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Abstract

How individuals learn complex regularities in the environment and generalize them to new 

instances is a key question in cognitive science. Although previous investigations have advocated 

the idea that learning and generalizing depend upon separate processes, the same basic learning 

mechanisms may account for both. In language learning experiments, these mechanisms have 

typically been studied in isolation of broader cognitive phenomena such as memory, perception, 

and attention. Here, we show how learning and generalization in language is embedded in 

these broader theories by testing learners on their ability to chunk nonadjacent dependencies

—a key structure in language but a challenge to theories that posit learning through the 

memorization of structure. In two studies, adult participants were trained and tested on an 

artificial language containing nonadjacent syllable dependencies, using a novel chunking-based 

serial recall task involving verbal repetition of target sequences (formed from learned strings) 

and scrambled foils. Participants recalled significantly more syllables, bigrams, trigrams, and 

nonadjacent dependencies from sequences conforming to the language’s statistics (both learned 

and generalized sequences). They also encoded and generalized specific nonadjacent chunk 

information. These results suggest that participants chunk remote dependencies and rapidly 

generalize this information to novel structures. The results thus provide further support for 

learning-based approaches to language acquisition, and link statistical learning to broader 

cognitive mechanisms of memory.
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The natural world is awash with statistical regularities, from which individuals can glean 

the structure of the environment. Yet successful learning entails more than the acquisition 

of distinct instances from the input: it requires learners to use this information flexibly 

and extrapolate to novel situations. Investigations into how individuals learn and generalize 

have a long pedigree in psychology, spanning the domains of episodic learning (Bauer & 

Dow, 1994), vision and motor control (Poggio & Bizzi, 2004), and language (Wolff, 1982). 

However, the specific mechanisms and representations involved in these processes, and how 

individuals move from encoding individual items to forming category-based generalizations, 

remains an area of debate.

In recent years, one formative memory process has advanced to the frontlines of many 

discussions on learning across cognitive domains: chunking. Chunking has long been 

recognized as a foundational cognitive process, enabling the grouping of discrete elements 

into larger units to alleviate the limits of working memory—a major challenge to the human 

perceptual system (Cowan, 2001; Miller, 1956). It plays a key role in many higher level 

skills such as chess (Chase & Simon, 1973; Gobet & Simon, 1998) and the perception 

and production of language in real time (Christiansen & Chater, 2016). Chunking has even 

been implicated as a central component in one of the most powerful means of learning 

from the regularities present in the environment: statistical learning (e.g., Christiansen, 2019; 

Perruchet & Pacton, 2006).

Though often discussed as a single mechanism, and investigated in relative isolation from 

other psychological processes, the phenomenon known as statistical learning may actually 

comprise a suite of computations, with distinct cognitive processes handling different 

aspects of learning (Frost et al., 2015; Frost et al., 2019). Indeed, mounting evidence 

highlights the contributions of memory processes and of chunking, in particular, to statistical 

learning and the many behaviors for which it accounts. At a theoretical level, chunking 

has been defined as a mechanism by which distributional regularities are used to form 

discrete representations of an input, especially in the linguistic domain. Numerous chunking-

based computational models can approximate human statistical learning of language-related 

distributional patterns (e.g., French et al., 2011; Perruchet & Vinter, 1998), illustrating how 

chunking can enable the cognitive system to combine co-occurring elements into larger units 

to represent specific items from an input (e.g., using the frequent co-occurrence of syllables 

“A” “B” and “C” to form the word “ABC”). Chunking models can also simulate children’s 

natural language acquisition, comprehension and production by leveraging transitional 

probabilities to define multiword chunks—a finding which extends to numerous languages 

(McCauley & Christiansen, 2019a).

Behaviorally, chunking-based recall tasks can capture key results in statistical learning, 

including the landmark study by Saffran et al. (1996), which demonstrated that young 

infants can rapidly pick up on patterns of syllable co-occurrence in an artificial language 

consisting of trisyllabic nonsense words. In a recent study, after a brief exposure to a 

Isbilen et al. Page 2

J Exp Psychol Gen. Author manuscript; available in PMC 2023 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



similar artificial language, adult participants recalled syllable sequences that adhered to the 

statistics of the language significantly better than sequences containing the same syllables 

in a random order (Isbilen et al., 2020). Participants even recalled specific trigram syllable 

chunks (or words) from the artificial language, suggesting the involvement of chunking 

during statistical learning that enabled the representation of whole chunks of information. 

Similar results were obtained in a follow-up study with 5- to 6-year-old children (Kidd 

et al., 2020). Just as high-frequency chunks in natural language aid the retention of items 

in memory (e.g., recalling the letters ciafbiusa proves easier than recalling uacfisbia, as 

it contains the chunks “CIA,” “FBI,” and “USA”; Cowan, 2001), the chunking of novel 

statistical patterns confers comparable memory advantages by reducing cognitive load.

Despite the promise of the chunking account of statistical learning, supporting evidence is 

still critically limited. Most prior observations of statistically based chunking focus on the 

processing of adjacent regularities—that is, relationships between items that immediately 

follow one another in speech. Yet, language also contains dependencies between elements 

that do not occur directly next to one another in a sequence, and the learning of 

these structures necessitates more than rote memorization alone. These nonadjacent (or 

long-distance) dependencies are ubiquitous in many of the world’s languages, allowing 

for flexible usage (e.g., is_ing => is sitting, is always talking; un__ed => uncovered, 
uncensored, unrestrained) and linguistic productivity—one of the hallmarks of human 

language (Hockett, 1959). From the viewpoint of statistical learning, such nonadjacent 

dependencies constitute reliable statistical relationships between elements that are separated 

by one or more intervening items (e.g., in the sequence AXC, A and C reliably co-occur 

but the identity of X varies). They can be learned at the item level (e.g., specific AXC 

combinations), as well as at the structural level (A–C pairings), along with the ability to 

generalize these structures to novel instances (e.g., AZC, where Z represents a new item that 

was not previously encountered in the A–C structure). Nonadjacent dependency learning 

thus provides a case study for the longstanding debate of how individuals move from 

encoding specific items to forming generalizations over them (Goldberg, 2006; Radulescu 

et al., 2020), and for determining whether these two abilities rely upon the same suite of 

statistical computations or require separate processes. It also provides a study of whether 

chunking is constrained to the grouping of adjacent relations, or if such memory processes 

are more flexible than previously assumed.

Several studies have successfully demonstrated that adults (e.g., Frost & Monaghan, 2016; 

Gómez, 2002; Peña et al., 2002; Perruchet et al., 2004; Romberg & Saffran, 2013), 

and infants (e.g., Frost et al., 2019; Gómez, 2002; Gómez & Gerken, 1999; Marchetto 

& Bonatti, 2013, 2015) can acquire nonadjacent dependencies using statistical learning. 

Indeed, infants as young as 6.5 months can leverage redundancy between nonadjacent 

syllables to boost recognition of trained target syllables (e.g., ko ba ko, where ba is the 

target syllable), suggesting that they are sensitive to noncontiguous information starting 

early in development (Goodsitt et al., 1984). However, the precise mechanisms subserving 

the acquisition of nonadjacent dependencies—and whether they differ from those used to 

learn adjacent dependencies—have been subject to much discussion, particularly regarding 

whether these computations draw on statistical learning processes alone or require more 

complex algebraic operations (see, e.g., Frost & Monaghan, 2016; Peña et al., 2002; 
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Perruchet et al., 2004). Although increasing evidence is converging on the notion that 

nonadjacent dependencies can be discovered via statistical learning (Wilson et al., 2020), the 

extent to which chunking is involved in this process remains highly contested (Endress & 

Bonatti, 2016).

Nonadjacent dependencies present a formidable challenge to theories that view learning as 

proceeding through the memorization and recognition of structure. In fact, there is limited 

evidence that nonadjacent information can be represented in memory as chunks at all, either 

by human learners or in computational models (e.g., French et al., 2011; Perruchet & Vinter, 

1998). By definition, statistical chunking involves the grouping together of elements on the 

basis of co-occurrence statistics, and it is conceivable that this may extend to nonadjacent 

relations. However, Kuhn and Dienes (2005, p. 1418) have stated that “chunking models are 

very good at learning local dependencies but cannot learn nonlocal dependencies.” Similarly, 

Bonatti et al. (2006, p. 320) have claimed that “much remains to be done before researchers 

can conclude that humans rely on chunking, as opposed to computing distant transitional 

probabilities, to capture nonadjacent relations among components of a continuous stream,” 

with both accounts positing the acquisition and representation of rules rather than chunks.

