
Original Research Article

Educational and Psychological
Measurement

2023, Vol. 83(4) 831–854
� The Author(s) 2022

Article reuse guidelines:
sagepub.com/journals-permissions

DOI: 10.1177/00131644221117193
journals.sagepub.com/home/epm

Exploration of the Stacking
Ensemble Machine Learning
Algorithm for Cheating
Detection in Large-Scale
Assessment

Todd Zhou1 and Hong Jiao2

Abstract

Cheating detection in large-scale assessment received considerable attention in the
extant literature. However, none of the previous studies in this line of research inves-
tigated the stacking ensemble machine learning algorithm for cheating detection.
Furthermore, no study addressed the issue of class imbalance using resampling. This
study explored the application of the stacking ensemble machine learning algorithm
to analyze the item response, response time, and augmented data of test-takers to
detect cheating behaviors. The performance of the stacking method was compared
with that of two other ensemble methods (bagging and boosting) as well as six base
non-ensemble machine learning algorithms. Issues related to class imbalance and input
features were addressed. The study results indicated that stacking, resampling, and
feature sets including augmented summary data generally performed better than its
counterparts in cheating detection. Compared with other competing machine learning
algorithms investigated in this study, the meta-model from stacking using discriminant
analysis based on the top two base models—Gradient Boosting and Random Forest—
generally performed the best when item responses and the augmented summary sta-
tistics were used as the input features with an under-sampling ratio of 10:1 among all
the study conditions.

1Winston Churchill High School, Potomac, MD, USA
2University of Maryland, College Park, USA

Corresponding Author:

Hong Jiao, Measurement, Statistics and Evaluation, Department of Human Development and Quantitative

Methodology, University of Maryland, 1230C Benjamin Building, College Park, MD 20742, USA.

Email: hjiao@umd.edu

https://doi.org/10.1177/00131644221117193


Keywords

cheating detection, stacking, machine learning, ensemble learning algorithms,
response time, resampling, oversampling, SMOTE, under-sampling, dual resampling,
data augmentation

Test fairness is one important validity issue in test score use and interpretation in

large-scale assessment. When some test-takers take advantage of external assistance

to spuriously gain scores in a test, it is unfair to the majority of test-takers who have

no access to any external assistance. In general, such cheating behaviors lead to test

security concerns and jeopardize the validity of test score interpretation.

Cheating could take on different forms. External assistance could occur before,

during, or after test administration. Before a test, a test-taker could have pre-

knowledge of the items due to illegal access to test items. During test administration,

cheating may occur as copying from others, using prohibited notes, asking for help

from other people, searching from the internet, or using a proxy test-taker. After test

administration, answer changes may occur. Some proctors such as classroom teach-

ers may change students’ answers to help them to gain scores. Different methods and

technology have been explored to analyze the examinees’ behaviors for cheating

detection.

In psychometric research, item-level data collected during test administration has

often been used for cheating detection. The methods used for cheating detection in

large-scale assessment fall into different categories such as person fit index-based,

latent variable model-based, and machine learning methods. Both item product and

process data could be used for cheating detection. Person fit statistics based on item

responses (e.g., Drasgow et al., 1985; Meijer & Sijtsma, 2001; Sijtsma & Meijer,

1992; van der Flier, 1982) and response time (Man et al., 2019) have been developed

to detect cheating in large-scale assessments. Furthermore, indices based on answer

changes (Bishop & Egan, 2017) and the relation between the responses and the

response times (Toton & Maynes, 2019) were proposed for cheating detection as

well. In addition, different latent variable models based on item responses and

response time have been explored to detect cheating (e.g., Chen et al., 2020; Shu

et al., 2013; Skorupski et al., 2016; Toton & Maynes, 2019; Wang et al., 2018;

Wollack, 1997). Recently, researchers (Man & Harring, 2020) assessed item pre-

knowledge via multiple-group joint modeling of item responses, response time, and

visual fixation counts. It is expected that joint modeling of multiple related data

types leads to higher accuracy in cheating detection.

In recent years, machine learning algorithms have been explored by different

researchers for cheating detection. Zopluoglu (2019) studied Extreme Gradient

Boosting to detect item pre-knowledge. Man et al. (2019) explored both supervised

(K-nearest mean, random forest, and support vector machine [SVM]) and unsuper-

vised (K-means and self-organizing mapping) machine learning algorithms for fraud

detection. However, none of these studies investigated the impact of class imbalance

832 Educational and Psychological Measurement 83(4)



in the cheater and non-cheater groups on cheating detection. No previous studies in

cheating detection investigated the stacking ensemble learning method that combines

several base machine learning algorithms into one ensemble learning model to

improve model performance for classification. Thus, this current study investigates

stacking, one of the ensemble machine learning methods, and compares its perfor-

mance with other ensemble methods and base models in cheating detection when the

classes are rebalanced via resampling.

Machine Learning Methods for Cheating Detection

Machine learning methods have been used widely and successfully in a variety of

fields. For cheating detection, machine learning turns out to be a powerful tool to

recognize patterns and find the similarities of answers due to plagiarism. This section

introduces the machine learning algorithms used in this study.

Common Machine Learning Methods

Decision Tree algorithm is the footstone of many other high-level machine learning

algorithms. It reflects how different attributes affect the results and process different

types of data at the same time. However, the decisions are made at each node locally

and it lacks global optimality. SVM computes multidimensional data points to find a

hyperplane, which acts as the decision boundary to classify the samples. Logistic

regression is a supervised learning algorithm used for classification based on its pre-

dictive probability. It uses a cost function, such as the Sigmoid function, to predict

the probability of a target variable and makes classification based on a threshold

value. Naive Bayes is a generative model, which constructs a probabilistic union

model on the problem utilizing the multiplication rules of probability. Linear discri-

minant analysis classifies multidimensional data using probabilities to estimate

whether a new set of inputs belongs to a separate class and make prediction based on

the highest attained probability value. Neural network adopts a hierarchical structure

with layers connecting the adjacent-layer nodes but not the same-layer and cross-

layer nodes. It uses the back propagation method to adjust parameters and applies

the iterative algorithm to train the entire network.

