was expanded with
additional counterions. Hence, the BF, salt could be converted
to the virtually insoluble derivatives, either ditosylate 1-(OTs),
(71% based on 3) or the di-iodide 1-(I,). The —OTf, —BF,,
and even the BAr?* derivatives [BAr?* = B(3,5-bis-
trifluoromethyl-C¢H;),] were also synthesized through anion
exchange with the corresponding silver salt. X-ray-quality
crystals of 1-(OTf), were grown through vapor diffusion of
Et,O into the CH;CN solution. The salt crystallized in space
group P1 and the solid state structure featured the tricyclic
dication 1** having a local C,,-symmetry. The two phenyl-
containing planes intersect (at the I---I line) at a 120° angle
(Scheme 1, C); while the C—I—C angles were measured at
~95°. The I--I distance of 3.52 A is somewhat shorter than the
sum of the iodine van der Waals radii (~3.8—4.0 A),
suggesting a degree of steric crowding between the two
halogens. The bis-iodonium fragments are arranged in pairs
(see Scheme 1, C, right), which are held together through 7-
stacking on their inner (concave) sides. Not shown are the
additional principal I---O interactions with neighboring triflate
anions (see SI) completing the roughly square planar
environment around each iodine(III) center.

Having succeeded in the formation of the six-membered bis-
iodane 1**, we sought to expand our study to rings
incorporating two different halogen atoms. Indeed, despite a
renewed spotlight on the organo-chloro(IIl) and -bromo(III)
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Scheme 1. Synthesis and Characterization of the Cyclic Bis-diaryliodonium 1** and the Hetero-Bis-diaryl-Halonium 8a*>* and
8b2+a
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“A and B: Synthesis of 1?%, along with a portion of its '"H NMR spectrum. C: Solid state structure of 1** along the molecular C, axis (left) and a
view of the mutually fitting dication pairs (right) (thermal ellipsoids shown with a 50% probability, H and OTf omitted for clarity). D:
retrosynthetic approach to 8**. E: synthesis of 82" and 8b**. F: Aromatic 'H NMR regions of 8a (top) and 8b (bottom). G: Solid state structure of
8b**; thermal ellipsoids shown with a 50% probability, H and OTs (fully or partially) omitted for clarity.

1404
derivatives,

we could find no precedent of molecules
having two distinct high-valent halogen atoms, let alone an
example of a heterohalogen ring structure.”® Given that the
synthetic route designed for 1** was deemed unsuitable for
hard-to-oxidize lighter halogens, an alternative retrosynthetic
sequence was envisioned to access the six-membered bromine-
(III)—iodine(IIT) cycle. The route would rely on the ortho-
NH, diaryliodonium precursors a (Scheme 1, D), with ring
closing achieved via diazotization followed by cyclizative N,
displacement. The precursor a, in turn, could arise via
transmetalation using a suitably ortho-metalated aniline b.
This route, however, presents a series of challenges. One is the

13798

question of whether the diazotization event is even possible on
a diaryliodonium core. Another is the actual synthesis of the
ortho-amino derivative a, a species with scarce precedent in the
literature, having been described as difficult to prepare and
highly unstable.”® Fortunately, albeit after considerable effort, a
route was identified in which a reaction between the ortho-
stannyl N-Boc aniline § and the Koser-type ortho-bromo A°-
iodane 6a took place in HFIP to give the diaryliodonium
intermediate 7a in 84% yield (Scheme 1-E). A one-pot N-
deprotection of 7a with HOTs, followed by the addition of the
diazotizing reagent tBu-ON=0'" led to the precipitation of
an off-white powder. To our delight, the 'H NMR spectrum of

https://doi.org/10.1021/jacs.3c02406
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Scheme 2. Synthesis and Characterization of the Naphthalenyl-Based Bis-A>-diaryliodonium Dication of
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“A and B: Synthetic route along with a portion of its '"H NMR spectrum. C: HR-MS(ESI+) analysis of 9-(BAr?*),. D, E, and F: partial X-ray
ORTEP diagrams of 9-(OTf), at 50% thermal ellipsoids; most H omitted for clarity.

