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Abstract

When cognitive and educational tests are administered under time limits, tests may
become speeded and this may affect the reliability and validity of the resulting test
scores. Prior research has shown that time limits may create or enlarge gender gaps
in cognitive and academic testing. On average, women complete fewer items than
men when a test is administered with a strict time limit, whereas gender gaps are fre-
quently reduced when time limits are relaxed. In this study, we propose that gender
differences in test strategy might inflate gender gaps favoring men, and relate test
strategy to stereotype threat effects under which women underperform due to the
pressure of negative stereotypes about their performance. First, we applied a
Bayesian two-dimensional item response theory (IRT) model to data obtained from
two registered reports that investigated stereotype threat in mathematics, and esti-
mated the latent correlation between underlying test strategy (here, completion fac-
tor, a proxy for working speed) and mathematics ability. Second, we tested the
gender gap and assessed potential effects of stereotype threat on female test perfor-
mance. We found a positive correlation between the completion factor and mathe-
matics ability, such that more able participants dropped out later in the test. We did
not observe a stereotype threat effect but found larger gender differences on the
latent completion factor than on latent mathematical ability, suggesting that test

1Tilburg University, The Netherlands
2The Netherlands Institute for Social Research, The Hague, The Netherlands
3University of Vienna, Austria
4University of Amsterdam, The Netherlands

Corresponding Author:

Andrea H. Stoevenbelt, Department of Methodology and Statistics, Tilburg School of Social and Behavioral

Sciences, Tilburg University, Warandelaan 2, 5037 AB Tilburg, The Netherlands.

Email: a.h.stoevenbelt@tilburguniversity.edu

https://doi.org/10.1177/00131644221111076


strategies affect the gender gap in timed mathematics performance. We argue that if
the effect of time limits on tests is not taken into account, this may lead to test
unfairness and biased group comparisons, and urge researchers to consider these
effects in either their analyses or study planning.
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gender gap, mathematics, test-taking strategy, stereotype threat, item response
theory, missing data

Many studies on gender differences use operational tests that are administered under

strict time limits. If an effect of time limits on these tests is not considered, this may

impede test fairness, because respondents may receive lower estimates of their ability

than under unspeeded circumstances (Lu & Sireci, 2007). This is especially proble-

matic when the effect of the time limits is dissimilar across groups of participants

(also referred to as differential speededness, see Dorans et al., 1988; Van der Linden

et al., 1999). An example for such a dissimilarity may be a gender gap in how men

and women respond to items when these items are administered under a time limit.

The results of earlier research suggest that time limits can help explain gender dif-

ferences observed in numerical reasoning and cognitive ability tasks (Steinmayr &

Spinath, 2017; Voyer, 2011). For example, Steinmayr and Spinath (2017) demon-

strated in two experimental studies that men outperformed women in numerical rea-

soning when a strict time limit (i.e., speeded test) was applied, but this observed

gender gap vanished when the time limit was relaxed (i.e., power test was used). The

authors hypothesized that women did not become more accurate in their tasks, but

rather omitted fewer items when there was no time limit. Similarly, it has been

shown that women perform worse compared with men due to time limits on cogni-

tive tasks such as mental rotation tasks (Voyer, 2011). Similar results have been

found in the field of academic achievement. For example, on regular university

exams, women perform worse under time limits compared with men, by answering

fewer items correctly and attempting fewer items in general (De Paola & Gioia,

2016). On the contrary, when respondents are given an adequate amount of time to

complete a mathematics test, such as standardized examinations like the SAT and

GRE, relaxing time limits does not result in a gender-specific increase in perfor-

mance, but rather in an increase in performance of students with lower mathematics

ability, regardless of gender (Bridgeman, McBride, & Monaghan, 2004; Bridgeman,

Trapani, & Curley, 2004).

Based on the results of these above-mentioned studies, we expand upon the work

by Steinmayr and Spinath (2017) and provide a new contribution to studying the

relationship between test-taking strategy (e.g., working speed) and mathematics in

relation to gender differences. We hypothesize that observed gender differences on

mathematics tests administered under strict time limits may be inflated by gender
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differences in test-taking strategy related to working speed. Here, we focus on both

the constructs of latent mathematics ability and latent working speed, as reflected by

the number of items a participant completes before time runs out (i.e., the completion

factor). To study gender differences under time limits and to separate whether such

differences are observed on the latent mathematics ability or on the latent completion

factor, we model these traits explicitly in an item response theory (IRT) model (Glas

& Pimentel, 2008). This way, we estimate not only the correlation between ability

and completion, but also the contribution of these latent traits to the observed gender

gap.

Ability tests with strict time limits are often referred to as speeded tests and can

be considered as a combination of speed tests and power tests (Lu & Sireci, 2007). In

psychometrics, a power test is a test where participants get enough time to complete

all tasks (e.g., items), and their performance is assessed based on the correctness of

their answers. A speed test, on the other hand, refers to a test that consists of rela-

tively easy items, but the quantity of items is so high that most participants fail to

complete all items within the time limit. Their performance is then assessed based on

how many items are completed. In practice, often, a test can neither be seen as a pure

power test nor or a pure speed test, but rather as a mixture of both. However, when

the time allotted for a test is too strict, tests are labeled as speeded. Speeded tests are

tests where most participants cannot answer all items within the time limit, but their

performance is still assessed based on the correctness of their answers. Speeded tests

are used a lot in practice, for example, in the field of reasoning ability (intelligence)

testing (Wilhelm & Schulze, 2002), mental rotation tasks (Voyer, 2011), and in

applied investigations into hypothesized stereotype threat effects (Flore, 2018).