The rule-based framework purports that the learning of words (e.g., AXC) and nonadjacent 

structure (e.g., A–C pairings) require separate mechanisms. According to this framework, 

although basic statistical computations are sufficient for acquiring individual AXC items 

from speech, learning A–C structural relations are thought to require complex, “algebraic” 

computations involving rule-like representations to enable generalization (Endress & 

Bonatti, 2007, 2016; Endress, Cahill, et al., 2009; Endress, Nespor, & Mehler, 2009; Peña 

et al., 2002). This account further suggests that positional memory mechanisms may be 

sufficient to explain sensitivity to nonadjacent dependencies (Endress & Bonatti, 2016), 

with syllables at the edges of these structures being encoded rather than the nonadjacent 

structure as a whole (Endress & Bonatti, 2007; Endress & Mehler, 2009). By these views, 

statistically based chunking is insufficient to account for the behavioral data, and chunked 

representations are rejected in favor of rules and the memorization of ordinal position. These 

theories parallel classical linguistic frameworks, which posit that statistical computations are 

insufficient for language acquisition (Chomsky, 1957, 1980), which must instead rely on 

symbolic grammatical inference to generalize beyond the limited exemplars in the input.

The question of how nonadjacent structures are represented has been the focus of much 

attention. Understanding these representations is of particular importance, as it is from 

the data of studies targeted to probe these representations that researchers often infer the 

nature of the computations employed during learning and generalization. Findings from the 

chunking literature suggest a possible role for chunking in learning nonlocal structures—a 

finding that would be expected if such memory processes are indeed integral to learning 

at large. For instance, various studies of artificial grammar learning (AGL; see Perruchet, 

2019 for a review), which have strong parallels with statistical learning approaches, have 

demonstrated the central role of chunk strength (the relative frequency with which bigrams 

or trigrams in a test item occurred together during training; Knowlton & Squire, 1994, 

1996) in the learning of simple, variable grammars while discounting the acquisition of rules 

(Kinder & Assmann, 2000). Indeed, chunking models appear well suited to capturing human 
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statistical learning representations in the linguistic domain (e.g., Frank et al., 2010; Giroux 

& Rey, 2009), and in the spatial domain (Orbán et al., 2008), where information is not 

necessarily contiguous.

Importantly, the chunking perspective makes specific predictions about both the 

computations and representations involved in statistical learning. Based on statistical 

regularities, the chunking process combines recurring items into larger units online during 

learning. This leads to the formation of concrete, chunked representations of the input, such 

as words, phrases, or multiword units that can be used to formulate novel constructions (e.g., 

McCauley & Christiansen, 2019a). These ideas relate to usage-based frameworks within the 

study of language acquisition (e.g., Goldberg, 2006; Lieven et al., 1997; Tomasello, 2003), 

where learners are thought to acquire specific items from the input through experience, 

which serve as the foundation for generalization and productivity. Unlike classical linguistic 

theories, such exemplar-based learning is not language-specific but is thought to apply 

across cognitive domains.

To reappraise the relationship between acquisition and generalization, and the role of 

memory therein, the current article employs the statistically induced chunking recall task 

(SICR; Isbilen et al., 2020), using nonadjacent dependency learning as a test case. SICR 

presents both statistically legal items (composed of two trisyllabic target words) and illegal 

strings (the same syllables randomized) from a trained artificial language, which participants 

are asked to recall out loud in the correct order. If participants have chunked the input 

language into individual words during training (e.g., abc-def => “abc” “def”), then recall of 

the trained items should yield significantly higher accuracy than recall of the random strings 

(e.g., efbdca). Furthermore, as the SICR data is transcribed then scored syllable by syllable, 

it is possible to directly examine participants’ representations in a manner that standard 

forced-choice tasks do not afford. The more detailed memory-based measures of SICR thus 

provide specific insights into the representations formed during processing. Participants’ 

productions can be analyzed for specific chunk formation—recall of full words from the 

trained target strings, and in the present case, recall of full nonadjacent dependencies. 

Sensitivity to statistical structure can thus be measured by comparing recall of the target 

strings to recall of the foils, which serve as a baseline working memory measure.

The SICR paradigm is modeled on key findings from the memory literature which indicate 

that immediate recall abilities are fundamentally shaped by long-term distributional learning. 

For instance, nonwords that adhere to the phonotactic patterns that occur regularly in 

natural speech are recalled more accurately than those based on infrequent phoneme 

sequences (Gathercole et al., 1999), and high-frequency digit combinations are recalled 

more accurately than lower probability numerical sequences (Jones & Macken, 2015; see 

Cowan et al., 2012 for evidence that memory for high-frequency chunks of linguistic items 

also benefit from a similar advantage). Just as chunking-based recall tasks such as nonword 

repetition and serial recall provide key insights into both children’s processing abilities and 

their current degree of real-world linguistic knowledge (Jones, 2012), SICR captures the 

same effects with the learning of artificial languages.
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The current research tests the chunking account of learning, seeking to determine whether 

general memory processes can capture the acquisition of nonadjacent structures in a 

statistical learning paradigm and whether they are represented as chunks. Crucially, 

we assess whether chunking can extend beyond the mere recognition of nonadjacent 

relationships to items that contain generalizations of these structures. The first experiment 

investigates the acquisition and generalization of nonadjacent dependencies, following the 

methods of Frost and Monaghan (2016). The second experiment addresses the long-standing 

debate concerning the precise nature of the representations formed during nonadjacency 

learning, and tests whether such structures are represented as chunks or whether participants 

simply encode the relative positions of individual syllables. Together, these two experiments 

speak to the general issue of how nonadjacent structures are learned and generalized, the 

role of memory-based chunking therein, and their relation to language and cognition.

We hypothesized that nonadjacent dependency learning would boost SICR performance, 

suggesting that the chunking of accrued linguistic distributional information can facilitate 

short-term recall for sequences comprising nonadjacent dependencies in the same manner 

that has been observed for adjacent dependencies (e.g., Chen & Cowan, 2009; Jones & 

Macken, 2015). Furthermore, we hypothesized that participants would encode specific 

nonadjacent pairings (rather than encoding the relative positions of syllables alone or 

adhering to the rule structure of the stimuli). We predicted that these representations would 

also facilitate generalization, suggesting that statistical learning and generalization may rely 

upon the same memory-based mechanisms.

Experiment 1: Statistically Based Chunking of Nonadjacent Dependencies

The first experiment investigates whether general memory processes can support the 

learning and generalization of nonadjacent structures in an artificial language. To test this, 

we used the SICR task (Isbilen et al., 2020), which is a recall task where participants 

reproduce strings of syllables that either cohere with or violate the statistics of the presented 

language. Because this task entails the production of test strings, participants’ responses 

can be transcribed and analyzed for the presence (or absence) of the specific structures 

from the training input. This task thereby provides a direct window into participants’ 

representations of the language, and the potential involvement of chunking during learning. 

For instance, we can examine the data for two key signatures of statistical chunking 

behavior: whether participants recall full trigrams (i.e., full words) and the number of 

nonadjacent pairs recalled, with the generalization trials as the ultimate test of nonadjacent 

chunking. If participants recall specific trained nonadjacent pairs on the novel trials, this 

suggests that such pairs are represented as a single chunk in memory. We also administered a 

two-alternative forced-choice task (2AFC) to provide an additional measure of learning, and 

to make contact with the existing body of literature that tests nonadjacency learning using 

2AFC (e.g., Endress & Mehler, 2009; Frost & Monaghan, 2016; Peña et al., 2002; Perruchet 

& Poulin-Charronnat, 2012).

We predicted that learning and generalization would be exhibited on both tests, with recall of 

the target items being superior to foils on SICR, and with 2AFC performance being greater 

than chance. Additionally, we hypothesized that participants would recall significantly more 
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legal trigrams (or full words) on the word learning trials, and that the statistical facilitation 

from legal nonadjacent dependencies would also lead to improved recall of trigrams on 

the generalization trials. Last, we hypothesized that participants would recall specific 

nonadjacent chunks from the grammatical items, suggesting that they can in fact chunk 

such structures.

Method

Participants—Forty-nine undergraduates (30 females, 19 males; age: M = 19.43, SD 
= 1.30) from Cornell University were recruited. All participants were native speakers 

of American English, with no known language or hearing disorders. Participation was 

compensated with course extra credit.