Ensemble Learning Methods

Ensemble learning is engineered to combine multiple model results to develop a

meta-model to achieve higher prediction accuracy. There are three main ensemble

learning methods: bagging, boosting, and stacking. Standing for Bootstrap

Aggregating, Bagging is a parallel ensemble method that is designed for reducing

the variance of the prediction model of decision trees. The data used for bagging is a

bootstrapped sample from the whole dataset. A decision tree is developed based on

each sub-sample. The results from the multiple decision trees are aggregated to find

Zhou and Jiao 833



the best predicted results. The final output is selected by the majority-voting or aver-

aging system, as shown in Figure 1. Random Forest is an improvement over the bag-

ging algorithm. Random Forest aggregates the results of multiple decision trees from

subsets of features while searching for the best feature among its randomly selected

subset of features. Random Forest, therefore, yields better results than its sub-mod-

els: Decision Trees.

Boosting is a technique to promote the weak learning algorithm to the strong

learning algorithm sequentially following a deterministic strategy. Gradient Boosting

is a boosting ensemble learning method. As illustrated in Figure 2, during the training

process, each sub-model depends on the previous one in an adaptive way. Based on

the gradient descent optimization process, Gradient Boosting attempts to identify the

shortcomings of weak learners and minimize the loss function of the local sub-model

gradually during continuous model iteration to enhance the overall effectiveness.

Gradient Boosting assembles decision tree sub-models by adding them sequentially

and correcting the prior sub-model’s performance. In a gradient descent approach,

each of its sub-models attempts to enhance the overall effectiveness through the con-

tinuous model iterations.

Stacking is a different ensemble technique of different base machine learning

models. Bagging and boosting combine the sub-models of the same type (homoge-

neous weak learners), while stacking uses different base learning algorithms (hetero-

geneous weak learners). After fitting different decision trees to the bootstrapped sub-

samples of the same dataset, bagging averages or majority votes the prediction results

from each sub-sample. Boosting develops an ensemble learning algorithm by training

the model on the dataset with wrong predictions by correcting the prediction errors

Figure 1. Bagging Structure.

834 Educational and Psychological Measurement 83(4)



and outputs a weighted average of all the models. Stacking, also called Stacked

Generalization, has a 2-level structure as shown in Figure 3, where the level-2 model

learns from the outputs of different level-1 models. The first level, containing multi-

ple models called base models, trains each base model separately using the same

dataset and makes the predictions. The second level has one model, called the meta-

Figure 2. Boosting Structure.

Figure 3. Stacking Structure.

Zhou and Jiao 835



model, which is a learning model to combine all the prediction outputs from each of

the level-1 base models. Based on those predictions, a machine learning algorithm

such as SVM or logistic regression ideal for ensemble (Pavlyshenko, 2018) is used to

develop a meta-model to make final predictions. Chan and Stolfo (1997) demon-

strated that the meta-model improved the prediction accuracy of a single classifier.

The benefit of stacking is that it combines the outputs of several good-performing

models to make predictions that are expected to outperform a single model in the

ensemble. In general, stacking is a competitive ensemble strategy by integrating

model predictions from different base models in a more optimal way to produce a

new set of predictions. Ultimately, the final model is stacked on the top of the contri-

buting base models to improve the overall prediction.

Resampling for Class Imbalance in Cheating Detection

In cheating detection, only a very small portion of test-takers may engage in cheating.

This leads to imbalanced classes in machine learning with cheaters in the minority

group while the non-cheaters in the majority group. Most machine learning algo-

rithms are developed for equally balanced classes (He & Garcia, 2009). When the

classes are imbalanced, machine learning algorithms tend to produce biased results

favoring the majority class, leading to low prediction accuracy in the minority class.

Guo et al. (2008) noted that the lack of representation and information of the key

characteristic of the minority class makes machine learning difficult to predict the

probability of the minority class. The skewed class distribution of the cheater and the

non-cheater classes in cheating detection makes the prediction models biased toward

the majority class, yielding high accuracy for predicting the non-cheaters but low

accuracy in predicting the cheaters.

Resampling is a method to tackle the class imbalance issue in machine learning.

It balances the minority and the majority classes by adding more cases in the minor-

ity class or reducing the cases in the majority class. The resampling methods include

oversampling of the minority class, under-sampling of the majority class, and the

concurrent use of both. Japkowicz (2000) compared different methods in solving the

imbalanced class problem and found that oversampling the minority class and under-

sampling the majority class are both very successful approaches to balance the

imbalanced classes. Among the oversampling methods, the Synthetic Minority

Oversampling Technique (SMOTE) proposed by Chawla et al. (2002) is an effective

oversampling method by generating synthetic cases in the minority class using the

K-nearest neighbor algorithm. First, a case from the minority class is randomly

selected, its nearest neighbor is found, the difference between the data point and its

nearest neighbor is obtained, finally the difference is multiplied by a random number

R, where 0 \ R \ 1, then the synthetic data is added to the feature vector. These

steps are repeated until the targeted balanced level is achieved. This strategy effec-

tively broadens the minority class’s decision-making region. Therefore, by generat-

ing synthetic data points at the feature level, SMOTE is more advanced than the

836 Educational and Psychological Measurement 83(4)



random over-sampling. The SMOTE function allows the selection of different ratios

of the minority to the majority classes, indicating the sample size of the minority

class after oversampling. For example, a value of 0.4 set for SMOTE means the ratio

of the sample size of the oversampled minority class to that of the un-resampled

majority class is 0.4 to 1 using the majority class as the reference.

Under-sampling the majority class is an opposite strategy for balancing classes by

randomly selecting cases in the majority class to remove. Using the

RandomUnderSampler function in Python, the number of cases in the majority class

will be reduced to attain more balanced class sizes. The RandomUnderSampler func-

tion allows the selection of a targeted class ratio. For example, a value of 0.5 set for

the RandomUnderSampler function means the sample size of the un-resampled

minority class to that of the under-sampled majority class is 1 to 2 using the minority

class as the reference.