Stereotype threat theory aims to explain observed group differences in academic

achievement, such as those between highly achieving men and women, or between

highly achieving Black and White students (Spencer et al., 1999; Steele & Aronson,

1995) by suggesting that performance stereotypes lower the performance of nega-

tively stereotyped groups through different test-taking strategies (Rivardo et al.,

2011) and by impeding working memory (Schmader et al., 2008). Many stereotype

threat experiments use strict time limits to increase test difficulty (Flore, 2018),

which is known to increase construct-irrelevant variance in the test scores (Lu &

Sireci, 2007). Therefore, we here focus on the effects of time limits in relation to the

gender gap in mathematics, and the potential role of experimentally induced stereo-

type threats therein.

In the presence of a time limit, scores from participants no longer reflect latent

mathematical ability, but also contain a speed component (for an overview, see Lord,

1956; Lu & Sireci, 2007; Partchev et al., 2013). Furthermore, if gender differences

exist on this second speed factor, observed gender differences cannot be attributed

solely to differences in latent mathematics ability. This speed component, like the

underlying latent ability for mathematics, can be interpreted as participants’ tendency

to complete items and can be regarded as a latent trait. Glas and Pimentel (2008) pro-

posed that as an indicator for this latent trait, the number of non-reached items of an
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individual can be used (i.e., the completion factor, labeled as missingness propensity

in their account). In other words, not only participants’ mathematical ability, but also

their latent speed component (defined as the completion factor) can lead to individ-

ual differences in observed scores on a mathematics test. Participants’ completion

factor reflects how many items they were able to answer within time limits and thus

is a reasonable indicator for their working speed.

Modeling Nonignorable Missing Data Under Time Limits

To model the completion factor of participants correctly, we used a two-dimensional

IRT model that allowed us to directly relate the performance on a mathematics test

and the proportion of missingness to respondents’ latent mathematics ability and

latent completion factor (Glas & Pimentel, 2008). Traditionally, most experimental

studies analyze results using composite scores (e.g., sum scores), for example, using

Analysis of (Co)variance (AN(C)OVA) models in stereotype threat data (Wicherts

et al., 2005). However, as discussed above, these sum scores cannot uncover why

group differences on a sum score are observed and they do not allow a test of mea-

surement invariance (Meredith, 1993) across different groups. Moreover, analyzing

composite scores requires some scoring rule about the missing responses in the data

that may not be suitable in case of nonignorable missing data, such as under time lim-

its. That is, missingness patterns and ability levels may be correlated (see, e.g., Pohl

et al., 2014). As discussed, we used the missing data (e.g., non-reached items) of par-

ticipants as an indicator for their latent completion factor. These issues can be circum-

vented by using an IRT framework. Another reason for choosing the IRT framework

is that it allowed us to study the potential effect of covariates, for example, gender

and stereotype threat condition versus control (De Boeck & Wilson, 2004).

In this study, we investigate whether time limits may (partly) explain gender dif-

ferences on speeded mathematics tests using data from two large preregistered stereo-

type threat studies (Flore et al., 2018; Stoevenbelt et al., in principle accepted) as an

example.

Stereotype threat theory was originally proposed to explain the performance gap

between highly achieving White and Black students (Steele & Aronson, 1995), and a

large part of the literature still focuses on this performance gap (Nadler & Clark,

2011). However, stereotype threat theory also proposes an explanation for the gender

gap in mathematics performance by stating that women underperform compared with

their male peers, not because they are less able than men are, but because they feel

the additional pressure of the negative stereotype that women have lower mathemati-

cal ability (Spencer et al., 1999). Stereotype threat researchers often use speeded tests

to maximize the effect of their manipulation, because researchers expect that nega-

tive stereotype threat affects women’s performance only when the mathematics test

is difficult enough (Keller, 2007; Spencer et al., 1999). In contrast, we argue that the

combination of potential negative effects of a time limit and additional negative

effects of stereotype threat on women’s performance will lead to a double
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disadvantage for women (Nguyen et al., 2003; Quinn & Spencer, 2001): We

hypothesize that women attempt fewer test items (i.e., show more missing data) in

the stereotype threat condition compared with those in the control condition. The

hypothesis is supported by the results of a study by Flore (2018) that found the

stereotype threat effect to be associated with more missing data, because studies with

a large number of missing responses ( . 20%) indicated larger stereotype threat

effects (Cohen’s ds . 0.47) compared with studies with less missing data (0.16 \ d

\ 0.29).

Both data sets analyzed in the current study are large enough to fit IRT models

and were previously collected in large, preregistered studies on stereotype threat. We

included the high school study from Flore et al. (2018; henceforth referred to as high

school data) and the preliminary data set of the registered replication report (RRR;

Simons et al., 2014) on stereotype threat (Stoevenbelt et al., in principle accepted;

university data) of the seminal study by Johns et al. (2005). Both studies employed

strict time limits to heighten the difficulty of the mathematics test as is commonly

done in experimental studies in this research field

In this study, we address the potential negative effect of imposing a strict time limit

on women’s performance on speeded mathematics tests. In other words: Do women

show a different test-taking behavior than men, and does this negatively affect their

performance? Furthermore, we explore the presence of a double disadvantage among

women in the experimental condition of a stereotype threat research study: Is female

participants’ performance affected not only by the perceived stereotype threat, but also

by adopting a less efficient test-taking strategy because of strict time limits?

Method

To answer our research questions, we applied a multiple Bayesian multidimensional

IRT model (Glas & Pimentel, 2008) on data obtained from two large preregistered

stereotype threat experiments (Flore et al., 2018; Stoevenbelt et al., in principle

accepted), totaling 2,858 participants. We used the following approach: First, we

identified whether there is a relationship between latent mathematical ability and the

latent completion factor, for which we expected that more able participants drop out

later in the test (i.e., a positive correlation between latent mathematical ability and

the latent completion factor). Second, using three additional models, we explored the

effect of person-specific covariates (gender, stereotype threat condition vs. control,

and their interaction). Here, we expected all covariates (and their interaction) to have

negative effects on both traits. Our hypotheses and confirmatory analyses were prere-

gistered via the Open Science Framework (https://osf.io/s7j8h).