Materials—This study utilized the same artificial language as Frost and Monaghan (2016), 

which was adapted from Peña et al. (2002). The language comprised 9 syllables, which were 

used to create three nonadjacent dependencies (e.g., A–C pairings), which each featured 

three different middle syllables (e.g., X syllables in AXC), yielding nine distinct tri-syllabic 

words that were heard during training (A1X1C1, A1X2C1, A1X3C1; A2X1C2, A2X2C2, 

A2X3C2; A3X1C3, A3X2C3, A3X3C3). Plosives (be, du, ga, ki, pu, ta) were used for the first 

and third syllables of each nonadjacent dependency, whereas continuants (fo, li, ra) were 

used for the middle syllables (e.g., dufoki, duliki, duraki, gafobe, galibe, garabe, tafopu, 

talipu, tarapu).1 To ensure that the study’s results were not due to the particular features 

of a single artificial language, four different languages with different A–C pairings were 

created, and were counterbalanced across participants. The words in each language version 

were concatenated together into a single auditory file that was presented during the training 

phase, with a 5-s fade in and fade out to prevent participants from using the onset and offset 

of the file as a cue for determining word boundaries. The transcriptions of the words for each 

language version can be found in Appendix A.

A further nine generalization words that were not present during training were created 

to test how well participants could generalize their knowledge of the trained nonadjacent 

dependencies. These generalization words were composed of the same nonadjacent 

dependencies as the input words but featured novel intervening syllables not heard during 

training (e.g., Z syllables in AZC). Like the input words, continuants were used for the 

middle syllables (thi, ve, zo). The transcriptions of the generalization words for each 

language version can be found in Appendix A.

For SICR, 26 six-syllable-long strings were created, in line with those used by Isbilen et al. 

(2020). Of these, nine were composed of two concatenated words (e.g., A1X3C1A2X1C2), 

nine were composed of two concatenated generalization words (e.g., A1Z3C1A2Z1C2), and 

eight were foils (to maintain equal numbers of each item type: four word-learning and four 

generalization foils). The foils used the same syllables as the target items but in a scrambled 

order, avoiding both the adjacent and nonadjacent regularities of the artificial language. 

1This is in line with the language by Peña et al. (2002). Phonological similarity between syllables supports the acquisition of 
nonadjacent dependencies (Newport & Aslin, 2004; but see Frost et al., 2019 and Onnis et al., 2005 for evidence that this is not 
essential for learning).
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These foils served as a baseline working memory measure, which performance on the target 

items was compared against to gauge learning. All SICR test items can be found in Table B1 

in Appendix B.

For 2AFC, the same 18 foil words from Frost and Monaghan (2016) were used: nine 

part-word foils and nine generalization foils for each language version. The part-word foils 

spanned word boundaries (e.g., X1C1A2, C2A1X1), and were presented alongside the input 

words to test how well participants had picked up on the language’s underlying structure. 

Similarly, the generalization foils were also part-words that spanned word boundaries, but 

with the X syllables replaced with novel, unheard syllables (e.g., Z1C1A2, C2A1Z1), which 

were presented at test with the target generalization words. All 2AFC foil words can be 

found in Table B2 in Appendix B.

All stimuli were synthesized using the Festival speech synthesizer (Black et al., 1990), 

with each individual trisyllabic sequence lasting approximately 700 ms. Both stimulus 

presentation and data collection utilized E-prime 2.0 (Schneider et al., 2002). The study was 

approved by Cornell University’s Institutional Review Board (IRB), and participants signed 

a consent form prior to participation.

Procedure—First, participants were trained on the artificial language. The nine words 

were randomized to produce a continuous stream, and participants were instructed to listen 

to the language carefully and pay attention to the words it might contain. Each word was 

presented 100 times (with each nonadjacency pair occurring 300 times), and training lasted 

approximately 10.5 min. The nine words were randomized and concatenated such that there 

was no immediate repetition of individual AXC words.

Following exposure, participants completed two tasks: SICR and 2AFC. The order of 

these tasks was counterbalanced across participants. For SICR, the twenty-six strings 

described above were presented for recall: nine that tested word acquisition, nine that tested 

generalization, and eight random foil strings, to maintain equal numbers of word learning 

and generalization foils (four each). Participants were told that they would be assessed on 

how well they could reproduce the syllables present in the artificial language. They were 

then asked to listen to each string carefully, and to repeat the entire string out loud in the 

correct order as accurately as possible into a microphone as soon as it was finished playing. 

The order of the SICR items was randomized across individuals, and participants were not 

informed of any underlying structure present in the strings.

For 2AFC, participants heard eighteen pairs of words: one target word and one foil word 

per trial. Of these, nine pairs tested acquisition of the input words, and nine pairs tested 

generalization. For this task, participants were asked to listen to each word pair carefully and 

report which of the two items best matched the artificial language they were trained on. The 

order of all 2AFC trials was randomized across individuals.

Results

SICR Results—Prior to analysis, participants’ verbal responses on the SICR task were 

transcribed by two coders who were naive to the purpose of the study and its design (see 
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Isbilen et al., 2020 for an in-depth guide on the transcription of SICR sequences). In line 

with Isbilen et al. (2020) and methods used in the nonword repetition literature (Botvinick 

& Bylsma, 2005), consistent syllable mispronunciations (e.g., a participant routinely says 

“le” for the target syllable “li”) were transcribed as correct (i.e., as “li” rather than “le”), 

as such mispronunciations indicate differences in how participants perceive the syllables 

produced by the speech synthesizer. In addition, an anchoring procedure was used to align 

participants’ productions as closely as possible to the target items, identical to what is done 

for many nonword repetition tasks (e.g., Dollaghan & Campbell, 1998; Ellis Weismer et 

al., 2000). For instance, if a target stimulus was taragabeliki and the participant produced 

“taraki,” this would be transcribed as “tara------ki” (with a dash denoting each missed letter). 

This ensured that participants were granted credit for all of the syllables that were correctly 

recalled, even if they returned fewer syllables than they were presented with. In cases where 

there were false starts (e.g., the participant started producing a syllable, paused, then started 

again) and self-corrections (where a participant corrected their production of a syllable 

or item), the original production was ignored in favor of the second/corrected production. 

Nonresponses on a trial were automatically given a score of zero.

Following transcription, participants’ responses on both the word learning and generalization 

trials were scored for accuracy using four different measures. The first measure was total 

accuracy (the total number of syllables that participants recalled in the correct order), 

which allowed us to gauge how well participants performed on each string as a whole and 

whether statistical learning conferred a general memory advantage. The second measure was 

bigram accuracy (the total number of adjacent two-syllable combinations recalled within 

words, out of four possible pairs: e.g., A1X1, X1C1, A2X2, X2C2 in the target sequence 

A1X1C1A2X2C2), which indicates how well participants encoded the adjacent bigram 

information within the presented structures. The third measure was trigram accuracy (the 

total number of trigrams or full words correctly recalled in each string, out of two possible 

pairs: e.g., A1X1C1 and A2X2C2), which revealed whether participants chunk entire words in 

the target word learning trials, and whether nonadjacency learning enabled better retention 

of novel words in the generalization trials. The final measure was nonadjacent dependency 

accuracy. For the target sequences, this was the number of A–C pairings that participants 

recalled from each string, out of two possible pairs: for example, A1_C1 and A2_C2. For 

the foils, this score was calculated based on recall accuracy for pairs of syllables in the 

analogous positions, that is, syllables 1 and 3, and syllables 4 and 6. This measure allowed 

us to determine whether participants chunked specific nonadjacent syllable combinations in 

the target items.

The target item scores were then compared against those of the foil items, to test statistical 

learning against baseline working memory. We report the results from linear mixed-effect 

model analyses, which used the lmerTest package (Kuznetsova et al., 2017) in the statistical 

software R, Version 4.2 (R Core Team, 2020). For the linear mixed-effects models, the 

models were built incrementally, participants and test items were included as random effects, 

and word type (target vs. foil) as a fixed effect. Language version was not included as a 

separate random effect in the analyses, as it was already redundantly coded in the test item 

variable. Each SICR measure (total, bigram, trigram, and nonadjacent dependency accuracy) 

was modeled separately.
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On the word learning trials, when controlling for participants and test items, the fixed 

effect of word type on total accuracy was highly significant (model improvement over 

model containing only random effects, χ2(1) = 43.16, p < .0001), with participants correctly 

recalling significantly more syllables in the target items than in the foil items (difference 

estimate = −1.16, SE = .14, z = −8.15, p < .0001). There was also a significant effect 

of word type on bigram recall (model improvement over model containing only random 

effects, χ2(1) = 36.87, p < .0001; difference estimate = −.87, SE = .12, z = −7.41, p 
< .0001) and on trigram recall (model improvement over model containing only random 

effects, χ2(1) = 36.73, p < .0001; difference estimate = −.42, SE = .06, z = −7.25, p < 

.0001), with significantly higher recall accuracy of legal adjacent syllable combinations 

and full trigram words encountered in the input. Finally, there was a robust effect of word 

type on nonadjacent dependency accuracy (model improvement over model containing only 

random effects, χ2(1) = 34.08, p < .0001), with significantly more nonadjacent dependencies 

(syllables in the first and third serial positions and the fourth and six serial positions) 

being accurately recalled in the target items than the foils (which contained no nonadjacent 

structure; difference estimate = −.43, SE = .06, z = −6.92, p < .0001).