Chawla et al. (2002) explored combining oversampling of the minority class via

SMOTE with random under-sampling of the majority class. It turned out that the

concurrent application of SMOTE and random under-sampling outperformed either

under-sampling or oversampling in all study conditions. Essentially, the imbalanced

data issue was resolved by simultaneously oversampling the minority class and

under-sampling the majority class to provide balanced data for the machine learning

models. By adjusting the ratios in the SMOTE and RandomUnderSampler functions

simultaneously, the ratio of the majority to the minority classes was balanced to the

midway. A note worthy of attention is that the resampling procedure should be

applied to the training set for the machine learning model development and the eva-

luation of the model performance should be conducted on the testing dataset without

resampling.

Method

The purpose of the study was to investigate the stacking algorithm for cheating detec-

tion in large-scale assessments with consideration of class imbalance. The perfor-

mance of the proposed stacking models was compared with those of the competing

machine learning models for cheating detection in study conditions with different

resampling methods and different input features.

Data

The test data used in this study is from a large-scale licensure test with cheating cases

flagged. This dataset consists of two test forms, made publicly available by Cizek

and Wollack (2017). Each test form consists of 170 dichotomously scored opera-

tional items. In addition, each test-taker responded to 10 field-test items which were

excluded in the analyses. The dataset consists of item responses, response time, and

the number of attempts of the test for 1,636 test-takers with 46 flagged as likely chea-

ters. No information was given about the types of cheating behaviors each flagged

Zhou and Jiao 837



test-taker committed. As only 46 out of 1,636 examinees were flagged, the cheater

class has a very low proportion, 2.81% of the total sample. This dataset is very imbal-

anced. In the raw item responses showing the option chosen by each test-taker on

each item, there are 141 ‘‘NA’’ values indicating missing data. However, the scored

item responses contain no missing, implying missing values have been coded as 0s.

Zopluoglu (2019) and Man et al. (2019) explored cheating detection using differ-

ent machine learning methods, both using the same data from Cizek and Wollack

(2017). However, none of them considered the issue of class imbalance using resam-

pling. This study explored different resampling approaches to balancing the classes:

oversampling, under-sampling, and both labeled as dual resampling. More specifi-

cally, the SMOTE and RandomUnderSampler functions in Python were utilized for

oversampling and under-sampling, respectively. For the base model comparison, dif-

ferent ratios of the non-cheater versus the cheater classes were explored including

1:1, 2:1, 5:1, and 10:1.

Feature Selection

The input features include item response scores, item response time, and augmented

summary data which were used to train the machine learning models. The augmented

summary data labeled as Other Effective Features (OEF) for every test-taker include

the number of attempts of taking the test and the summary statistics such as the total

test scores and the total response time spent on all 170 items, as well as the mean,

the median, the maximum, and the minimum item response time across 170 items

for every test-taker. The inclusion of the OEF is a type of data augmentation which

is expected to provide more information at a higher level in addition to the informa-

tion from each specific item. In total, there are 347 variables.

In this study, different input data sets were explored. The six sets of input features

include Item Response Score (iraw) only, Response Time (idur) only, Item Response

Score plus Response Time (iraw_idur), Item Response Score plus Other Effective

Features (iraw_OEF), Response Time plus Other Effective Features (idur_OEF), and

Item Response Score plus Response Time plus Other Effective Features

(iraw_idur_OEF).

Base Models

To develop a meta-model using stacking ensemble learning, this study investigated

six basic machine learning models: Decision Tree, SVM, Logistic Regression, Naı̈ve

Bayes, Discriminant Analysis, and Neural Network as well as two ensemble learning

models: Random Forest and Gradient Boosting. The outputs from these eight base

models were used for developing a meta-model.

Given different resampling methods and ratios, different feature sets, and base

models, this study explored the optimal designs among 624 study conditions at the

level 1 for stacking for cheating detection. The non-resampling condition is not fully

838 Educational and Psychological Measurement 83(4)



crossed with the ratios of resampling. Therefore, the 624 study conditions consist of

576 conditions (8 base models 3 6 feature sets 3 3 resampling methods 3 4 resam-

pling ratios) with fully crossed designs for resampling and 48 conditions (8 base mod-

els 3 6 feature sets) of non-resampling.

Stacking

This study developed a stacking ensemble learning model for cheating detection.

The stacking learning model was built based on six basic machine learning models,

one bagging model, and one boosting model. All of these models including the meta-

model were developed using the Scikit-learn (sklearn) Machine Learning library in

Python (Pedregosa et al., 2011), and the structure of stacking learning was imple-

mented using MLxtend, a machine learning extension Python library (Raschka,

2018). Interested readers can refer to the online supplementary document for the

code snippets.

Stacking model development contains two phases, base model development and

stacking construction. The flowchart for stacking is graphically presented in Figure

4. Phase 1 is for examining the performance of the base models. Each of the six basic

machine learning models and the bagging (Random Forest) and boosting (Gradient

Boosting) ensemble models was used to analyze the data, respectively. This stage

focuses on feature selection, Hyperparameter Tuning, and model performance eva-

luation of the eight base models. Each of the eight machine learning methods was

fitted to each of the six sets of input features separately using k-fold cross-validation

with different resampling methods. The hyper-parameter tuning was performed to

optimize each model. The feature selection was based on the evaluation criteria. A

list of the top classifiers was identified. The base classifiers with the best data fea-

tures and the optimal set of hyper-parameters of each classifier were rank-ordered.

Phase 2 is for constructing the stacking model. Stacking ensemble learning is

engineered in a way to develop a meta-model to make final predictions based on the

base classifiers’ predictions to improve overall performance. With the best data fea-

tures and the optimal hyper-parameters of each model obtained from Phase 1, each

set of the top classifiers was trained. To select a set of base models, different num-

bers of top rank-ordered models from Phase 1 were combined. Thus, seven sets of

base models were obtained as set 1 consisting of top two base classifiers in Phase 1,

set 2 consisting of top three base classifiers, and so on. A meta-model was developed

stacking the detection results from each base set under k-fold cross-validation, and

their final prediction results were evaluated. Specifically, the green text under Phase

2 in Figure 4 indicates the whole prediction results of each classifier, pn, compiled

within each of the four random folds. Then, all the prediction results from each base

classifier were put together, shown as the light gray upright rectangle in the flow-

chart. In the end, the full list of the prediction results with the labels was the input

data to train the meta-classifier for the final predictions.