this product displayed an aromatic ABCD pattern (clustered
into two groups of resonances), in line with the C,-symmetric
mixed iodine(III)—bromine(III) cyclic bis-halonium target 8a-
(OTs), (Scheme 1, F, top). The structure was further
corroborated via HR-MS(ESI+) analysis, which revealed the
(8a-OTs)" peak at m/z = 528.8974 (vs calcd 528.8964),
including the expected Br isotope pattern (see SI).

Seeking to extend this approach to the analogous mixed
iodine(III)-chlorine(III) derivative, the 0-Cl Koser derivative
6b was transformed into the diaryliodinium salt 7b in 71%
yield. As had been the case for 7a, this salt underwent
diazotizative cyclization to give, in this case, the mixed I(III)—
CI(III) cyclic salt 8b-(OTs),.”” The 'H NMR analysis
confirmed, once again, a Ci-symmetric dicationic portion,
albeit with only minimal chemical shift separation between the
two ortho-halo positions H; and H, (Scheme 1, F, bottom).
The HR-MS(ESI+) peak for (8b-OTs)* was recorded at m/z
= 484.9462, in line with the calculated value of 484.9470.

Although 8a and 8b were only sparingly soluble in water,
their "H NMR spectra in D,0 showed them to be surprising
stable in aqueous solutions, remaining unchanged for several
weeks at room temperature (see SI, Figures S3 and SS§,
respectively). Paradoxically, after just a few hours in dmso-dj,
both compounds were observed to undergo clean hydrolytic
ring opening to the phenolic derivatives $4 and S6, as observed
by NMR and confirmed by HR-MS (see SI).

This made it somewhat challenging to grow single crystals of
8a and 8b, with earlier attempts invariably leading to
hydrolysis. Nevertheless, X-ray-quality crystals of both species
were obtained by taking advantage of the low product
solubility in the reaction mixture upon their synthesis.
Hence, a solution containing precursor 7a (or 7b), HOTs,
and tBu-ON=0 in MeNO, was briefly heated to 60 °C and
then left undisturbed at room temperature. After several days,
small colorless plate-like crystals of both 8a-(OTs), and 8b-
(OTs), were observed. Their X-ray analysis revealed the
expected cyclic heterohalogen structures which, as in the case

13799

of 1, form the z-stacked pairs of dications (Scheme 1, G, for
8b-(OTs),; for 8a-(OTs), see SI and the CIF file); these pairs,
in turn, are boxed in between two tosylate anions via additional
m-stacking interaction with the counterion's tolyl group. For
both 8a’" and 8b*" structures, the C—X—C angles for the
lighter halogen bridges (93.5° for Br and 98.6° for Cl) are
larger than those for the corresponding C—I—-C fragments
(90.0° and 87.9°, respectively). This trend is in line with the
predominant halogen p-orbital contribution for iodine(III)
bonding and a larger s-orbital component associated with
lighter halogens, as discussed recently by Stuart and co-
workers.”

Toward the Bis-diaryliodonium Angle Bar Structure.
As part of our broader interest in the cyclic bis-halonium cyclic
structures, we wondered whether the use of the 1,8-
disubstituted naphthalene backbone, or even a wider-spaced
anthracene scaffold, could afford rigid structures that approach
a 90° “angle bar” geometry. We envisage that in addition to
serving as a blueprint to other rigid halogen-based molecular
architectures, such structures could allow for the study of new
types of interplay between halogen(III) Lewis acidity (or
halogen bonding) vectors. Hence, aiming to apply an oxidative
head-to-tail dimerization process, as seen with 1, we began by
synthesizing the peri-iodo-trifluoroborate precursor 10 from
1,8-diiodonaphthalene via a selective mono-magnesiation—
borylation process (see SI). Gratifyingly, while the cyclization
step in the synthesis of 1 required a stepwise approach and
forcing conditions, simply treating 10 with excess Selectfluor in
CH;CN at room temperature led, after 17 h, directly to the
clean formation of the C,,-symmetric dication 9** (Scheme 2,
A).”” The resulting BF, salt could be obtained in pure form in
a 73% vyield via reversed phase chromatography on C18 silica
gel. Alternatively, treating the crude mixture with TsOH
resulted in the precipitation of 9-(OTs), as a clean pale-yellow
solid in an 86% yield. The OTf, PF¢, and BAr#* derivatives
were also obtained through a double anion exchange route via
the insoluble 9-(I), form, followed by treatment with the silver