For the generalization items, there was a significant effect of word type on SICR total 

accuracy (model improvement over model containing only random effects, χ2(1) = 25.77, 

p < .0001), with participants recalling significantly more syllables in the target strings 

(difference estimate = −1.00, SE = .17, z = −5.78, p < .0001). The same pattern was 

observed for bigram accuracy (model improvement over model containing only random 

effects, χ2(1) = 8.72, p = .003; difference estimate = −.52, SE = .17, z = −3.08, p = .004) and 

trigram accuracy (model improvement over model containing only random effects, χ2(1) 

= 36.73, p < .0001; difference estimate = −.42, SE = .06, z = −7.25, p < .0001), with 

better accuracy for legal adjacent syllable combinations and full novel trigram words within 

the target sequences. Last, a strong effect of word type was also observed for nonadjacent 

dependency accuracy (model improvement over model containing only random effects, 

χ2(1) = 21.95, p < .0001), with participants recalling significantly more nonadjacent pairs 

within the target than foil items (difference estimate = −.37, SE = .07, z = −5.20, p < .0001).

There was no significant difference between word learning and generalization as measured 

by the SICR difference scores (target item score minus foil item scores), for either total 

accuracy, or nonadjacent dependency accuracy (both ps = .10). However, a significant 

difference was observed on bigram recall, t(48) = 4.12, p = .0002, d = .59, and trigram 

recall, t(48) = 3.86, p = .0003, d = .55. Participants recalled the bigrams and trigrams 

they were exposed to significantly better than the items with novel middle syllables. Mean 

performance on these different measures (i.e., the average proportion of syllables, bigrams, 

trigrams, and nonadjacent dependencies recalled across all participants for each trial type) 

are reported in Table 1, and the serial position curves are reported in Figure 1.

2AFC Results—As predicted, participants performed significantly above chance on both 

the word learning and generalization 2AFC trials (word learning: t(48) = 18.44, p < .0001, 

d = 2.63; generalization: t(48) = 6.61, p < .0001, d = .94). Participants’ accuracy was 

significantly higher on the word learning than on the generalization trials, t(48) = 5.77, p < 

.0001, d = .82. The mean scores for each trial type can be found in Table 2.
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Discussion

Experiment 1 provides strong evidence that participants could identify individual words 

in an artificial language and detect the nonadjacent dependencies it contained. Because 

both words and structure were defined by (adjacent and nonadjacent) transitional statistics, 

these data lend further support to the notion that human learners can perform computations 

over the distributional regularities contained in speech, even for dependencies that occur 

over a distance. Importantly, participants also successfully generalized statistically learned 

chunks of nonadjacent information and could do so in relative synchrony with learning the 

precise sequences that occurred, rather than requiring the progressive formation of rule-like 

representations after item learning had been mastered.

Importantly, the results also indicate that our ability to perform these tasks may be driven 

(at least in part) by statistically based chunking. On SICR, recall was significantly better 

for the structured strings than random foils, with participants recalling significantly more 

bigrams, trigrams and nonadjacent pairs for structured sequences—structures that have 

historically posed a challenge for chunking models. This mirrors prior work demonstrating 

that individuals in serial recall tasks can remember items that are interpolated by additional 

information, which may be seen as a kind of nonadjacent structure (Baddeley et al., 1993). 

For instance, when tasked with recalling strings of numbers interleaved by words (e.g., 

7-wit-9-bond-6), participants can successfully ignore the words and recall the numbers, 

suggesting that distal information can be held in verbal working memory. This effect 

replicates for visual–spatial serial information (Nicholls et al., 2005), suggesting that it 

is a general property of memory across domains. Recall in these studies was somewhat 

lower for interpolated stimuli than when recall items were contiguous (with similar findings 

by Greene et al., 1988; Hitch, 1975; Murray, 1966), although this effect was small in 

Baddeley et al. (1993) and Nicholls et al. (2005). The current study moves beyond these 

results, investigating memory for nonadjacent information following a training phase on 

an artificial language, to measure learning-induced changes to recall. Although previous 

studies have shown that participants can suppress interleaved information, here we find 

that individuals can recall adjacent and nonadjacent information simultaneously and with 

comparable accuracy, facilitated by statistical learning.

The enhanced trigram recall on the target word learning trials suggests that participants 

had chunked the syllables into wholistic word-like representations during training. Higher 

trigram recall on the target generalization items implies that the chunking of nonadjacent 

dependencies facilitated recall of the new intervening items by reducing memory load. These 

findings with nonadjacent patterns parallel prior research underscoring the contribution of 

chunking to representing learned adjacent items in memory in serial recall (Chen & Cowan, 

2009) and nonword repetition (Jones et al., 2014), and how long-term statistical knowledge 

interacts with these abilities (Cowan et al., 2012; Jones, 2012; Jones & Macken, 2015). Just 

as prior studies report memory advantages for learned chunks of adjacent information, here 

we extend these results to the statistical learning of nonlocal structures, demonstrating how 

the statistical learning of such structures are relevant for broader theories of cognition and 

memory.
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Additionally, participants also recalled significantly more trained nonadjacent dependencies

—specific A–C combinations—in the target items than the foils (which did not contain this 

structure). This was true for both the word learning and generalization sequences, suggesting 

that participants formed chunked representations of these dependencies, which they could 

use flexibly in novel instances. Participants’ knowledge of the nonadjacent dependencies 

therefore appears to facilitate their ability to recall information on the generalization 

trials, whereas the word learning trials demonstrate evidence of specific item learning. To 

our knowledge, the present study is the first to demonstrate that long-term distributional 

knowledge facilitates memory for nonadjacent items in the same manner that has been 

observed for adjacent items.

Using two assessments of learning (SICR and 2AFC), we replicated Frost and Monaghan’s 

(2016) finding that adults can identify words and word-internal dependency structures 

together during learning, from statistical information alone (without the need for additional 

cues, e.g., Fló, 2021; Peña et al., 2002), indicating that these tasks may be underpinned 

by similar statistical learning and memory processes (see Frost & Monaghan, 2016 

for further discussion). Our results thus provide further evidence for the notion that 

learning and generalization may simply be different outcomes of the same statistical 

learning processes (Aslin & Newport, 2012) rather than generalization requiring separate 

rule-like computations, suggesting a more unified framework for nonadjacent dependency 

learning and language acquisition at large. However, some outstanding questions about 

how nonadjacent information is represented in memory remain, including whether such 

information is represented as chunks or merely encoded positionally.

Experiment 2: Chunked Representations of Nonadjacent Dependencies

Experiment 1 provides initial support for the chunking of whole words, and the specific 

nonadjacent syllables within them. However, the results might be explained by an alternative 

possibility: that participants encoded the relative positions of the syllables rather than 

the nonadjacent dependencies as chunks (Endress & Mehler, 2009). Potential evidence 

against the chunking hypothesis and for the positional information hypothesis comes 

from participants’ inability to distinguish trained nonadjacent dependencies (e.g., A1XC1) 

from items that violate the language’s chunk information while preserving its positional 

information, by replacing the final syllable of one trained dependency with the final syllable 

of another (e.g., A1XC2). These items, first introduced as “class words” (Endress & Bonatti, 

2007) and later as “phantom words” (Endress & Mehler, 2009) reportedly led participants to 

have false memories of hearing these words during training, thus suggesting that positional 

information—and not chunk information—is the outcome of nonadjacent dependency 

learning. However, others have since shown that participants exhibit a general preference 

for trained words over phantom words—consistent with the predictions of chunking-based 

computational models (Perruchet & Poulin-Charronnat, 2012). However, what participants 

specifically represent—trigrams, nonadjacent dependencies, or both—remains an open 

question.

Given that most prior investigations into this phenomenon have utilized 2AFC, we sought 

to revisit the phantom word effect using SICR. As SICR affords more specific insights 
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into learners’ representations, we reasoned that it may grant clearer insights into whether 

participants acquire chunk information or only positional information. Unlike previous work 

on this topic, we tested both acquisition and generalization rather than acquisition alone. 