Zhou and Jiao 839



F
ig

u
re

4
.

T
h
e

C
o
n
st

ru
ct

ed
St

ac
ki

n
g

E
n
se

m
b
le

Le
ar

n
in

g
M

o
d
el

.

840



K-Fold Cross-Validation

For supervised machine learning, we need to split the data into a training set (for

model training) and a test set (for model evaluation). Zopluoglu (2019) split the data-

set to 80% for training and 20% for test. This study applied the split of 75% training

versus 25% test on K-Fold Cross-Validation. K-Fold Cross-Validation provides train/

test indices to randomly split the dataset into k exclusive folds and each fold is then

used as a test set once while the k21 remaining folds are used as the training set.

The split is done iteratively for k times (Anguita et al., 2012). This technique uses

multiple exclusive data splits for training and test to reduce bias. Four-fold Cross-

Validation (K = 4) was used in all analyses. The resampling procedure was applied

on the training set in each fold of cross-validation, while the evaluation results were

generated based on the test set in each fold which was part of the original data with-

out being resampled.

Hyper-Parameter Tuning

Hyper-parameters control the model’s behaviors and allow the model to find the

parameters that would yield the best performance. Conducting hyper-parameter tun-

ing is an important step to improve the model performance as it finds the best combi-

nation of hyper-parameters which minimizes the loss function and produces the best

results. The TPOTClassifier in TPOT API (Le et al., 2020) performs an intelligent

search over the hyper-parameters in machine learning pipelines with the customized

parameters. For model optimization, TPOTClassifier with various parameters were

applied to find the optimal hyper-parameters on each of the models in this study.

Evaluation Criteria

In cheating detection with extremely imbalanced classes, overall accuracy defined in

terms of the percentage of correct classification is not a proper index to quantify the

classification accuracy due to the much larger class size in the majority non-cheater

group. Instead, Precision, Recall, F1 Score, and the false-positive rate (FPR) were

used as the evaluation criteria for model performances. All these indices were com-

puted based on the confusion matrix (refer to https://en.wikipedia.org/wiki/

Confusion_matrix for details), showing correct classifications of true positive and true

negative and misclassifications of false positive and false negative. Recall (sensitivity,

power, or true positive rate) is the metric that evaluates a model’s ability to predict

true positives (cheaters) out of the total actual positives, indicating the proportion of

actual cheaters which are predicted as cheaters, computed as in Equation 1.

Recall =
True Positive

TruePositive + FalseNegative
: ð1Þ

Zhou and Jiao 841



Precision computes the proportion of actual cheaters out of the predicted cheaters.

It measures how a model performs at detecting true cheaters out of those predicted as

cheaters. It is computed as shown in Equation 2.

Precision =
True Positive

TruePositive + FalsePositive
: ð2Þ

To seek the balance of both Recall and Precision, F1-scores, the harmonic mean of

Recall and Precision, is suggested as a measure for imbalanced class sizes by Forman

and Scholz (2010). According to Sasaki (2007), the F1 score is computed as follows

in Equation 3.

F1 =
2 � Precision � Recall

Precision + Recall
=

2 � TruePositive

2 � TruePositive + FalsePositive + FalseNegative
:

ð3Þ

The FPR indicates the percentage of the non-cheaters who are incorrectly classi-

fied as cheaters. Cheating has severe validity, moral, ethical, and legal implications

in any high-stakes testing program. To minimize such concerns, it requires extreme

caution in flagging a test-taker as a cheater. The FPR measures the degree to which

the non-cheaters are misclassified as cheaters which helps to address such concerns.

It is computed as in Equation 4.

FPR =
False Positive

False Positive + True Negative
: ð4Þ

Results

This section summarizes the major results of the study due to space limit. It includes

the results for resampling, input feature selection, base model performance, and the

meta-model performance in terms of the evaluation criteria. It is noted that model

performance was evaluated based on the non-resampled test dataset.

Resampling for Class Imbalance

As noted, resampling was only applied to the training dataset in each fold. The perfor-

mances of oversampling, under-sampling, and dual resampling are compared with no

resampling in terms of four evaluation criteria. Six sets of input features were investi-

gated in this study. For resampling, different ratios were explored including 1:1, 2:1,

5:1, and 10:1 for the non-cheater versus cheater classes. To achieve the 1:1 ratio, the

SMOTE oversampling ratio was set at 0.4 while the under-sampling ratio was 1.

Table 1 presents some examples of the sample sizes for the non-cheater and cheater

classes for one fold for the training and test datasets, respectively. As expected,

under-sampling led to the smallest sample sizes while oversampling led to the largest

sample sizes. In general, the ratios of 2:1 between the non-cheater and the cheater

842 Educational and Psychological Measurement 83(4)



classes led to the largest total sample sizes for both oversampling and dual resam-

pling, even larger than the original dataset without resampling. In general, sample

sizes in different classes differed under different resampling schemes.

To demonstrate the impact of resampling on the evaluation criteria, the model per-

formances with different resampling methods based on all input features (i.e., item

responses, response time, and summary statistics) with a ratio of 5:1 are presented in

Figure 5 for illustration. Interested readers can find summary figures for resampling

ratios of 1:1, 2:1, and 10:1 in the online supplementary document in Figures S1 to

S3. Each figure contains information about Recall, Precision, F1 scores, and the FP

rate for each model under each resampling method compared with that based on non-

resampling. For resampling with a ratio of 1:1, almost all resampling regardless of

models led to higher Recall than no resampling with under-sampling and oversam-

pling performing better than dual resampling. Discriminant Analysis led to the high-

est Recall. However, in terms of Precision, only dual resampling performed about the

same as the original data or slightly better than no resampling except Decision Tree.