https://doi.org/10.1021/jacs.3c02406
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salt of the corresponding counterion. Alternatively, 9-(BAr#*),
could also be obtained directly from the initially formed
tetrafluoroborate via salt metathesis with NaBAr?*, The C,,-
symmetric dication 9** presents three strongly deshielded 'H
NMR resonances at ~9.2, 8.5, and 7.9 ppm (see Scheme 2, B).
The HR-MS(ESI+) analysis of the triflate salt (eluent spiked
with formic acid) revealed a peak at m/z = 550.8991, in line
with the value 550.8999 expected for [9]-(O,CH)".
Furthermore, the analysis of the BAr?* derivative led to m/z
= 1368.9662, matching well the theoretical value of 1368.9672
for [9]-(BAr*)* (Scheme 2, panel C). Crystals of 9-(OTf),
suitable for X-ray structure determination grew in space group
P1 through vapor diffusion of Et,0 into a CH;CN solution. As
expected, the peri C—I vectors in each naphthalene unit
diverged at an angle of ~22° due to the steric repulsion
between iodine atoms, a situation further confirmed by the
relatively short I---I contact distance of 3.38 A. The structure
showed a 103° angle between the two naphthalene planes, a
value closer to an idealized 90° angle than the ~120° angle
observed in 1 (see panels D and E in Scheme 2). Once again,
the bis-cationic fragments are arranged in tightly fitting
mutually complementing pairs, which appear to be held
together by a combination of z-stacking and CH-=x
interactions (panel E). Each iodine atom also presents two
main I---O interactions with the neighboring triflate anions to
form an approximate square plane geometry (see panel F),
along with a number of secondary I----O interactions.

The newly obtained 9-(A), salts were found to degrade over
time if not protected from light. Interestingly, perylene was
identified as the main decomposition product. In fact,
irradiation of 9-(PFy), in a DMF solution at 450 nm led to
a rather clean formation of perylene in ~70% yield, likely
through a sequence of homolytic C—I cleavage and C—C
coupling steps (Scheme 3).

Scheme 3. Photolytic Evolution of 9-(PFy), to Perylene

2 PFg hv: 450 nm _ %O 70%
>
9-(PFg)2

DMF, 20h (10

To our initial disappointment, attempts to produce a wider-
spaced anthracene analogue of 9 were unsuccessful, likely due
to the poor solubility of the anthracene precursor and the facile
oxidative degradation of the anthracene core. Instead, we
turned our attention to the geometrically similar 9,9-
dimethylxanthene backbone. Hence, as shown in Scheme 4,
A, the bifunctional precursor 12 was prepared from the 4,5-
disilyl-9,9-dimethylxanthene 11 by a selective exchange of one
of the —SiMe; groups for I using the I,/Selectfluor
combination. Next, exposing 12 to Selectfluor led to an initial
formation of a new compound, 13, tentatively identified by 'H
and F NMR as bearing the hypervalent A*-IF, group.’
Heating this intermediate in the presence of BF;-Et,O helped
induce the aryl transfer from silicon to iodine(III), leading to a
gradual conversion of 13 to the more symmetric 12-membered
macrocycle 14", This result was supported by the observation
of a simple three-resonance 'H NMR aromatic set for the new
product (see SI). Furthermore, when measured in methanol-
d,, the locked “angle bar” geometry leads to the splitting of the
9,9-di-Me signal into two Me singlets: one for the inner (a)
and another for the outer (b) positions (Scheme 4, B). The