We hypothesized that participants would differentiate between trained and phantom items, 

showing learning of specific chunks rather than solely positional information. However, we 

hypothesized that this would only be on the SICR task, due to the increased specificity that 

the recall data provides about participants’ representations relative to 2AFC.

Method

Participants—We collected data from 75 participants (49 females, 25 males, one 

nonbinary; age M = 20.65, SD = 3.07). Due to the COVID-19 pandemic, this experiment 

was conducted online. We recruited from both the Cornell University undergraduate 

population (N = 50) and from the Prolific participant recruitment platform (N = 25). 

Participation from the Prolific participant pool was limited to university students who were 

native speakers of American English, to maintain comparability between the two samples. 

There were no significant differences in performance between the two samples on either 

SICR or 2AFC (p = .24 or greater). Therefore, the data from both samples were combined 

and analyzed together.

This preregistered sample size was determined by a power analysis based on the results of 

a pilot experiment run in-lab, wherein we observed a SICR effect size of approximately d 
= .41. Due to the online format of the current study, we anticipated that the observed effect 

sizes might be slightly smaller than the pilot study that was conducted in-person prior to lab 

closures (e.g., due to potential delays between stimulus presentation and when participants 

are cued to start repeating back stimuli because of differences in Internet connectivity, 

differences in headphone types across participants, slight differences in the volume at which 

participants listen to stimuli). We therefore conducted a power analysis based on a reduced 

effect size of d = .21 (half of the effect size observed in the pilot study). All participants 

were native speakers of American English, with no known history of language or auditory 

disorders. Participation was compensated with course extra credit or monetary payment.

Materials—The same four artificial languages as Experiment 1 were used, featuring nine 

AXC words that were heard during training. In addition, the same 18 SICR and 18 2AFC 

target items as Experiment 1 were used at test (nine that tested word learning and nine 

that tested generalization in each task). For the foils, eighteen phantom words were created. 

Phantom words were constructed by taking the first syllable of one nonadjacent dependency 

and pairing it with the final syllable of a different nonadjacent dependency (e.g., A1X1C2), 

to preserve the items’ positional information but disrupt their chunk information (i.e., A1 

and C2 occur as the first and last syllable in a trisyllabic sequence, but never occurred 

together within the same trisyllabic word during training). The same method was used to 

create four SICR phantom word learning trials (A1X3C2A2X1C1) and four SICR phantom 

generalization trials (A1Z3C2A2Z1C1), yielding eight SICR phantom word trials in total. 

The bigram information in the foils was carefully balanced, to make sure that no single 

bigram appeared in the phantom word strings more than once, and all phantom A–C pairings 
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occurred an approximately equal number of times. The phantom word items for both tasks 

can be found in Tables C1 and C2 in Appendix C.

As in Experiment 1, all new stimuli were generated using the Festival speech synthesizer 

(Black et al., 1990), using the same voice as the items in the first experiment, with each 

tri-syllabic string lasting approximately 700 ms. Both stimulus presentation and 2AFC data 

collection utilized Qualtrics survey software. Participants’ spoken responses on the SICR 

task were recorded using the Zoom conferencing software, in a completely anonymized 

meeting session (participants logged in with their randomized participant numbers and with 

no video, to ensure that the data was completely de-identified), as was approved by Cornell 

University’s IRB. Participants signed a consent form prior to participation.

Procedure—Identical to Experiment 1, participants were first trained on the artificial 

language for approximately 10.5 min. During this time, they were asked to listen carefully to 

the language and pay attention to any words it might contain. Each word was presented 100 

times (and so each nonadjacent dependency was presented 300 times) throughout the course 

of training.

Following exposure, word learning and generalization were measured using both SICR 

and 2AFC. The order of these two tests was counterbalanced across participants. In SICR, 

participants heard strings of syllables over headphones, and were asked to repeat the entire 

string out loud to the best of their ability. Participants were not informed of the strings’ 

underlying structure. For 2AFC, participants heard stimulus pairs consisting of words and 

phantom words. On the word learning trials, input words were always paired with phantom 

input words. On the generalization trials, generalization words were always paired with 

phantom generalization words. Participants were instructed to indicate which of the two 

words best matched the artificial language to which they were exposed.

Results

SICR Results—As in Experiment 1, two coders who were blind to the purpose of the 

study and its design transcribed the SICR data, using the same procedures described in 

the Results section of Experiment 1. Participants’ productions were then scored for total 

syllable, bigram, trigram, and nonadjacent dependency accuracy, and learning was measured 

by comparing responses on the target items to those on the phantom word items. Word 

learning and generalization responses were modeled separately using linear mixed effects 

models, with participants and test item as random effects, and word type (target vs. phantom 

word) as a fixed effect. As in Experiment 1, language version was not included in the 

models as a separate random effect, as it was already redundantly coded within the test item 

variable.

When considering the total recall accuracy on the word learning trials (i.e., the total 

number of syllables recalled), the fixed effect of word type was not significant (model 

improvement over model containing only random effects, χ2(1) = 2.60, p = .11), with no 

reliable difference between the number of syllables recalled for target and phantom word 

strings (difference estimate = −.23, SE = .15, z = −1.61, p = .11). Similarly, there was no 

significant effect of word type on bigram recall (model improvement over model containing 
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only random effects, χ2(1) = 2.42, p = .12), with performance on both target and phantom 

strings being approximately equal (difference estimate = −.22, SE = .14, z = −1.55, p = .13). 

However, there was a significant effect of trigram accuracy (model improvement over model 

containing only random effects, χ2(1) = 4.35, p = .037). Participants recalled significantly 

more legal trigrams than phantom trigrams (difference estimate = −.16, SE = .08, z = −2.11, 

p = .04). Similarly, nonadjacent dependency accuracy was significantly higher for the target 

items (model improvement over model containing only random effects, χ2(1) = 7.53, p = 

.006), with participants recalling more nonadjacent dependencies that they were exposed to 

during training than phantom dependencies (difference estimate = −.18, SE = .06, z = −2.82, 

p = .007).

For SICR generalization, the data reveal the same pattern of results as those observed for 

the word learning trials. Similarly, there was no significant effect of item type on bigram 

accuracy (model improvement over model containing only random effects, χ2(1) = 1.25, p = 

.26; difference estimate = −.13, SE = .12, z = −1.11, p = .27). However, for trigram recall, 

word type was significant (model improvement over model containing only random effects, 

χ2(1) = 4.35, p = .037), with participants recalling significantly more trained trigrams over 

phantom trigrams (difference estimate = −.16, SE = .08, z = −2.11, p = .041). Nonadjacent-

dependency recall was also significantly impacted by word type (model improvement over 

model containing only random effects, χ2(1) = 5.00, p = .026), with participants recalling 

significantly more nonadjacent dependencies for the target items than in the phantom word 

items (difference estimate = −.13, SE = .06, z = −2.62, p = .03).

Performance was significantly higher on the word learning trials than on the generalization 

trials for all SICR measures (total accuracy: t(74) = 2.63, p = .01, d = .30; bigram accuracy: 

t(74) = 3.81, p = .0003, d = .44; trigram accuracy: t(74) = 3.63, p = .0005, d = .42; 

nonadjacent dependency accuracy: t(74) = 2.04, p = .05, d = .24). Mean performance 

on all SICR measures (e.g., the average proportion of syllables, trigrams or nonadjacent 

dependencies recalled across all participants for each trial type) are reported in Table 3, and 

the serial position curves are reported in Figure 2.

2AFC Results—Contrary to our preregistered predictions, 2AFC word identification 

performance was significantly above chance, with participants preferring words over 

phantom words, t(74) = 5.87, p < .0001, d = .68. Generalization performance was 

also significantly above chance, t(74) = 1.67, p = .05, d = .19, with participants 

correctly selecting novel but structurally consistent words constructed of target nonadjacent 

dependencies over phantom dependencies. There was a significant difference between 2AFC 

word learning and generalization performance, t(74) = 3.03, p = .003, d = .35, with 

participants performing significantly better on the word learning than the generalization 

trials. The mean accuracy of each 2AFC measure is reported in Table 4.

Discussion

In Experiment 2, we expanded on the results of Experiment 1 by performing a closer 

examination of the representations that learners form during statistical nonadjacent 

dependency learning. In doing so, we revisited the positional hypothesis proposed by 
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Endress and Mehler (2009), but with two key differences from previous studies. First, we 

tested generalization in addition to acquisition, to determine whether the effect reported for 

phantom input words would extend to generalization. Second, we used SICR to gain more 

detailed insights into participants’ representations for the newly acquired words/structures, 

to disentangle whether these comprise chunks or merely positional information.