Random Forest produced the highest Precision, Gradient Boosting the second best

while other models fell far below. Similar patterns were observed for F1 scores with

Gradient Boosting performed the best. Gradient Boosting and Random Forest with

dual resampling produced higher F1 scores than no resampling and other models. On

the contrary, under-sampling and oversampling led to higher FP rates than no resam-

pling while the lowest values were found in Random Forest.

For the study condition with a resampling ratio of 2:1, under-sampling led to

higher Recall than other resampling or non-resampling for all models. Discriminant

Analysis led to the highest Recall. For Precision, oversampling and dual resampling

performed better than or about the same as non-resampling for all models except

Decision Tree with non-resampling produced the highest Precision. Among all mod-

els, Random Forest with over-sampling produced the highest Precision, followed by

Gradient Boosting, but all other models fell far below. The differences in F1 scores

were not large for majority of the models except Decision Tree and Gradient

Boosting which had lower values with under-sampling. On the contrary, under-

Table 1. Sample Sizes for the Non-Cheater and Cheater Classes for Different Resampling
Methods Based on One-Fold Cross-Validation Sample.

Ratios No resampling Under-sampling Oversampling Dual resampling

1:1
Training

Test
1,189:38

401:8
38:38
401:8

1,189:1,189
401:8

475:475
401:8

2:1
Training

Test
1,189:38

401:8
76:38
401:8

1,189:594
401:8

950:475
401:8

5:1
Training

Test
1,189:38

401:8
190:38
401:8

1,189:237
401:8

590:118
401:8

10:1
Training

Test
1,189:38

401:8
380:38
401:8

1,189:118
401:8

590:59
401:8

Zhou and Jiao 843



F
ig

u
re

5
.

M
o
d
el

Pe
rf

o
rm

an
ce

C
o
m

p
ar

is
o
n

W
it
h

an
d

W
it
h
o
u
t

R
es

am
p
lin

g
B

as
ed

o
n

It
em

R
es

p
o
n
se

s,
R

es
p
o
n
se

T
im

e,
an

d
Su

m
m

at
iv

e
St

at
is

ti
cs

W
it
h

a
R

at
io

o
f
5
:1

B
et

w
ee

n
th

e
N

o
n
-C

he
at

er
an

d
C

h
ea

te
r

C
la

ss
es

.

844



sampling led to the highest FP rates with the lowest two values found in Random

Forest and Gradient Boosting.

As seen in Figure 5 for a resampling ratio of 5:1 for the non-cheater and cheater

class rebalancing, under-sampling led to the highest Recall than any other resampling

or non-resampling for all models except SVM. Among all the models, Discriminant

Analysis with under-sampling led to the highest Recall. There was not much difference

in Recall among the non-resampling and the resampling methods for Naı̈ve Bayes,

which was the second best performer. For Precision, oversampling performed better

than dual resampling which performed about the same as non-resampling for all other

models except Decision Tree. Random Forest produced the highest Precision with over-

sampling, followed by Gradient Boosting, but all other models fell far below. For F1

scores, Random Forest with under-sampling and dual resampling produced higher

scores than over-sampling or non-resampling and other models. On the contrary, under-

sampling led to the highest FP rates for all models while the lowest FP values were

found for Random Forest followed by Gradient Boosting. Similarly, for the study condi-

tions with a resampling ratio of 10:1, under-sampling generally produced the highest

Recall for all models with Naı̈ve Bayes having higher values. Oversampling produced

the lowest FP rates and the highest Precision except for Decision Tree and Discriminant

Analysis. Resampling in general yielded higher F1 scores and FP rates with the highest

F1 score yielded from Random Forest with dual resampling.

In general, under-sampling led to higher Recall but lower Precision. Although its

F1 scores could be as high as other resampling methods when the two class size

ratios were larger, its FP rates were often the highest. Oversampling in general led to

higher Precision and lower FP rates except for the resampling ratio of 1:1. Precision

produced by dual resampling was generally higher than Recall. Its F1 scores and FP

rates fell in between all resampling and non-resampling methods. In summary, com-

pared with non-resampling, resampling may increase Recall or Precision depending

on the resampling method and the ratio. As noted, there is a trade-off among Recall,

Precision, and the FP rate. An increase in Recall is often associated with a decrease

in Precision and an increase in the FP rate.

Input Feature Sets

The model performance with different input features were compared in terms of the

four evaluation criteria. The results for dual resampling with a dual resampling ratio

of 1:1 are presented in Figure 6. The summary for other ratios can be found in the

online supplementary document in Figures S4 to S6. In general, the feature sets with

augmented summary statistics performed much better than its counterpart without

data augmentation. The feature set consisting of item responses and summary statis-

tics was generally identified as the best performing one across all models and all

resampling ratios. For Recall, two feature sets—response time only and response

time plus the summary statistics—often led to the highest values compared with

other features for Discriminant Analysis, Logistic Regression, and SVM. Three fea-

ture sets with augmented summary data often led to higher Recall for Gradient

Zhou and Jiao 845



F
ig

u
re

6
.

M
o
d
el

Pe
rf

o
rm

an
ce

C
o
m

p
ar

is
o
n

W
it
h

Si
x

D
iff

er
en

t
In

p
u
t

Fe
at

u
re

s
fo

r
D

u
al

R
es

am
p
lin

g
W

it
h

a
R

at
io

o
f

1
:1

B
et

w
ee

n
th

e
N

o
n
-

C
h
ea

te
r

an
d

C
h
ea

te
r

C
la

ss
es

.

846



Boosting compared with its counterpart without augmented data. Input features

affected Random Forest much with response time plus the summary features leading to

the highest Recall. The impact of the input features on Precision was salient for

Random Forest with response plus the summary statistics leading to the highest

Precision, followed by the feature set containing all features. With the balance of

Recall and Precision, responses plus the summary statistics led to the highest F1 score

for Gradient Boosting. The input features did not affect the FP rates much, but Random

Forest and Gradient Boosting had much smaller FP rates no matter the input features.