Deviations From Preregistration

We preregistered to include the data set from the registered report of Flore et al.

(2018) who collected data at Dutch high schools in fall 2016 and spring 2017 (data
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available upon request, because this data set includes the data of minors). The data

comprised 2,126 participants, with a final sample of 2,064 after applying the prere-

gistered exclusion criteria (62 exclusions, 2.9% of all participants), of which 1,028

self-identified as male and 1,036 as female. A full description of the data can be

found in our preregistration (https://osf.io/s7j8h). We attempted to estimate the con-

firmatory models (see the subsection: IRT models) on the 20 items in the high school

data set to investigate whether the results found in the university sample would repli-

cate. However, even with a large number of burn-in iterations (i.e., 100,000), none of

the three Markov chain Monte Carlo (MCMC) chains did achieve stationarity (i.e.,

did not approach the joint posterior or target distribution sufficiently), even when

more informative priors were used (see Appendix B for a classical test theory

approach). This likely has to do with the fact that the data showed little variance in

the observed mathematics scores. Eight items had a proportion correct score of above

75%, thus suggesting that students perceived the items as relatively easy.

Furthermore, the reliability of scores was relatively low, and amounted, assessed by

Cronbach’s alpha, to a = .59. Therefore, only results based on the university sample

are reported subsequently.

We preregistered comparisons of Models 1 to 4, using the deviance information

criterion (DIC; Spiegelhalter et al., 2002), but decided to omit this test, as the effect

of the covariates we added to Models 2 to 4 were null to small.

University Data

The data were originally collected as part of preregistered large-scale stereotype

threat experiments (Stoevenbelt et al., in principle accepted). Part of the data were

used for exploratory analyses (N = 635, or 79% of the final, confirmatory university

sample). Specific sample sizes for the data can be found in Table 1.

The first sample (henceforth referred to as the university sample) was collected

between fall 2019 and fall 2020, as part of a RRR (data available at https://osf.io/

6d4pt). The complete university data comprised four subsets. Two samples were col-

lected at Tilburg University (Netherlands; n = 188 [English-speaking, sample 1], n =

Table 1. Sample Sizes per Data Set.

Dataset

Women,
control
group

Women,
ST

group

Men,
control
group

Men,
ST

group

Total

Exploratory data (University samples:
Tilburg 1 & 2, Amsterdam)

n = 284 n = 227 n = 69 n = 55 N = 635

Confirmatory data (University samples:
Tilburg 1 & 2, Amsterdam, Vienna)

n = 334 n = 284 n = 95 n = 81 N = 794

Note. ST = stereotype threat.
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249 [Dutch-speaking, sample 2]), one sample was collected at the University of

Amsterdam (Netherlands, n = 198), and one sample was collected at the University

of Vienna (Austria, n = 159). Eight hundred twenty-two undergraduate participants

were tested in groups of 5 to 10 participants and assigned to either an experimental

stereotype threat condition or the control condition. The original study featured two

control conditions studies, but since we did not expect differences between the

respective control conditions (see also Johns et al., 2005), we collapsed the two origi-

nal control conditions. All participants completed 30 multiple-choice items (with five

answer options) within a time limit of 20 minutes. Here, we use 25 of these 30 admi-

nistered items, which were common to both versions of the tests that were used dur-

ing the RRR (easy vs. regular version). The tests included items that originated from

the Graduate Records Examination (obtained from Brown & Pinel, 2003; Inzlicht &

Ben-Zeev, 2000, 2003; Jamieson & Harkins, 2009; Johns et al., 2005; Marx &

Roman, 2002; Rivardo et al., 2008; Rydell et al., 2009; Schimel et al., 2004; Thoman

et al., 2008). All participants that had been originally excluded (n = 28, 3.4%) in the

RRR were excluded here as well, following the preregistered exclusion criteria (see

https://osf.io/7jhds for the script that was used for data cleaning), resulting in a total

sample of 794 students (618 self-identified as female and 176 as male). As part of

these exclusion criteria, we excluded all participants who omitted an answer to the

gender variable or described their gender as ‘‘other.’’ Because we already had studied

the data collected in Tilburg and Amsterdam, the analyses of these data were explora-

tory (exploratory data: https://osf.io/brsnh; confirmatory data: https://osf.io/6d4pt).

We performed a prior analysis to estimate the statistical power that is necessary to

detect a correlation between the two latent traits (mathematical ability and comple-

tion factor). Details of this power analysis can be found in the preregistration (see

https://osf.io/wgcpz). A sample size of N = 635 and a correlation of r = .50 between

the latent traits was sufficient to consequently estimate a positive covariance between

the latent traits. Based on these results, we did not expect any power issues concern-

ing the proposed analyses.

IRT Models

Following Glas and Pimentel (2008), we explicitly modeled two latent traits: mathe-

matics ability and the completion factor. Under the IRT framework, the probability

that a participant answers an item correctly is explained by both the participant’s

latent trait value and by characteristics of the item, like its difficulty (Embretson &

Reise, 2000). The Glas and Pimentel (2008) model is a two-dimensional parametric

IRT model that explicitly incorporates the items left unreached because of the time

limit and the responses to answered items separately in two two-parameter logistic

models (2PLMs). Here, for every participant a missing data indicator is defined as

follows:
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dnk =

1 if xnk was observed;
0 if xnk was the first response of a sequence xnk = 9, h = k, . . . K;

NA if otherwise,

8<
:

ð1Þ

where dnk is defined as the observation on the response indicator for person n on item

k (for the distributional properties the missingness indicator, see Glas & Pimentel,