Our results reveal that participants may become sensitive to multiple kinds of regularities 

in nonadjacency tasks, including both adjacent and nonadjacent information. However, 

it also appears that they do encode specific nonadjacent chunks above and beyond the 

positions of syllables alone. For SICR, contrary to our predictions, no difference was 

found between recall of the target versus phantom words in terms of the total number 

of syllables recalled or the number of bigrams recalled. This finding makes sense when 

considering the overall statistical structure of the target and phantom items: in both cases, 

the adjacent bigram information was identical. The only differences between the two 

lay in the trigram and nonadjacency statistics. We observed a robust difference in both 

the number of legal trigrams and legal nonadjacent dependencies recalled, both on the 

word learning and generalization trials. Although the distinctions between the target and 

phantom word items were very subtle in terms of their statistical structure, participants 

nonetheless recalled significantly more trigrams and nonadjacent dependencies that followed 

the artificial language’s chunk information. These findings dovetail with experimental data 

on visual statistical learning from Slone and Johnson (2015), demonstrating that participants 

can distinguish trained triplets from statistically matched illusory triplets, and thus represent 

chunks rather than statistics. Comparable results have also been reported for linguistic 

statistical learning (Perruchet & Poulin-Charronnat, 2012; Wang et al., 2019). However, 

although these previous studies have demonstrated a general preference for trained over 

phantom items, here we elucidate the specific representations that learners accrue.

The stronger facilitation from legal nonlocal dependencies has several implications for 

the kind of information that participants glean from learning. Work from a recent study 

of online visual statistical learning shows that there are strong individual differences in 

the kinds of dependencies—local versus nonlocal—that participants rely on (Siegelman et 

al., 2019), with some individuals preferring one over the other, whereas some attend to 

both. Overall, adjacent information appears to be easier for participants to process and 

learn (Trotter et al., 2020), with participants potentially favoring adjacent over nonadjacent 

dependencies when such information is present (Gómez, 2002). Indeed, Gómez (2002) 

found that individuals could only learn nonlocal over local information when there was 

ample variability of the middle items in the input—even with the inclusion of additional 

pause and lexical cues to the nonadjacent structure. The languages in the present experiment 

possessed no additional cues and very few middle items: only three as opposed to the 

twenty-four middle items required in Gómez (2002) for participants to endorse grammatical 

over ungrammatical nonadjacent sequences above chance in a grammaticality judgment 

task. Here, we contribute further evidence that individuals can in fact learn and represent 

adjacent transitional probability information and nonadjacent information simultaneously, 

supplementing the results of prior studies (Romberg & Saffran, 2013; Vuong et al., 2016). 

Complementary findings are also observed in studies of children’s nonword repetition using 

stimuli derived from natural language statistics: Through exposure to a language, individuals 
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pick up on lexical chunks (in this case, nonadjacent frames) and sublexical chunks (e.g., the 

bigram information within those frames), leading to enhanced recall of strings that follow 

these lexical and sublexical statistics (Jones, 2016). These findings also illustrate how the 

behaviors observed in the current article tap into real-world psychological phenomena.

Contrary to the results of Endress and Mehler (2009) and in line with those of Perruchet 

and Poulin-Charronnat (2012), our 2AFC results show a significant difference between 

endorsement of the words over phantom words on the word identification trials. Further, 

we extend these results by observing a comparable effect on the generalization trials. 

These trials in particular discount the idea that individuals encode rule-like representations 

regarding syllable position—participants show better endorsement of target over phantom 

items even though both follow the purported rule structure (e.g., A precedes C). Rather, 

individuals appear to encode specific A–C combinations, suggesting the acquisition of 

concrete items over abstract rules. These results thus lend important insights into the 

nature of exemplar-based learning and generalization, and how the two unfold over time: 

individuals represent learned items with enough flexibility to generalize over exemplars 

relatively early during the learning process.

General Discussion

Successful learning necessitates more than the encoding of specific items or events in 

the environment—it requires generalizing to novel instances. The current article tested the 

question: can general-purpose statistical learning and memory processes account for the 

acquisition and generalization of nonlocal dependencies, a common challenge to many 

memory and exemplar-based learning models? Our results provide strong evidence for the 

statistically based chunking of nonadjacent structure that is not reducible to positional 

encoding and does not require rule learning. The results also suggest that participants 

represent nonadjacent information as input-specific chunks that can scaffold structural 

generalization (Lieven, 2016).

In line with statistical learning-based theories (e.g., Aslin & Newport, 2012), our results 

suggest that structure learning and generalization may be more computationally unified 

in adults than previously assumed (Endress & Bonatti, 2016). Rather than these two 

abilities requiring distinct statistical and rule-like computations, they can instead rely 

on similar statistical learning and memory mechanisms (e.g., Frost & Monaghan, 2016; 

Perruchet et al., 2004). Furthermore, although some theories posit that statistical information 

is insufficient for the acquisition of nonadjacent structures from speech, let alone 

generalization (Endress & Mehler, 2009; Endress et al., 2005), we show that nonadjacent 

dependencies can be both acquired and generalized without the recruitment of additional 

cues, replicating the results of previous studies (Frost & Monaghan, 2016). Although 

the recruitment of additional cues can facilitate the acquisition of nonlocal dependency 

structures (e.g., de Diego-Balauger et al., 2007, 2015; Fló, 2021; Newport & Aslin, 2004; 

Rodríguez-Fornells et al., 2009; Van den Bos et al., 2012), they are not a strict requirement 

for learning (Frost et al., 2019; Onnis et al., 2004).
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Our results further elucidate how individuals move from exemplar-based learning to forming 

broader generalizations—a key area of inquiry in psychology. Rather than requiring the 

gradual formation of abstract rules, learners appear to chunk specific exemplars from the 

input based on adjacent and nonadjacent statistical regularities (e.g., I__them), which serve 

as a launchpad for generalizing beyond what was encountered (e.g., I saw them, I like them, 
I want to eat them). These results parallel usage-based frameworks of language acquisition 

(e.g., Lieven, 2016; Tomasello, 2003), which view productivity as arising from the interplay 

of encoding input-specific constructions and abstracting over them to create novel variations. 

For example, learners appear to extract and store lexical frames (Lieven et al., 2003), which 

are specific multiword constructions that frequently occur in an input (e.g., I want __). 

Productivity occurs when learners insert a novel word or multiword chunk into the empty 

slot of the frame (e.g., I want this, I want to go home), enabling learners to generalize over 

statistically learned chunks.

A chunking-based computational model that discovers lexical frames may provide a window 

into how chunking could operate in the learning and generalization that took place in our 

experiments. This lexical frame discovery model involves a minor, principled extension to an 

earlier chunk-based learner model (CBL; McCauley & Christiansen, 2019a), which aimed 

to simulate children’s language comprehension and production under real-time memory 

constraints. CBL was exposed to corpora of child-directed speech—one word at a time—

using backward transitional probabilities between words (which learners are sensitive to: 

e.g., Pelucchi et al., 2009; Perruchet & Desaulty, 2008; Saffran, 2001, 2002) to decide 

whether to group words together as a chunk or not. In this way, the model processes 

the input incrementally, while building up an inventory of chunks that consist of one 

or more words. Through a simple generalization process, multiword chunks can then 

be used to facilitate further processing: previous encountered chunks are automatically 

grouped together independently of transitional probability information. As a model of 

early language acquisition, CBL was able to simulate the kind of shallow parsing that 

likely plays a role in children’s language comprehension and the use of distributional 

regularities in their production of utterances. The model showed strong performance across 

a typologically diverse range of languages (McCauley & Christiansen, 2019a) while also 

capturing psycholinguistic data from both children (McCauley & Christiansen, 2014) and 

adults (Grimm et al., 2017).