Similar patterns were observed for the conditions with other resampling ratios.

In general, the impact of the input features was not consistent across models.

However, using item response only always led to the lowest Recall, Precision, and

F1 scores though the differences in the FP rates were not salient. Using response time

only or response time plus the summary statistics performed better for each of the

three models: Discriminant Analysis, Logistic Regression, and SVM. For Naı̈ve

Bayes and Neural Network, two feature sets—responses only and responses plus the

summary statistics—performed worse than other feature sets. For Random Forest

and Gradient Boosting, the top three performers were response time plus the sum-

mary statistics, item responses plus the summary statistics, and all features. In gen-

eral, data augmentation by including the summary statistics improved the model

performance for the two ensemble models: Random Forest and Gradient Boosting

saliently, but not always the case for other base models.

Level 1 Base Model Performance Comparison

Regardless of the resampling methods and the input features, Gradient Boosting and

Random Forest, the two ensemble machine learning models were in general the top

performers in terms of the F1 score and the FP rates. Among all 624 study conditions,

three top optimal designs for cheating detection include item responses plus the sum-

mary statistics with a dual resampling ratio of 10:1, item response plus the summary

statistics with an oversampling ratio of 5:1, and item responses plus the summary sta-

tistics with an under-sampling ratio of 10:1.

Figure 7 presents Recall, Precision, F1 scores, and the FP rates for the six basic

machine learning models and two ensemble learning models for dual resampling with

a ratio of 10:1 with input features of item responses and the summary statistics. Naive

Bayes produced the highest Recall of 0.525, followed by Gradient Boosting. Random

Forest produced the highest Precision of 0.838, followed by Gradient Boosting of

0.771. There were not many differences in Precision among all other models. Due to

a larger difference between Recall (0.309) and Precision (0.838) for Random Forest,

its F1 score (0.447) was lower than that for Gradient Boosting which had the highest

value (0.573) among all level 1 base models across all conditions. Random Forest

and Gradient Boosting had about the same FP rates, with a slightly lower value for

the former, but both were way lower than those from other base models.

Although Recall and Precision alone are not recommended evaluation criteria for

classification with imbalanced classes, they are presented to show different

Zhou and Jiao 847



perspectives of classification accuracy. In general, the two ensemble learning meth-

ods, Gradient Boosting and Random Forest, had the highest Precision values, indicat-

ing these two models performed the best in detecting cheaters who were predicted as

cheaters. The Recall scores for these two models generally fell in the middle between

the highest from Naı̈ve Bayes and the lowest most often from SVM, indicating these

two models performed neither the best nor the worst in detecting cheaters who were

actual cheaters. In terms of the F1 score which is a balance between Recall and

Precision, models were rank ordered from the best to the worst as Gradient Boosting,

Random Forest, Naı̈ve Bayes, Discriminant Analysis, Decision Tree, Neural

Network, Logistic Regression, and SVM. In general, the two ensemble models had

the lowest FP rates which were about 10 times smaller than those for other models.

Similar patterns were found for the other two top performers as shown in Figures S7

and S8 in the online supplementary document with the study condition for Gradient

Boosting with an oversampling ratio of 5:1 (F1 score = 0.546 and FP rate = 0.004)

performed better than that with an under-sampling ratio of 10:1 (F1 score = 0.529

and FP rate = 0.013).

Development of the Meta-Models

To develop a meta-model in stacking for each of the top three optimal designs as

identified in the above section, a set of rank-ordered base classifiers needs to be iden-

tified first. Then, a meta-model is developed by taking the outputs of the base models

as its input features for training and prediction. Given the results from each level 1

base model, different combinations of the base models were sequentially explored

Figure 7. Base Model Comparison Based on Item Response and the Summative Statistics
With a Dual Resampling Ratio of 10:1 Between the Non-Cheater and Cheater Classes.

848 Educational and Psychological Measurement 83(4)



based on the model rankings. In total, there were seven sets of base models fed to

develop a meta-model respectively.

For the study condition with a dual resampling ratio of 10:1 using the feature set

consisting of item responses and the summary statistics, when four models Random

Forest, Naı̈ve Bayes, Discriminant Analysis, and SVM were used for stacking, the

meta-model with the top two base models produced the highest Recall and F1 scores

with comparable FP rates but not the highest Precision. For other stacking models,

different combination of base models led to different best performers for this study

condition. When Random Forest was used as the stacking model based on the outputs

from the top two base models, it produced the highest F1 score (0.573) and Recall

(0.594). For the same feature set with an oversampling ratio of 5:1 using the top two

base models for stacking, Naı̈ve Bayes as the stacking model performed the best in

terms of the F1 score (0.569) and Recall (0.492). All other meta-models did not per-

form well and did not produce a F1 score higher than 0.5. The best performing meta-

model was Discriminant Analysis used for stacking based on item responses and the

summary statistics with an under-sampling ratio of 10:1. Its Recall (0.638), Precision

(0.551), and F1 score (0.586) were all above 0.5 which is considered good model per-

formance and the FP rate (0.014) was relatively low. The detail of the stacking model

performance can be found in Figures S9, S10, and S11 in the online supplementary

document.

Furthermore, the performance of the base models and the meta-model built upon

stacking was compared. For the feature set consisting of item responses and the sum-

mary statistics with a dual resampling ratio of 10:1 with Random Forest used for

stacking to produce the meta-model, the meta-model stacked on the top two base

models performed about the same as Gradient Boosting and better than any other

individual base classifier. They both had the same F1 score of 0.573. However, the

meta-model yielded more balanced Recall (0.594) and Precision (0.568) with a FP

rate of 0.013 while Gradient Boosting yielded lower Recall (0.485) but higher

Precision (0.771) with a lower FP rate of 0.006 (see online supplementary Figure

S12). For the feature set consisting of item responses and the summary statistics with

an oversampling ratio of 5:1 using Naı̈ve Bayes for stacking to develop the meta-

model, the meta-model stacked on the top two base models performed the best com-

pared with any other individual base classifier in terms of Recall (0.492) and F1

score (0.569) with more balance between Recall and Precision (0.739) and a FP rate

of 0.006 (see online supplementary Figure S13).