2008), K is the total number of items, and h is the item number indicator. To create

these completion indicators dnk for the respondents in the data set, a new variable

had to be coded for every participant: All items that the participants attempted (i.e.,

they circled an answer option) received a score of 1. The first non-reached item of a

sequence of not-answered items at the end of the test was scored with 0, and all con-

secutive items were scored as missing (see our preregistration for two examples,

https://osf.io/s7j8h). Skipped items that were missing because they were not

attempted by the participants rather than missing due to the time limit were scored as

1 (see Holman & Glas, 2005, for a model that accounts for skipped items). Thus, the

model used two different sources of information: (a) the observed responses to the

mathematics test and (b) the missingness indicator, resulting in two data points per

item (namely, raw answer and missingness indicator) for each respondent. These data

are used to model two latent traits: The completion factor (un0) reflecting partici-

pants’ tendency to attempt more items, and mathematical ability (un1) reflecting par-

ticipants’ mathematical ability to answer completed items correctly.

To model the completion factor, using the data from the missingness indicators,

we fitted a Rasch model for pk(un0), where bk0 is the item difficulty parameter. This

parameter reflects the position of an item on the latent ability scale, where bk0 reflects

the value of un0. for a respondent who has a probability of 0.5 to provide an answer to

that particular item (completion factor) or to answer the item correctly (for un1 mathe-

matics ability) (see Embretson & Reise, 2000). The completion factor, thus, models

the ‘‘steps’’ that a respondent takes until they stop answering items (i.e., all items that

could be answered before the time limit was reached)

pk un0ð Þ = exp un0 � bk0ð Þ
1 + exp un0 � bk0ð Þ : ð2Þ

We restricted bk0 (with parameter estimate dk) such that the change in probability

is uniform over the test, wherein the first items are more likely to be answered than

items later in the test:

bk0 = t0 + k � Kð Þt1: ð3Þ

For every participant, the observed responses (0 = incorrect answer, 1 = correct

answer) to reached items were used to estimate the probability of answering the item

correctly, given participant’s estimated latent mathematics ability un1. To model the
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latent trait mathematics ability, we again fitted a Rasch model, where bk represents

the difficulty parameter of the mathematics items (with parameter estimate bk).

pk un1ð Þ = exp un1 � bk1ð Þ
1 + exp un1 � bk1ð Þ : ð4Þ

To investigate the effect of person-specific covariates on the relationship between

missingness and latent ability, we extended the above model (following Glas et al.,

2015) by integrating the effects of the covariates gender (1 = women, 0 = men) and

condition (1 = stereotype threat, 0 = control). In the first extension (Model 2), the

main effect of the gender variable was added; in the second extension, we estimated

the main effect of the stereotype threat condition variable (Model 3); and in the last

model, both main effects and their interaction were included (Model 4). Model 4 is

represented in Figure 1. Finally, we note that here we assumed that the effects of

stereotype threat are linear, although there might be scenarios in which this is not the

case (for details, see the Discussion section).

Estimation and Analysis

We fitted four different Bayesian IRT models. Our first model (Model 1) consisted of

the model proposed by Glas and Pimentel (2008) which jointly models the relation-

ship between completion factor u0 and ability u1 (Glas et al., 2015; Glas & Pimentel,

2008) without taking into account any covariates. In the remaining Models 2 to 4, this

basic model was extended by including covariates at the person level (following De

Boeck & Wilson, 2004; Glas et al., 2015). All four models were estimated on each

confirmatory data set (Vienna data), resulting in a total of eight confirmatory models.

We already ran these same four models based on the exploratory data (Tilburg &

Amsterdam data) to determine the MCMC settings (assessment of convergence). In

each model, we calculated the correlation between the two latent traits based on the

obtained variance-covariance matrix.

MCMC Estimation. In the Bayesian estimation, our proposed prior distributions (see

Priors) of the parameters were updated by the likelihood function of the data sets,

resulting in joint posterior distributions for the parameters. In practice, analytical

solutions of these posterior distributions are hard to obtain, so we used Gibbs sam-

pling, a MCMC algorithm, to approximate the posterior distributions of all relevant

parameter (Geman & Geman, 1984).

For the MCMC estimation, we used the open-source Gibbs sampler JAGS

(Plummer, 2003). For further data handling, the statistical programming language R

was used (R Core Team, 2021). As an interface from R to JAGS, we used the rjags

and coda packages (Plummer et al., 2006, 2019). After an adaptation phase of

25,000 iterations and a burn-in phase of 25,000 iterations for every separate chain,

the posterior distribution was based on a total of 60,000 iterations from three separate

chains. We use different initial values per chain, drawn from normal (for all
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parameters except variances) or uniform distributions (only for variances featured in

the model), reflecting reasonable parameter values. The same settings were used for

all eight models.

Convergence. We assessed convergence by inspecting trace plots, as well as comput-

ing the Gelman–Rubin convergence diagnostic R̂ (Gelman & Rubin, 1992) for all rel-

evant parameters. R̂ quantifies the between-chain versus within-chain variance. If R̂

is larger than 1, there is evidence that a chain did not converge for a certain parameter

(Gelman & Rubin, 1992). We defined R̂ . 1:05 as an indicator for non-convergence.

We furthermore inspected Monte Carlo standard errors and effective sample sizes,

for which we interpreted a standard error above SEMC = 0:05 and an effective sample

size below 400 as indication for non-convergence. Details on model convergence can

be found in Appendix A.