This lexical frame version of CBL (CBL+LF; McCauley & Christiansen, 2019b) 

incorporated a slight change to the generalization process: when the model has discovered 

five or more multiword chunks of the same size and which differ only by a single word 

(in the same position), it creates a lexical frame with an empty slot. For example, if the 

model learns the chunks on our own, on your own, on their own, on his own, on its own, 

it automatically generalizes over them to create the lexical frame on__own.2 These lexical 

frames are stored in the model’s chunk inventory (or long-term memory), where they can 

2The CBL+LF model thus answers the call by Kol et al. (2014) for the kind of psychologically plausible, yet computationally 
rigorous, approximation of the Traceback method proposed by Lieven et al. (2003) to capture children’s item-based language learning. 
The threshold of 5+ for creating a lexical frame was chosen as a more conservative constraint than the 4+ used by Cameron-Faulkner 
et al. (2003) in their hand-coded analysis of child-directed speech.
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combine with other words and chunks to produce novel utterances not encountered in the 

input (e.g., on my own, on her own). The model thus demonstrates how the combination of 

statistical learning and chunking mechanisms can capture the generalization of nonadjacent 

structures. These simulations, along with the data presented here, suggest that chunks do not 

only comprise contiguous units, but can also incorporate nonadjacent lexical frames wherein 

other chunks can be placed, thereby extending the results of prior memory models.

Importantly, these results show that chunk formation and statistical dependency learning 

are part and parcel of the same learning process. In Experiment 1, participants appear to 

form chunks of information based on the different statistics present in the input (Perruchet 

& Poulin-Charronnat, 2012; Slone & Johnson, 2015, 2018; Wang et al., 2019), encoding 

specific trigrams from the input as well as nonadjacent dependencies. Experiment 2 

provided further evidence of this ability, by illustrating how participants encode nonadjacent 

chunks beyond positional information, though they still encode adjacent information as well 

(exemplified by the fact that participants recall the bigrams equally well in the target and 

phantom items). It may thus be the case that theories of statistical learning need not rule 

out the acquisition of transitional probabilities in favor of chunk information, or vice-versa

—rather, learners appear to utilize both. Indeed, computational models that involve both 

statistical computation and chunk formation provide a stronger fit to statistical learning 

data than those that exclusively rely on transitional probability calculation (French et al., 

2011; McCauley & Christiansen, 2019a, 2019b; Perruchet & Vinter, 1998), and is consistent 

with theories that view statistical learning as a suite of domain-general computations (Frost 

et al., 2015, 2019). Although our data cannot determine whether chunk formation and 

statistical computation occur in parallel (McCauley & Christiansen, 2019a, 2019b), or if 

statistical sensitivity manifests due to chunking (Perruchet & Vinter, 1998; Perruchet & 

Pacton, 2006; Thiessen & Pavlik, 2013), they do suggest that both are required for learning 

and generalization.

Our results also contribute further insights to the memory literature, and particularly to 

studies employing serial recall. Individuals who have picked up on the statistical regularities 

of artificial languages show better recall of grammatical items, when controlling for baseline 

phonological working memory (Conway et al., 2010; Isbilen et al., 2020; Kidd et al., 

2020). Similarly, memory for sequences of high frequency words from natural language is 

superior to memory for strings of low frequency words (Hulme et al., 1997), and long-term 

lexical and phonological knowledge facilitates recall, when test items are manipulated to 

leverage distributional regularities from an artificial language that participants were exposed 

to (Majerus et al., 2004). Other studies have shown that when individuals are trained to 

associate pairs of words, these pairs are later treated as a single chunked unit (Cowan, 

Chen, & Rouder, 2004), and classic memory studies show that word predictability and 

frequency facilitate recall (Baddeley, Conrad, & Hull, 1965). Although prior observations 

have typically been limited to facilitation from adjacent statistical information, we extend 

these findings here by showing comparable boosts to memory performance from the 

statistical learning of nonadjacent information.

The question of how nonadjacent information may be stored in memory is a topic of some 

speculation. For example, in the visual domain, some studies suggest that individuals utilize 
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such structural dependencies to simplify their mental representation of stimuli to allow their 

retention in memory. This is thought to take different forms, with individuals encoding 

both detailed information about specific items and the overall summary of a scene (Brady 

& Tenenbaum, 2013; Hollingworth & Henderson, 2003; Oliva, 2005), or by regularizing 

the features of a scene to facilitate compressibility and reduce short-term memory (STM) 

load—though such compression may also cause memory errors by oversimplifying the data 

(Lazartigues et al., 2021). Yet other studies have challenged the notion of chunking as a form 

of data compression that frees up working memory (Norris et al., 2020), and instead suggest 

that chunking may be achieved by redintegration. In this account, chunked representations 

only reside in long-term memory, enabling individuals to rebuild whole representations from 

degraded traces in STM (but, see Brady et al., 2009 and Thalmann et al., 2019 for evidence 

of compression in memory). Although the current article was not designed to disentangle 

the compression and redintegration accounts, our data do suggest that nonadjacent statistical 

information appears to facilitate memory in a similar fashion as adjacent information: by 

allowing the cognitive system to build larger units of representation, and thereby decreasing 

the number of items that need to be held in working memory. This is consistent with 

chunking models of serial recall (e.g., Cowan et al., 2012), which show that working 

memory limitations interact with long term memory. Although this and other models have 

primarily focused on items linked by adjacent probabilities, their results may extend to items 

comprising nonadjacent regularities as well.

Additionally, acquisition and generalization appear to occur in parallel, rather than requiring 

mastery of the language before evidence of generalization can be observed, as has been 

previously suggested. However, although these two abilities appear to emerge around the 

same time at test, we acknowledge the limitations of the current study in providing online 

data that tracks the time course of learning during training, or the specific mechanisms 

involved therein. Just as decades of 2AFC results are taken to be indicative of the calculation 

of transitional probabilities during statistical learning, we predict that the evidence of chunk 

formation on SICR may similarly indicate the involvement of chunking during learning, and 

the apparent concurrence of learning and generalization.

Furthermore, our data do not speak to how word learning and generalization proceed in 

infants, nor its developmental trajectory (Gómez & Maye, 2005). Evidence for how these 

abilities unfold in infants is currently mixed. Indeed, it has previously been suggested that 

generalization may only appear later in development—and only then with the incorporation 

of additional acoustic cues (Marchetto & Bonatti, 2013). Yet the opposite has been reported 

for the acquisition of musical sequences (Dawson & Gerken, 2009), with 4-month-old 

infants successfully generalizing tone and chord combinations that follow a regular pattern, 

but not 7-month-old infants. By contrast, Frost et al. (2020) show that 17-month-old children 

both segment and generalize structure after a brief period of exposure to an artificial speech 

stream on the basis of statistical cues alone. Similar results have also been observed for 

visual statistical learning (Saffran et al., 2007). Although these results make it difficult to 

untangle the precise developmental timeline of generalization, collectively, they do suggest 

that it occurs for both linguistic and nonlinguistic stimuli. As this ability applies across 

domains, it thus may be underpinned by general cognitive rather than language-specific 

mechanisms.
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The processes involved in learning and generalization have long been debated. Here, we 

suggest that the process characterized as statistical learning may involve a whole host of 

domain-general computations working in parallel (Frost et al., 2015, 2019), among which 

chunking plays a central role. This view differs somewhat from other accounts that propose 

multiple task-specific mechanisms (the “more than one mechanism” (MOM) hypothesis; 

Endress & Bonatti, 2007, 2016), where statistical computations calculate transitional 

probabilities among adjacent and nonadjacent information in speech, whereas a secondary 

mechanism extracts rules. Instead, we suggest that statistically facilitated chunking works 

in tandem with other domain-general processes to enable the learning and generalization of 

structure in memory, language, and other aspects of cognition.

Context of the Research

Although chunking models are powerful in capturing the learning of temporally and 

spatially contiguous information across domains, how such memory mechanisms might 

apply to remote dependencies has remained a relative mystery. Research into this area 

provides fertile ground for investigating the nature of exemplar-based learning and how 

individuals form generalizations over items—the representational foundations of vocabulary 

and grammar in the psychology of language and in cognitive science at large. Prior evidence 

shows that SICR is a highly sensitive tool for investigating learning and representation 

of adjacent dependencies. The current study was motivated by the question of whether 

SICR could be expanded to nonlocal dependencies, which would allow for a broader notion 

of chunking. Our results thus unlock a trove of possibilities for studying learning and 

generalization in a range of participants and tasks. Fruitful future directions may include 

investigating how representations change with age (e.g., are children more flexible in 

their acquisition or generalization of structures than adults?), how children with language 

disorders perform on tasks involving the chunking of adjacent and nonadjacent structures, 

whether skill in one statistical learning task correlates with skill in another, whether the 

learning of artificial dependencies correlates with the kinds of information individuals can 

learn in the real world, and how statistical learning relates to other aspects of cognition, 

such as auditory and visual perception, and memory and attention systems. Such avenues 

may in turn enable us to bridge statistically based chunking in language to a host of broad 

phenomena in cognition.
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Appendix A: Input and Generalization Words for Experiments 1 and 2