Scheme 4. Cyclic Bis-iodonium Structure 14 Based on 9,9-
Dimethylxanthene: (A) Synthesis Starting with 9,9-
Dimethylxanthene; (B) Upfield Portion of the "H NMR
Spectrum

A) o SIM63 SiMe; Me;Si I
O O n-BuLi, TMEDA O O Selectﬂuor O 0 O
a2 then: Me3SiCl 1
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—eee 'H NMR = a
B) i b, E
Y Me\i 1 y O 2BFy Me3Si \I\
N O o T _BFEL0 O O
i 2 +1 O O
S —— Sy 14, 40%
1.7 1.6 15 | observed

14-(BF,), salt was isolated in 40% yield via reversed-phase
chromatography, while the corresponding triflate salt was
obtained through double anion metathesis via the sparingly
insoluble 14-(I), derivative. The HR-MS(ESI+) analysis
produced a peak at m/z = 714.9847, consistent with
714.9837 calculated for [14]-(O,CH)".

The structure of 14-(OTf), was further assessed through
single-crystal X-ray analysis (Figure 3). As expected, the

—— )

P
4 T
£
o\"(b/o

C) \

slight convergence
strong divergence weak divergence (nearly parallel)
Figure 3. ORTEP-type diagram of the X-ray (single crystal) structure
of 14-(OTf),. Only one of the two independent molecules shown,
with protons omitted for clarity. (A) Top view of 14** showing the
12-membered macrocycle. (B) Side view of the full molecule
illustrating the bridging (I-O—S—0-I) p*triflate ligands and the
overall “paddle-wheel” geometry. (C) Comparison of divergence in
the hypothetical C—I ¢ vectors in cyclic bis-iodonium dications.

xanthene backbone imparts a relatively large I--I spacing of
~42 A, a value similar to that expected in a hypothetical
anthracene-based structure. At the same time, the xanthene
moiety was found to display certain conformational flexibility
around the central pyran ring.31 Interestingly, while the solid
state structures of 1** and 9** show pairs of divergent Lewis
acidity vectors stemming from the neighboring iodine(III)
centers, the corresponding vector pairs in the xanthene-based
14** show a small degree of convergence (see Figure 3, C).
Thanks to this, the two triflate ligands in the structure of 14**
are each capable of connecting adjacent iodine centers via
crystallographically symmetric I.-S—O—S-I bridges, leading to
a geometry broadly reminiscent of the “paddle-wheel”
bimetallic complexes (see Figure 3, B). 2

Interaction with Rigid Bis-pyridine Ligands. Picking up
on this last point, each halogen(III) center contributes with a
pair of mutually perpendicular acidity directions. Therefore, all
the bis-diarylhalonium dications shown thus far present four
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principal Lewis acidity vectors. In this scenario, a bidentate
donor ligand could bind to such a dication in a number of
modes. One possibility includes a ligand bridging between two
adjacent iodine centers, as observed for the OTf ligands in 14**
(refer to Figure 3, B). Another is the chelating mode, i.e., two
donor atoms binding to the same halogen site via its mutually
perpendicular “vacant” sites.”” For the simple cyclic structure
type B (see Figure 1), such scarcely precedented chelating
mode was recently explored by the Huber laboratory
employing bis-R(OR’)C=0: donor ligands based on a rigid
bis-alkynyl-benzene backbone.**

Combining this idea with the recent advances in 6pyridine-
stabilized I3*, I%, and, especially, I'* structures,”*® a small
family of rigid bis-pyridine donors was synthesized varying the
N-—N distances and chelation angles (Scheme S, top panel).