Figure 1. Representation of Model 4, Wherein We Expected a Gender Gap (Dummy
Coded, 1 for Women) on Both Latent Traits, With Women Scoring Lower Than Men, and an
Additional Negative Effect of the Stereotype Threat Manipulation (Dummy Coded as 1), and a
Positive Correlation Between the Two Latent Traits.
Note. ST = stereotype threat.
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Inference. We calculated posterior means and standard deviations of all parameters

of interest (i.e., item parameters estimates bk and dk, the variance-covariance matrix

of the latent traits, and the regression coefficients bj, gj, and dj), as well as the 95%

highest posterior density intervals (HPDI) using the R package BayesTwin (version

1.0; Schwabe, 2017). The 95% HPDI can be interpreted as the Bayesian analogue of

a frequentist confidence interval: the influence of a model parameter can be regarded

as significant, when the respective interval does not contain zero (with the exception

of variances, because their lower bound is zero). Furthermore, the estimated variance-

covariance matrix of a respective model was used to calculate the correlation between

the two latent traits (i.e., completion factor u0 and mathematics ability u1).

Priors. All priors were chosen such that they can be regarded as relatively uninforma-

tive. For the difficulty parameter dk , we defined a linear prior that ensured that the

estimate for dk increased for every additional item, of the form dk = t0 + (k � K)3t1,

where we placed normal hyperpriors on t1;N (0, 10), and t0 was fixed to 1. For the

difficulty bk , we defined a normal prior of bk;N(0, sb), with an hyperprior on the

standard deviation of the bk parameters, sb;InvGamma(:1, :1). For the latent ability

estimates, we defined a multivariate normal prior of ui;MVN (0, tu), where we

placed a hyperprior on the inverse of the variance-covariance matrix, tu:

tu;Wishart(O, NDIM + 1). The means of both latent traits were fixed to 0, in order

to identify the model. Finally, for all regression coefficients, we defined normal priors

of bj, gj, dj;N (0, 10).

Results

Combined over conditions and genders, participants in the university data completed

on average 10.5 (out of 25) items and answered on average 6.9 items correctly, result-

ing in a mean proportion correct of 58% (for descriptive statistics, see Table 2). We

report results for the models separately, starting with the model without the covariates

gender and stereotype threat.

Table 2. Descriptive Statistics per Subsample (University Data).

Items attempted

Women Men

Items correct

Women MenOverall Overall

Tilburg 1 (ENG) 9.89 (4.52) 9.59 (4.36) 10.88 (4.94) 5.89 (4.08) 5.55 (3.54) 7.05 (5.42)

Tilburg 2 (NL) 10.82 (4.07) 10.48 (3.88) 11.98 (4.71) 6.90 (3.82) 6.67 (3.76) 7.98 (3.92)

Amsterdam 11.66 (5.09) 11.34 (5.10) 13.03 (4.91) 7.92 (4.67) 7.47 (4.63) 9.86 (4.35)

Vienna 9.30 (3.80) 9.06 (3.66) 9.79 (4.08) 6.72 (3.27) 6.49 (3.24) 7.19 (3.30)

All samples 10.50 (4.48) 10.28 (4.38) 11.28 (4.75) 6.88 (4.07) 6.59 (3.93) 7.91 (4.36)

Note. Table entries are mean values, with standard deviations (SD) in parentheses below.
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Model 1: Estimating the Correlation Between the Completion Factor
and Mathematics Ability

In the first model, we found a positive correlation of r = .36 between the completion

factor and mathematics ability (see Table 3 for variances and covariances), indicating

that more able participants also dropped out later from the test. We illustrate this cor-

relation by plotting the proportions of attempted and correctly answered items for

both men and women (see Figure 2), where the items toward the end of the tests are

answered correctly by few respondents (but note that these plots are based on the

observed data, not the estimated latent traits). In Figure 3, we represent the correla-

tions between the latent traits for both men and women. Item difficulty parameters

ranged from 21.87 to 0.58 (M = 20.64), highlighting that the mathematics test was

relatively easy for the university students.

Model 2: Gender Differences in Mathematics Ability
and the Completion Factor

In Model 2, we estimated the potential gender gap on both latent traits. For both data

sets, Model 2 did not converge with the preregistered settings, and we therefore

increased the number of burn-in iterations to 100,000. Details on the convergence of

the reported models can be found in Appendix A. On the sum scores, we found gen-

der difference on both the total number of correctly answered (Cohen’s d = 20.33,

95% confidence interval [CI] [20.50, 20.16]) and the number of attempted items

(Cohen’s d = 20.22, 95% CI [20.39, 20.06]). Women underperform compared with

men on both sum scores, and on the total attempted scores we find a larger gender

gap on the total correct scores.

Again, we found a positive correlation between the completion factor and mathe-

matics ability (r = .34), indicating that more able participants also dropped out later

in the test. Item parameters changed slightly when including gender as a covariate,

with mean difficulty being estimated slightly lower under this model compared with

the estimates found under Model 1 (M = 20.78), and difficulty parameters ranging

from 22.03 to 0.45. For mathematical ability, we did not find a gender gap, b1 =

20.18 (95% HPDI [20.42, 0.04]), indicating that men and women did not differ in

their scores on the latent trait mathematics ability. For the completion factor, how-

ever, we observed a gender gap favoring men, b2 = 20.24 (95% HPDI [20.49,

20.004]), meaning that women attempted fewer items than their men. Posterior

Table 3. Estimated Variances and Covariances of the Latent Traits, for Models 1 to 3.

Data set Parameter Model 1 Model 2 Model 3

University Variance of latent trait mathematics ability s2
u1

= 1.08 s2
u1

= 1.06 s2
u1

= 1.08

Variance of latent trait completion factor s2
u0

= 0.47 s2
u0

= 0.57 s2
u0

= 0.49

Covariance between latent traits su1 , u0
= 0.26 su1 , u0

= 0.26 su1 , u0
= 0.26
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densities are displayed in Figure 4. Note that these effects are standardized and partly

contradict what can be observed based on sum scores. Namely, here, the gender gap

is larger on the completion factor than mathematics ability.