Language 1 Language 2 Language 3 Language 4

Input words

Dufoki Befoki Dufoga Dufoki

Duliki Beliki Duliga Duliki

Duraki Beraki Duraga Duraki

Gafobe Dufopu Kifobe Pufobe

Galibe Dulipu Kilibe Pulibe

Garabe Durapu Kirabe Purabe

Tafopu Tafoga Pufota Tafoga

Talipu Taliga Pulita Taliga

Tarapu Taraga Purata Taraga

Generalization words

Duthiki Bethiki Duthiga Duthiki

Duveki Beveki Duvega Duveki

Duzoki Bezoki Duzoga Duzoki

Gathibe Duthipu Kithibe Puthibe

Gavebe Duvepu Kivebe Puvebe

Gazobe Duzopu Kizobe Puzobe

Tathipu Tathiga Puthita Tathiga

Tavepu Tavega Puveta Tavega

Tazopu Tazoga Puzota Tazoga

Appendix B: Test Items for Experiment 1

Table B1

SICR Items for Experiment 1

Input word (W) or 
Generalization (G) item

Target (T) or 
foil (F) Language 1 Language 2 Language 3 Language 4

W T Dulikitafopu Duliputafoga Pulitakifobe Pulibedufoki

W T Durakigafobe Durapubefoki Puratadufoga Purabetafoga

W T Talipugarabe Taligaberaki Kilibeduraga Dulikitaraga

W T Tarapugalibe Taragabeliki Kirabeduliga Durakitaliga

W T Tafopuduliki Tafogadulipu Kifobepulita Dufokipulibe

W T Galibeduraki Belikidurapu Duligapurata Taligapurabe

W T Garabedufoki Berakidufopu Duragapufota Taragapufobe

W T Gafobetalipu Befokitaliga Dufogakilibe Tafogaduliki

W F Gabepulirata Bekigalirata Dugabeliraki Tagakiliradu

W F Litapukidofu Litagapufodu Likibetafopu Lidukibefopu

W F Foraduputaki Foradugatapu Forapubekita Forapukidube

W F Kiberaligadu Pukiralibedu Tagaralidupu Begaralitapu

W F Pubelifogata Gakilifobeta Begalifoduki Kigalifotadu
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Input word (W) or 
Generalization (G) item

Target (T) or 
foil (F) Language 1 Language 2 Language 3 Language 4

G T Duvekitathipu Duveputathiga Puvetakithibe Puvebeduthiki

G T Duzokigavebe Duzopubeveki Puzotaduvega Puzobetavega

G T Duthikigazobe Duthipubezoki Puthitaduzoga Puthibetazoga

G T Tavepugathibe Tavegabethiki Kivebeduthiga Duvekitathiga

G T Tazopuduthiki Tazogaduthipu Kizobeputhita Duzokiputhibe

G T Tathipuduveki Tathigaduvepu Kithibepuveta duthikipuvebe

G T Gavebetazopu Bevekitazoga Duvegakizobe Tavegaduzoki

G T Gazobetavepu Bezokitavega Duzogakivebe Tazogaduveki

G T Gathibeduzoki Bethikiduzopu Duthigapuzota Tathigapuzobe

G F Kipuvethitadu Pugavethitadu Tabevethikipu Bekivethidupu

G F Bekithizoduga Kiputhizodube Gatathizopudu Gabethizoputa

G F Dubezovegaki Dukizovebepu Pugazoveduta Pugazovetabe

G F Vetabegapuzo Vetakibegazo Vekigadubezo Vedugatakizo

Table B2

2AFC Foil Items for Experiment 1

Input word (W) or Generalization (G) foil Language 1 Language 2 Language 3 Language 4

W Bedufo Fokibe Bepura Bedura

W Fobega Gadura Fogadu Betafo

W Kigafo Kidufo Gapufo Fogata

W Kitara Ligabe Libedu Gapufo

W Libedu Likidu Ligapu Kipura

W Likita Liputa Litaki Libedu

W Lipuga Pubefo Rabepu Ligapu

W Pudura Putara Tadufo Likita

W Rapudu Ragadu Takira Rakipu

G Begave Fothibe Bekizo Beputhi

G Fothiga Gatazo Fothidu Fothita

G Kiduthi Kibeve Gaduve Gatave

G Liveta Liveta Liveki Kiduzo

G Putazo Puduthi Razopu Livedu

G Razodu Razodu Taputhi Razopu

G Thiputa Thigata Thibeki Thikidu

G Vekidu Vepudu Vetapu Vebepu

G Zobega Zokibe Zogadu Zogata
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Appendix C: Test Items for Experiment 2

Table C1

SICR Items for Experiment 2

Input word or Generalization 
item Target or foil Language 1 Language 2 Language 3 Language 4

W T Talipugarabe Taligaberaki Kilibeduraga Dulikitaraga

W T Gafobetalipu Befokitaliga Dufogakilibe Tafogaduliki

W T Tafopuduliki Tafogadulipu Kifobepulita Dufokipulibe

W T Garabedufoki Berakidufopu Duragapufota Taragapufobe

W T Tarapugalibe Taragabeliki Kirabeduliga Durakitaliga

W T Galibeduraki Belikidurapu Duligapurata Taligapurabe

W T Dulikitafopu Duliputafoga Pulitakifobe Pulibedufoki

W T Durakigafobe Durapubefoki Puratadufoga Purabetafoga

W F Talibegarapu Talikiberaga Kiligadurabe Duligataraki

W F Galikitafobe Beliputafoki Dulitakifoga Talibedufoga

W F Dulipugafoki Duligabefopu Pulibedufota Pulikitafobe

W F Dufoputaraki Dufogatarapu Pufobekirata Pufokidurabe

G T Duzokigavebe Duzopubeveki Puzotaduvega Puzobetavega

G T Gafibeduzoki Befikiduzopu Dufigapuzota Tafigapuzobe

G T Tazopudufiki Tazogadufipu Kizobepufita Duzokipufibe

G T Gazobetavepu Bezokitavega Duzogakivebe Tazogaduveki

G T Duvekitafipu Duveputafiga Puvetakifibe Puvebedufiki

G T Gavebetazopu Bevekitazoga Duvegakizobe Tavegaduzoki

G T Tafipuduveki Tafigaduvepu Kifibepuveta Dufikipuvebe

G T Dufikigazobe Dufipubezoki Pufitaduzoga Pufibetazoga

G F Tazokiduvepu Tazopuduvega Kizotapuvebe Duzobepuveki

G F Gazopudufibe Bezogadufiki Duzobepufiga Tazokipufiga

G F Tavebegafipu Tavekibefiga Kivegadufibe Duvegatafiki

G F Duzobetafiki Duzokitafipu Puzogakifita Puzogadufibe

Table C2

2AFC Phantom Word Foils Items for Experiment 2

Input word or Generalization foil Language 1 Language 2 Language 3 Language 4

W Dulipu Duliga Pulibe Puliki

W Durabe Duraki Puraga Puraga

W Dufopu Dufoga Pufobe Pufoki

W Talibe Taliki Kiliga Duliga

W Taraki Tarapu Kirata Durabe

W Tafobe Tafoki Kifoga Dufoga

W Galiki Belipu Dulita Talibe

W Garapu Beraga Durabe Taraki

W Gafoki Befopu Dufota Tafobe
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Input word or Generalization foil Language 1 Language 2 Language 3 Language 4

G Duvepu Duvega Puvebe Puveki

G Duzobe Duzoki Puzoga Puzoga

G Duthibe Duthiki Puthiga Puthiga

G Tavebe Taveki Kivega Duvega

G Tazoki Tazopu Kizota Duzobe

G Tathiki Tathipu Kithita Duthibe

G Gaveki Bevepu Duveta Tavebe

G Gazopu Bezoga Duzobe Tazoki

G Gathipu Bethiga Duthibe Tathiki
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Figure 1. 
Serial Position Curves Showing the Accuracy of Recall on the SICR Task

Note. On the word learning and generalization trials, accuracy was higher for the target 

items (which follow the statistics of the artificial language) than it was for the foil items. 

Error bars reflect standard error.
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Figure 2. 
SICR Serial Position Curves for the Word Learning and Generalization Trials by Item Type 

(Target Versus Phantom Word Strings)

Note. Error bars reflect standard errors.
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Table 2

Summary Statistics for 2AFC by Item Type (Proportion Correct)

Item type M SD Range

Word learning .84 .13 .56–1

Generalization .70 .21 .22–1
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Table 4

Summary Statistics for 2AFC by Item Type

Item type M SD Range

Word .61 .16 .33–1

Generalization .53 .17 0–1
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