Figure 8 summarizes the comparison for the feature set consisting of item

responses and the summary statistics with an under-sampling ratio of 10:1 using

Discriminant Analysis for stacking to develop the meta-model. The meta-model

stacked on the top two base models performed the best compared with any other

individual base classifier in terms of Recall (0.638) and F1 score (0.586) with more

balance between Recall and Precision (0.551) and a FP rate of 0.014. To sum up,

among all the compared models, the meta-model stacked on Discriminant Analysis

using item responses plus the augmented summary statistics with an under-sampling

Zhou and Jiao 849



ratio of 10:1 produced the highest F1 score (0.586) and balanced F1 score, Recall

(0.638), and Precision (0.551). These three values were all higher than 0.5, which is

considered as the best performing model in detecting the cheaters.

Summary and Discussions

Selecting a specific machine learning algorithm for out-of-sample data, the perfor-

mance of competing machine learning algorithms needs to be evaluated to develop a

classifier with the optimal design that leads to the highest detection accuracy of chea-

ters. Researchers have explored basic machine learning algorithms and some ensem-

ble methods such as Random Forest (bagging) and Gradient Boosting (boosting) in

cheating detection. However, no studies have explored stacking to build a meta-

model for cheating detection, which is expected to perform better. Furthermore, class

imbalance in cheating detection was not investigated either using resampling. Thus,

this study explored the development of a meta-model based on the stacking ensemble

method with the input from different base models using different stacking models for

the meta-model development with resampling to tackle the issue of class imbalance.

The stacking method was demonstrated empirically with a large-scale test dataset

with potential cheaters flagged. Model performance was compared among the meta-

model and base models in terms of Recall, Precision, F1 scores, and FP rates. The

meta-model with stacking using Discriminant Analysis based on the top two base

models generally performed the best when item responses and the summary statistics

were used as the input features with an under-sampling ratio of 10:1. In general,

Figure 8. Comparison Between the Base Models and the Meta-Model Built Upon Stacking
Using Discriminant Analysis Based on Item Response and Summative Statistics for an Under-
Sampling Ratio of 10:1 Between the Non-Cheater and Cheater Classes.

850 Educational and Psychological Measurement 83(4)



stacking, resampling, and feature sets including augmented summary data worked

better than its counterparts.

Related to the performance of the three feature sets—responses only, response

time only, and responses plus response time only—there were no consistent patterns.

Sometimes including both item responses and response time performed worse than

using either item responses only or response time only. This seems counterintuitive

and inconsistent with other studies that used the same dataset. However, it is noted

that other studies using the same dataset did not apply resampling to deal with class

imbalance issue. Thus, the comparison between their findings and the findings from

this study might not be meaningful and valid. No previous studies used the same

dataset with data augmentation. This study included the augmented summary data at

the test level and the aggregated level of items. The augmented summary data could

be an additional source of information for cheating detection, which is expected to

improve cheating detection accuracy. A plausible explanation for the worse perfor-

mance of the feature set combining item response and response time data than either

the feature set consisting of item responses only or response time only is that these

two types of data may tackle different facets of cheating behaviors and do not con-

verge to the same point in terms of providing useful information to facilitate cheating

detection.

The threshold value used in this study for classifying a test-taker as a cheater or a

non-cheater in all analyses was 0.5 for evaluating every model throughout the study.

When resampling is applied, it re-balances the classes. It is expected that the use of a

cut-off value of 0.5 is valid and no further adjustment of the threshold value needs to

be made. However, the impact of different threshold values could be investigated

more extensively in a future study given this is not the focus of this current study.

Machine learning algorithms have drawn increasing attention in psychometric

analysis for test development in large-scale assessment where latent variable model-

ing of item responses prevailed for a long time. In recent years, classification and pre-

diction based on machine learning algorithms for different psychometric purposes

have marked their debut. These pioneering explorations include automated scoring,

cheating detection, classification decisions based on multiple data sources, automated

item generation, and cognitive diagnosis. When online testing becomes the mainstay

of testing, the integration of multiple product and process data may impose more

methodological challenges on the traditional psychometric analysis methods and

models. Although joint modeling of product data and process data in psychometric

models of responses and response time has been explored extensively, it is expected

that when more data types are included in such joint models, model parameter estima-

tion could impose challenges and issues. Thus, it is worthwhile to explore machine

learning algorithms for different psychometric purposes. This article extended the use

of machine learning methods for cheating detection by applying the stacking ensem-

ble method, which involves using multiple base classifiers to develop a meta-

classifier for classification and prediction with resampling for balancing the extreme

imbalanced classes.

Zhou and Jiao 851



Future explorations may expand the current study by including more data features

for cheating detection in large-scale testing such as answer changes, mouse clicks,

and other biometric data such as eye-tracking data though the current study is limited

by the availability of such data. Furthermore, the explored stacking machine learning

can be extended to innovative assessments such as game-based or simulation-based

assessment where the assessment data do not follow the standard, structured product

and process data format. When test efficiency is really called for by test stakeholders,

it is worthwhile to look into more test delivery algorithms such as computerized adap-

tive tests (Cui et al., 2018) with item review when cheating could be intentionally

committed in a larger scale by answering each item incorrectly to get easier items,

then going back to change their answers to early items.

In summary, this study explored the stacking ensemble learning method with resam-

pling for cheating detection. Its performance was compared with different basic and

other ensemble machine learning methods on detecting cheaters in large-scale assess-

ment. It is generally believed that more data is better for decisions. However, how to

decode and synthesize different data types to come up with informed decisions is still a

challenge when more assessment data become available. The empirical results from this

study demonstrated how to integrate and take advantage of more data types to facilitate

cheating detection using stacking to develop a meta-model. Machine learning of the

outputs of base machine learning algorithms is expected to produce more accurate pre-

diction results by synthesizing information from different base models.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship,

and/or publication of this article.