Model 3: No Effect of Stereotype Threat on Mathematical Ability
and the Completion Factor

In Model 3, we modeled the main effect of the stereotype threat condition on the two

factors, and again found a positive correlation between completion and mathematics

Figure 2. Proportions of the Number of Attempted Versus Correctly Answered Items by
Female and Male Respondents.
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ability (r = .36, see Table 3). Difficulty parameters ranged from 21.89 to 0.57 (M =

20.64). Including the stereotype threat covariate did not change parameters substan-

tially, compared with those found under Model 1. The effect of stereotype threat on

both mathematics ability, g1 = 20.02 (HPDI 95% [20.21, 0.17]), and the completion

factor, g2 = 20.10 (HPDI 95% [20.30, 0.09]), were close to zero.

Additional Exploratory Analysis: Simple Effect of Stereotype Threat for
Women

Because Model 4 which included an interaction between gender and stereotype threat

failed to converge, we ran an (unregistered) exploratory model that included the data

from women only and focused on comparing the stereotype threat conditions. Using

the preregistered settings (see Appendix A), this additional model did converge and

yielded results similar to those that also included the data for men (Model 3). For

women only, we did not observe a stereotype threat effect on either one of the two

latent traits, g1 = 20.04 (HPDI 95% [20.24, 0.15]) for mathematical ability and g2

= 20.11 (HPDI 95% [20.32, 0.11]) for the completion factor. The correlation

remained positive, at r = .38.

Figure 3. Correlations Between the Estimated Latent Trait Scores for Mathematics Ability
and for the Completion Factor, per Gender.
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Discussion

Using data from a large registered replication study on stereotype threat (Stoevenbelt

et al., in principle accepted), we investigated whether the observed gender gap on

speeded mathematics tests can be (partly) explained by gender differences in test-

taking strategies adapted by women and men under time limits. Furthermore, we

assessed whether women in a stereotype threat condition are affected by a so-called

double disadvantage with respect to their performance, due to potential additive

effects of their gender identity and the stereotype threat manipulation. Concretely,

Figure 4. Posterior Density Plots for Both Regression Coefficients Beta. Beta1 Represents
the Gender Gap on Mathematics Ability, and Beta2 the Gender Gap on the Completion
Factor.
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using a Bayesian two-dimensional IRT model (Glas & Pimentel, 2008), we studied

the relationship between the completion factor and mathematical ability, and any

gender differences in both factors. Besides estimating the correlation between mathe-

matical ability and the completion factor, we investigated whether there was a gender

gap, an effect of experimental condition (stereotype threat), or an interaction between

these two covariates, by including these covariates in subsequent analyses.

We found a small positive correlation (r = .36) between the two latent traits, indi-

cating that more able test takers attempted more items. These results imply that miss-

ing data in stereotype threat research—and, by extension of argument, in other

contexts perhaps as well—should not be ignored and should preferably be considered

when analyzing data that were collected under time limits. If not accounted for, miss-

ing data can potentially lead to biased parameter estimates (Glas & Pimentel, 2008),

such as underestimated item difficulties, and, in turn, could lead to unfairness in psy-

chometric tests.

We did not find a simple effect of stereotype threat among women, indicating that

neither latent factor was affected by the stereotype threat manipulation. Thus, we did

not find any evidence for our hypothesis based on earlier work (Flore, 2018) that

stereotype threat affects the test-taking strategies of threatened female test takers. In

other words, we did not document any potential double disadvantage for women in

the stereotype threat condition. We do note that the data collection of Stoevenbelt

et al. (in principle accepted) was delayed due to COVID-19 and is still ongoing, and

hence that results and conclusions with respect to stereotype threat effects may

change once more data has been collected and analyzed. The current results align

with additional recent findings in the literature on stereotype threat research showing

that the stereotype threat effect is not as robust as thought before. As it stands, results

based on replications and registered reports, with larger studies showing null effects,

provide little to weak support for stereotype threat theory (Agnoli et al., 2021;

Finnigan & Corker, 2016; Flore et al., 2018; Gibson et al., 2014; Moon & Roeder,

2014). Moreover, meta-analyses highlighted evidence for publication bias, with posi-

tive findings being more likely to end up in the more easily accessible research liter-

ature than negative findings (Flore & Wicherts, 2015; Shewach et al., 2019; Zigerell,

2017). Consequently, published articles that found (large) stereotype threat effects

might paint a biased picture of the actual strength of the true effect, partly due to

publication bias and selective reporting (Simmons et al., 2011; Wagenmakers et al.,

2012; Wicherts et al., 2016). We encourage fellow researchers to conduct large pre-

registered studies to avoid such pitfalls. It may still be viable to apply our proposed

models to large stereotype threat data sets that do demonstrate a stereotype threat

effect. However, to our knowledge, such a large data set, preferably originating from

a preregistered study, is currently not available, and, thus, we are unable to extend

the current account with another data set.

We did find a gender gap on the completion factor estimates, but not on mathe-

matical ability, although differences between factors in gender gaps were relatively

small (d = 20.33 vs. d = 20.22). However, these results highlight that the women in
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our sample differ in test-taking strategies from their male peers, which might have

important implications for measurement under time limits if the aim is to provide an

estimate of mathematics ability unaffected by how many items are completed. Thus,

concluding that women have a lower mathematics ability than men is not only a

biased conclusion under time limits, but may also yield an unfair advantage for men

when the test is used to select, for example, students to an academic program.

For instance, in tests that aim to measure mathematics ability, a time limit could

potentially enlarge the gender gap because of completion differences (particularly

when easier items are place at the end of the test) and hence time limits could even

introduce violations of measurement invariance (when it is defined with respect to

mathematics ability) and unfairness in testing. Besides its relation with stereotype

threat effects, the model by Glas and Pimentel (2008) could be applied more widely

to timed tests measuring mathematics and other cognitive abilities to assess the unde-

sired differential impact across groups of time limits.

