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Renin-angiotensin system (RAS) components such as angiotensin II, angiotensin receptors (AT1R 
and AT2R), and angiotensin-converting enzyme (ACE) are expressed in different cell types of the 
skin. Through AT1R, angiotensin II increases proinflammatory cytokines contributing to fibrosis, 
angiogenesis, proliferation, and migration of immune cells to the skin. In contrast, AT2R suppresses 
the effects mentioned above. Many studies show that angiotensin receptor blockers (ARBs) and 
angiotensin-converting enzymes (ACEi) reduce the proinflammatory cytokines and fibrogenic factors 
including transforming growth factor β (TGF-β), Connective tissue growth factor (CTGF), and IL-6. 
This review article provides a detailed research study on the implications of ARBs in wound healing, 
hypertrophic scar, and keloids. We further discuss the therapeutic potentials of ARBs in autoimmune 
and autoinflammatory skin diseases and cancer, given their anti-fibrotic and anti-inflammatory effects.
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Introduction
The intact epidermal layer has a vital role in maintaining 

the intradermal water amount and preventing the penetration 
of microorganisms or toxic agents. The formation of such 
a functional structure is regulated by a distinct balance 
between proliferation and differentiation processes (1). 
Renin-angiotensin system (RAS) components are located in 
cutaneous and subcutaneous layers, while RAS components 
are vital to skin pathophysiology, including inflammation, 
scar formation, fibrosis, and some skin malignancies (2). 
Notably, RAS is excessively activated during inflammation, 
has potent proinflammatory effects, increases vascular 
permeability, leads to edema, and involves cell proliferation, 
fibrosis, and inflammation (3). Active biological fragments 
of angiotensinogen, the mother peptide of RAS, including 
angiotensin II (Ang II), angiotensin 1-9 (Ang 1-9), 
angiotensin 1-7 (Ang 1-7), angiotensin III (Ang III), and 
angiotensin IV (Ang IV), as well as the classic angiotensin-
converting enzyme (ACE) and the newer type (ACE2), 
have been considered new regulatory target molecules in 
normal skin physiology (2). Ang II receptors of AT1R and 
AT2R, which mediate opposing effects, are expressed in 
the keratinocytes, melanocytes, fibroblasts, and the deeper 
parts of the skin, including hair follicles and macrovesicle 
endothelial cells of sebaceous glands (2, 4). The pro-
fibrotic, proinflammatory, and pro-proliferative effects of 
Ang II are predominantly mediated through AT1 receptors. 
Angiotensin receptor blockers are known anti-hypertensive 

drugs, while the growing body of evidence represents their 
functions beyond the vasculature system. 

In this review, we describe the application of ARBs in 
wound healing and skin fibrosis, focusing on the tendency 
to develop a topical route of delivery. We further elaborate 
on the potential therapeutic effect of ARBs in skin diseases, 
including psoriasis, cutaneous lupus erythematosus, and 
skin neoplasms. 

Angiotensin Receptor Blockers (ARBs) and Wound Healing
Wound healing is dynamic and occurs in three different 

phases: inflammation, proliferation, and remodeling. The 
inflammatory phase occurs 2-3 days after injury. Various 
inflammatory cells such as neutrophils and macrophages 
infiltrate the wound site and produce multiple cytokines 
and chemokines during the inflammatory phase, including 
platelet-derived growth factor (PDGF), transforming growth 
factor β  (TGF-β), interleukin 1 (IL-1), and tumor necrosis 
factor-alpha (TNF-α). These inflammatory mediators 
stimulate fibroblast cells to produce fibrin and extracellular 
matrix. The proliferation phase happens and lasts for three 
weeks. During the early stages of proliferation, the number 
of infiltrated inflammatory cells dwindle while collagen, 
granulation tissue, angiogenesis, and epithelialization 
accrete. Over the remodeling phase, collagen production 
and degradation are balanced and modified into mature 
collagen (5). Prolonged inflammation and excessive 
proinflammatory cytokine and matrix metalloproteinases 
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(MMPS) production may induce impaired wound healing 
(2, 6).   

According to the literature on healing process alteration, 
the expression of RAS-related receptors is stage-dependent. 
Skin wound healing initiates an inflammatory phase followed 
by proliferation and remodeling with scar formation (2). 
In the initial proliferation phase, the expression of AT1R 
is rapidly increased. The same trend but at a slower rate 
also happen for AT2R. The process then continues with a 
distinct decline in the expression of AT1R but a dramatic up-
regulation of AT2R. To a lesser extent, AT1R has increased 
during the remodeling phase. Hence, AT2R dominancy is 
apparent in the later phase (2, 7). 