Scheme 5. Selected Rigid Bis-pyridine Ligand Set, along
with the Formation of a 1:1 Adduct between 1** and L3

Representative ligands tested

@
=N

Pyridine

% Theor. Exptl
C 44.71

N 2.61

44.83
2.82

I 23.61 23.84

“qogor

N2:-11: 2.75 A

N1--11: 2.72 A

I---I distance: 3.50 A

“Last panel (bottom) shows an X-ray ORTEP diagram (50%
probability plots) of [1-L3]-(OTf),; H and OTf omitted for clarity.

These were then used, along with pyridine itself, in binding
studies with the bis-diaryliodonium Lewis acceptors. In fact,
pyridine was previously used as model donor to measure and
benchmark the Lewis acidities of various diaryliodonum
cations,”” as well as of their bromine(III) and chlorine(III)
analogues.28 Hence, in a very preliminary assay, a portionwise
addition of pyridine to a CD,Cl, solution of 1-(BAr?*), caused
a gradual upfield shift of the 1** resonances, which were then
used to extract the binding constant. Assuming a 1:1 binding
model, a value of K, ~ 609 M~" was obtained, which would be
27 times higher than for the noncyclic salt A (Figure 1) and
~4.7 times higher than the value of 130 M~ that had been
previously measured for the simple cyclic diaryliodonium
prototype B.*® Even for the naphthalene-based 9-(BAr?*),, this
titration led to a K, ~ 308 M, which although not as high as
in 12* is still ~2.4 times higher than for B. We are cognizant,
however, that the assumption of the 1:1 binding stoichiometry
in this model may break down, especially at higher pyridine
concentration, where the potential rise of the 1:2 adduct (one

13801

pyridine per each iodine center) may affect the accuracy of
these preliminary binding constants. Next, the NMR titration
of the model dications 1** and 9" with this ligand set revealed
good levels of binding, achieving binding constants as high as
K ~ 10* M7 (see SI). We note, however, that in this
preliminary module the exact binding modes could not be
established unequivocally. Nevertheless, a combination of 1-
(OTf), with ligand L3 did produce X-ray-quality single crystals
with a one-to-one [1-L3]-(OTf), stoichiometry and the bis-
pyridine chelating one of the two iodine atoms (Scheme 5).
The adduct composition was further confirmed through
elemental analysis of CHN, S, and L. Interestingly, the pyridine
rings of the ligand appear to “push down” upon the phenylene
groups, leading to an interplane angle of 108°, down from the
120° angle observed in the original 1-(OTf),.

B CONCLUSIONS AND OUTLOOK

In conclusion, this work amplifies the structure space of
diaryliodonium salts to a new family of cyclic diaryliodonium
structures containing two halogens in a ring. Noteworthy,
despite over half a century of the history of six-membered
cyclic iodonium salts, this is the first report describing the
synthesis and X-ray structure of even the simplest ring
structure 1** having two iodine atoms bridging between two
phenylene rings. This delay reflects the need to solve a
synthetically difficult ring-closing step, now possible through a
formal head-to-tail dimerization approach. Thanks to this
methodology, cyclic bis-iodonium salts based on wider-spaced
naphthalene and xanthene scaffolds were also synthesized,
showing geometric features resembling a right-angle “angle
bar” structure. Using a complementary stepwise approach, the
structure class was further expanded to heterohalogen
iodine(III)—bromine(III) and iodine(III)—chlorine(III) ana-
logues 8*, which showed remarkable stability in water. The
new bis-iodonium structures allow for the study of new types
of interplay between chelating ligands and pairs of iodine(III)
Lewis acid vectors, which includes both chelating and bridging
binding modes. We envisage that this chemistry and the
structure archetypes presented herein will serve as a blueprint
for the development of a wider range of cyclic multihalogen
structures that would be of interest in the realms such as
synthetic methodology, molecular recognition, materials,
organocatalysis, and self-assembly, to name a few.
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