Our approach could provide a method to study gender differences on other

speeded tasks, such as cognitive or intelligence tests, in order to differentiate between

gender differences that are due to participants’ ability or due to the completion factor

of the participants. We found evidence for the fact that missing data in experimental

research cannot be ignored, because data missingness is related to the main construct

of interest within stereotype threat data (Glas & Pimentel, 2008). The IRT approach

we utilized could be applied to speeded tests in general. Specifically, we encourage

researchers to consider the impact of their design choices before data collection, to

avoid potential bias in their conclusions due to speeded tests.

Limitations

Considering the width of the highest probability density interval and the difficulties

we faced with model convergence, we highly encourage replicating this evidence in

another stereotype threat data set that might become available in the future (including

but not limited to the additional labs contributing to the RRR). We note that the sam-

ples used in this study were exclusively collected in Western Europe, thus resulting

in Western, educated, industrialized, rich, and democratic (WEIRD) samples. The

university data comprise undergraduate college students. Stereotype threat has been

shown to affect both high school and college students (Doyle & Voyer, 2016; Flore

& Wicherts, 2015; Nguyen et al., 2003). However, differences were shown across

regions (Picho et al., 2013) and may affect results.

Furthermore, we used an experimental data set that has been collected under a

low-stakes setting for participants, who might have been less motivated to put effort

into their work. Low effort may impact the validity of participants’ test scores (Wise

& DeMars, 2005). During data collection, we aimed to keep participants engaged

with their tests, and they were not allowed to leave early or to work on other tasks

during the experiment. However, this testing setting does not necessarily generalize
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to a high-stakes testing situation, such as the SAT, and our results may, therefore,

also not generalize to speeded high-stakes tests.

In the models we applied here, we ignored skipped items (items that were not

attempted by a participant, rather than not reached due to the time limit).

Consequently, this approach does not fully reflect the entire missingness process at

hand. In our approach, the fact that an item is missing is solely attributed to the exis-

tence of a strict time limit. However, properties of individual items (e.g., complexity)

might explain (intermediate) missingness as well. Defining speed as the number of

reached items foregoes the opportunity to, for example, include response times as an

indicator of participants’ effort (e.g., DeMars & Wise, 2010) or item complexity.

Including some measure of effort may be fruitful, as, for example, differential gues-

sing behavior has been linked to gender differences in item skipping (Ben-Shakhar

& Sinai, 1991), and differential item functioning (DIF; DeMars & Wise, 2010), even

though results are mixed (Liu & Wilson, 2009). However, not accounting for differ-

ences in effort may lead to biased gender comparisons (Ben-Shakhar & Sinai, 1991;

DeMars & Wise, 2010; Liu & Wilson, 2009). Unfortunately, because the included

tests were administered on paper, the current data sets cannot be used to expand the

proposed models with response time measures. Future researchers may wish to assess

potential effects of participant effort, for example, by examining mean response

times (see also Fox & Marianti, 2016).

Skipping behavior can also be included in item response models when response

times are not available. Holman and Glas (2005) have proposed an item response

model for skipped items, and Debeer et al. (2017) have suggested IRTree models that

encompass both missingness patterns. However, because the two-dimensional IRT

model by Glas and Pimentel (2008) already caused convergence issues in our data,

we argue that it would not be reasonable to attempt fitting these models presently,

given that they are even more complex.

We only focused on experimental psychological research. Within this context, we

argue that if gender differences are found in an experiment, researchers should be cau-

tious when attributing such differences to differences in the construct of interest, rather

than to design choices, such as speededness, to avoid drawing faulty conclusions. We

focus on stereotype threat research, but note that our argument can be extended to all

operational tests and experimental settings wherein time limits are imposed.

Furthermore, we assumed linear relationships for stereotype threat throughout. We

note that stereotype threat has originally been theorized to only affect high-achieving

students (Spencer et al., 1999; Steele, 1997). However, a recent meta-analysis of 31

stereotype threat experiments showed no evidence for the effect of stereotype threat

being differentiated according to prior academic achievement (e.g., as reflected in

SAT scores; Stoevenbelt et al., 2022). However, there may be some scenarios where

the linearity assumption may not hold. For example, participants with an efficient

test-taking strategy might be more affected by stereotype threat effects than those

without a good strategy, because the latter group does not have the skill set to tackle

the items in the first place (regardless of the manipulation). For example, allowing for
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more time on the SAT only benefited the highly efficient students, but not those who

already demonstrated inefficient problem-solving methods (Bridgeman, Trapani, &

Curley, 2004), because more able respondents omit fewer items (Pohl et al., 2014). We

also note that stereotype threat may influence women in the experimental condition

without affecting mean effects. If the lower-end and the higher-end of the score distribu-

tion of participants are equally affected, the mean score of this experimental group will

not change (see Flore, 2018, for a discussion of counterbalanced moderation of ability

in stereotype threat research) for a discussion of counterbalanced moderation of ability

in stereotype threat research). If this occurs, groups may appear not to differ on mea-

sures as Cohen’s d, even though they do differ in their score distributions (Voracek

et al., 2013). Finally, we note that studying differences in subgroups, for example, differ-

ences between highly achieving and lower achieving respondents, may be interesting.

However, we argue that the current model on a subset of the included data set may result

in difficulties. Specifically, a direct selection on the basis of, for example, observed total

mathematics scores would distort the factor structure and lead to lack of invariance with

respect to the overall sample and other subgroups (Muthén, 1989).

Furthermore, we assumed that mathematics ability reflects a unidimensional con-

struct. All items were obtained from the quantitative section of the GRE, which has

been shown to reflect a quantitative reasoning factor (e.g., Stricker & Rock, 1985).

One could test this assumption, for example, by fitting a fully explorative factor

model. However, we argue that results of this analysis may be interpretable for the

included data sets as the dimensionality of the tests could be affected by the imposed

time limits. If the mathematics test is not unidimensional, it may be fruitful to extend

IRT models that can incorporate subscales (e.g., De La Torre & Patz, 2005) to

account for time limits.