Funding

The authors received no financial support for the research, authorship, and/or publication of

this article.

ORCID iD

Hong Jiao https://orcid.org/0000-0001-5014-6698

Supplemental Material

Supplemental material for this article is available online.

References

Anguita, D., Ghelardoni, L., Ghio, A., Oneto, L., & Ridella, S. (2012). The ‘‘K’’ in K-fold

cross validation. In ESANN 2012 proceedings, European Symposium on Artificial Neural

Networks, Computational Intelligence and Machine Learning (pp. 25–27). https://www.

esann.org/sites/default/files/proceedings/legacy/es2012-62.pdf

852 Educational and Psychological Measurement 83(4)



Bishop, S., & Egan, K. (2017). Detecting erasures and unusual gain scores. In G. J. Cizek & J.

A. Wollack (Eds.), Handbook of quantitative methods for detecting cheating on tests (pp.

193–213). Routledge. https://doi.org/10.4324/9781315743097-10

Chan, K., & Stolfo, J. (1997). On the accuracy of meta-learning for scalable data mining.

Journal of Intelligent Information Systems, 8(1), 5–28.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic

minority over-sampling technique. JAIR Journal of Artificial Intelligence Research, 16,

321–357.

Chen, Y., Lu, Y., & Moustaki, I. (2020). Detection of two-way outliers in multivariate data and

application to cheating detection in educational tests. arXiv:1911.09408. https://arxiv.org/

abs/1911.09408v2

Cizek, G. J., & Wollack, J. A. (2017). Handbook of quantitative methods for detecting cheating

on tests. Routledge.

Cui, Z., Liu, C., He, Y., & Chen, H. (2018). Comparison of algorithms that allow item review

in computerized adaptive test [ACT Research Report]. https://www.act.org/content/dam/

act/unsecured/documents/pdfs/R1709-cat-comparison-2018-10.pdf

Drasgow, F., Levine, M. V., & Williams, E. (1985). Appropriateness measurement with

polychotomous item response models and standardized indices. British Journal of

Mathematical and Statistical Psychology, 38, 67–86.

Forman, G., & Scholz, M. (2010). Apples-to-apples in cross-validation studies: Pitfalls in

classifier performance measurement. SIGKDD Explorations, 12, 49–57.

Guo, X., Yin, Y., Dong, C., Yang, G., & Zhou, G. (2008, October 18–20). On the class

imbalance problem [Conference session]. Fourth International Conference on Natural

Computation, ICNC ’08 (Vol. 4), Jinan, China. https://doi.org/10.1109/ICNC.2008.871

He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on

Knowledge and Data Engineering, 21(9), 1263–1284.

Japkowicz, N. (2000). The class imbalance problem: Significance and strategies. In

Proceedings of the 2000 International Conference on Artificial Intelligence (IC-AI’2000):

Special Track on Inductive Learning, Las Vegas, NV, United States.

Le, T., Fu, W., & Moore, J. (2020). Scaling tree-based automated machine learning to

biomedical big data with a feature set selector. Bioinformatics, 36(1), 250–256.

Man, K., & Harring, J. R. (2020). Assessing preknowledge cheating via innovative measures:

A multiple-group analysis of jointly modeling item responses, response times, and visual

fixation counts. Educational and Psychological Measurement, 81(3), 441–465.

Man, K., Harring, J. R., & Sinharay, S. (2019). Use of data mining methods to detect test fraud.

Journal of Educational Measurement, 56(2), 251–279.

Meijer, R. R., & Sijtsma, K. (2001). Methodology review: Evaluating person fit. Applied

Psychological Measurement, 25(2), 107–135.

Pavlyshenko, B. (2018). Using stacking approaches for machine learning models. In 2018

IEEE Second International Conference on Data Stream Mining & Processing (DSMP) (pp.

255–258). https://doi.org/10.1109/DSMP.2018.8478522

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12, 2825–2830.

Zhou and Jiao 853



Raschka, S. (2018). MLxtend: Providing machine learning and data science utilities and

extensions to Python’s scientific computing stack. The Journal of Open Source Software,

3(24), Article 638. https://doi.org/10.21105/joss.00638

Sasaki, Y. (2007). The truth of the F-measure. Teach Tutor Mater. https://www.cs.odu.edu/

~mukka/cs795sum09dm/Lecturenotes/Day3/F-measure-YS-26Oct07.pdf

Shu, Z., Henson, R., & Luecht, R. (2013). Using deterministic, gated item response theory

model to detect test cheating due to item compromise. Psychometrika, 78, 1–17. https://doi.

org/10.1007/s11336-012

Sijtsma, K., & Meijer, R. R. (1992). A method for investigating the intersection of item

response functions in Mokken’s nonparametric IRT model. Applied Psychological

Measurement, 16(2), 149–157.

Skorupski, W., Fitzpatrick, J., & Egan, K. (2016). A Bayesian hierarchical model for detecting

aberrant growth at the group level. In G. J. Cizek & J. A. Wollack (Eds.), Handbook of

quantitative methods for detecting cheating on tests (pp. 232–244). Routledge.

Toton, S. L., & Maynes, D. D. (2019). Detecting examinees with pre-knowledge in

experimental data using conditional scaling of response times. Frontiers in Education, 4,

Article 49.

van der Flier, H. (1982). Deviant response patterns and comparability of test scores. Journal of

Cross-Cultural Psychology, 13, 267–298.

Wang, C., Xu, G., Shang, Z., & Kuncel, N. (2018). Detecting aberrant behavior and item

preknowledge: A comparison of mixture modeling method and residual method. Journal of

Educational and Behavioral Statistics, 43, 469–501.

Wollack, J. A. (1997). A nominal response model approach for detecting answer copying.

Applied Psychological Measurement, 21, 307–320.

Zopluoglu, C. (2019). Detecting examinees with item preknowledge in large-scale testing

using extreme gradient boosting (XGBoost). Educational and Psychological Measurement,

79(5), 931–961. https://doi.org/10.1177/0013164419839439

854 Educational and Psychological Measurement 83(4)