Moreover, in light of sample size limitations, we did not specifically test for gen-

der differences in the item parameters or DIF with respect to gender or stereotype

threat condition (see also Flore, 2018; Wicherts et al., 2005). Future work, with again

larger data sets, could shed more light on the potential effect of gender and/or stereo-

type threat on the measurement parameters.

Even with a simplified version of the model and despite the relatively large sample

size, we had trouble to ensure that the models we suggested converged. They required

many thousands of MCMC iterations before convergence was reached. Moreover, the

proposed models did not converge on the high school data, even after 100,000 burn-

in iterations. Convergence issues may result from low reliability and a high amount

of noise in the data. For the university sample, especially for the models including

gender as a covariate, we encountered convergence issues, potentially due to the sam-

ples’ skewed sex ratio (78% women). These issues could also stem from the compara-

tively large amount of missing data (58% in the university data set), or the relatively

small correlation between the two latent traits. Larger numbers of missing data result

in less data and less information for the model to work with.
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Concluding Remarks

In summary, we investigated here one of the dimensions that may enlarge gender dif-

ferences in time test performance: Missing data caused by time limits and gender dif-

ferences in completion rates. As a secondary goal, we investigated whether

stereotype threat may affect the completion factor, rather than mathematics ability

proper. In the current sample, we did not recover a stereotype threat effect on the

completion factor; consequently, stereotype threat did not seem to affect how partici-

pants attempted items. We also did not find a stereotype threat effect on the mathe-

matics factor, which is in line with the preregistered analyses of sum scores as

reported in the RRR itself. We call for more large-scale, open, preregistered studies,

such that researchers can adequately investigate whether stereotype threat exists on

the level of items (see also Flore, 2018). Furthermore, mathematics ability was posi-

tively related to the completion factor, indicating that the missing data that originated

from the time limits cannot be ignored in both the analysis of and the conclusions

based on the data. Men and women did differ in their latent trait scores on the com-

pletion factor, but not on the mathematics ability trait. If these results generalize to

other tests that use time limits, it is important to consider as an important factor in

gender gaps as it relates to the validity of the measures and fairness in testing. If the

completion factor is ignored and only ability is studied, this may lead to test unfair-

ness, violations of measurement invariance, and invalid group comparisons, as well

as potentially DIF (Dorans et al., 1988; Lu & Sireci, 2007). We urge researchers to

take these effects of time limits into account when analyzing their data or, ideally,

already during the design phase of their experiments.

Appendix A

Model Convergence
Model 1: No Covariates. The effective sample sizes for all parameters were above 594

for the university data, Monte Carlo standard errors (MCSEs) below 0.01 for all para-

meters, and R̂ values that reflect chain convergence were between 1.00 and 1.01 for

the university data.

Model 4: Full Models. All Monte Carlo standard errors were below 0.015. However,

based on trace plots, effective sample sizes, and R̂ values, we concluded that the

model did not converge. With 100,000 burn-in iterations, effective sample sizes were

only above 160. The effective sample sizes were under 400 for most parameters of

interest, namely, the difficulty parameters of Items 1 to 13, the regression coeffi-

cients of the main effect of the gender covariate (betas 1 and 2), the variance of the

latent trait representing the completion factor, and tau1, totaling 17 non-converged

parameters. R̂ values were above 1.05 for 21 parameters, including all parameters

listed above, giving further evidence for non-convergence. In addition, we observed

R̂ values above 1.05 for the difficulty parameter of Item 14, the regression coefficient

(delta) of the interaction for the latent trait representing the completion factor

Stoevenbelt et al. 703



(delta2), and the regression coefficients of the main effect of stereotype threat (gam-

ma’s 1 and 2). R̂ values that were over 1.05 ranged from 1.051 (difficulty parameter

Item 14) to 1.21 (tau1).

Model 2: Gender Covariate. All effective sample sizes were above 283, with the lowest

effective sample size for the regression coefficient of gender on the completion latent trait

(beta2). For two other parameters, effective sample sizes were below 400: for the regres-

sion coefficient on ability (384, beta1), and for tau1 (304). However, even though effective

sample sizes were low, trace plots and other indices indicate that the model did converge.

All MCSEs were below 0.01, and R̂ values ranged between 1.00 and 1.03.

Model 3: Stereotype Threat Covariate. The effective sample sizes for all parameters

were above 685 for the university data. Monte Carlo standard errors (MCSEs) were

below 0.01 for all parameters the model fitted on the university data, and R̂ values

were between 1.00 and 1.02 for the university.

Exploratory Results: Simple Effect of Stereotype Threat for Women Only. The effective

sample sizes for all parameters were above 630 for the university data. Monte Carlo

standard errors (MCSEs) were below 0.01 for all parameters the model fitted on the

university data, and R̂ values were between 1.00 and 1.02 for the university.

Appendix B

Item Analysis of the High School Data

As mentioned, the proposed models did not converge based on the preregistered set-

tings. We increased the number of burn-in iterations (up to 150,000 iterations) and

implemented more informative priors by replacing all normal priors with standard nor-

mal distributions. However, despite these adaptations, Model 1 did not converge. As an

exploratory analysis, we estimated a Bayesian Rasch model, using 3 chains and 1,000

iterations per phase and similar priors as for our confirmatory models (for code, see:

https://osf.io/j8aqc). We found difficulty parameters ranging from 21.89 to 1.02 (M =

20.63) for the items of the high school mathematics test. In general, we found that stu-

dents found the items relatively easy, with eight items showing proportions of correct

answers . 75%, and that test reliability was relatively low (a = .59). Therefore, the

data may contain too little variance or too much noise to fit our proposed models.
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