Several studies have helped us find out the significant 
role of each receptor in modulating wound healing. In a 
series of studies, the effectiveness of the topical angiotensin 
II and angiotensin (1-7) was investigated in four wound 
models: diabetic rat and mouse full-thickness excisional 
wounds, rat cutaneous random flap, and partial thickness 
thermal injury model in the guinea pig. They found that 
angiotensin II and angiotensin (1-7) improve wound 
repair and increase keratinocyte and epidermal stem cell 
proliferation and the rate of epithelialization (8). There is 
some evidence elucidating the impact of ARBs on wound 
healing. Takeda’s findings revealed that stimulation of 
AT1R signaling accelerates keratinocyte migration in full-
thickness skin wounds in rats and in vitro in the keratinocyte 
culture dish. However, AT1R blockers and the activation of 
AT2R reduce the speed of keratinocyte migration (9). The 
increase in keratinocyte migration is probably due to the 
generation of TGF-β and epidermal growth factor receptor 
(EGFR) phosphorylation (10, 11). Kamber et al. showed 
that oral administration of losartan (angiotensin II receptor 
blocker) for 14 days speeded up the epidermal repair in 
a streptozotocin-induced diabetic wound in mice (12). 
Research studies showed that valsartan has the highest skin 
penetration compared to other ARBs drugs (13), and the 
topical application of 1% valsartan (angiotensin II receptor 
blocker) gel was associated with a marked acceleration of 
wound healing in diabetic mice and aging pigs. Researchers 
showed that the wound healing rate was higher with topical 
valsartan versus topical losartan with the same formulation. 
They found that valsartan gel acts through AT2R because 
the healing effect disappeared in the AT2R null mice. On 
the other hand, the topical application of 5% captopril gel 
delayed the healing rate (14). 

Other studies using the valsartan 1% ointment (15) and 
new drug delivery methods in nano form have shown that 
daily topical 1% valsartan has reduced the Tgf-β signaling 
pathway and increased the acceleration of chronic wound 
healing in animal models (16).

ARBs and scar
Hypertrophic scar and keloids happen due to an impaired 

wound healing process leading to the overproduction of 
extracellular matrix. Hypertrophic scar and keloids differ in 
histology, incidence, appearance, location, and treatment. 
The incidence rate of hypertrophic scar is higher than keloids 
and may be up to 60% after surgery and regress after three 
months (17). On the other hand, the mechanism of keloid 
formation is still unclear, with various factors involved in 
the pathophysiology.  

Connective tissue growth factor (CTGF) (18), (TGF-β) 

(19), histamine (20), proinflammatory cytokine (IL-6) 
(21), renin-angiotensin system (22), vascular endothelial 
growth factor (VEGF) (23), MMPS (24, 25), and tissue 
inhibitors of matrix metalloproteinases (TIMP) are among 
the long list of mediators that involve in scar formation. The 
interaction between the stromal and inflammatory cells 
and secretion of proinflammatory cytokines play a vital 
role in scar formation. TGF-β is one of the major factors 
in scar formation, which activates the type II receptor 
and phosphorylates the R-Smad proteins. The TGF-β/
Smad signaling induces differentiation and migration of 
fibroblasts with consequent collagen production (26). It has 
been shown that the number of inflammatory cells (mast 
cell and macrophage) and proinflammatory cytokines (IL-6, 
IL-1β, and TGF-β) are increased in scar and keloid tissues 
(27). Therefore, chronic inflammation and delayed wound 
healing may contribute to scar progression.

Aside from the therapeutic effect of ARBs on the early 
stages of wound healing, ARBs are also found to prevent 
scar formation. We have already shown that AT1R and 
angiotensin II concentrations are higher in keloid and 
hypertrophic scar tissue than in normal skin in humans 
(22). Akershoek et al. findings also confirm up-regulation 
of AT1Rs in human scars (28). Later works of our group 
unveiled the anti-scar properties of ARBs in a clinical trial of 
thirty participants, including 20 cases who received losartan 
and ten control cases who were treated with a placebo. 
We found that application of topical losartan ointment at 
5% twice a day significantly improved the Vancouver scar 
scale (VSS) scores, including vascularity, pigmentation, 
pliability, and height scores after three months (29). Zehang 
et al.(30) reported the same therapeutic effects with losartan 
ointment on the scar. Rsearch showed that oral ARBs and 
ACEIs reduced the scar width in the post-surgical scar in 
patients (31). Animal studies also support the anti-scar 
effects of ARBs and ACEIs (32). Both valsartan and enalapril 
were effective in preventing pathological scar formation in 
an experimental rabbit ear wound model. Interestingly, 
valsartan seemed to be more effective in reducing the 
fibroblast cell count and epithelial thickness (33). 

Ang II via AT1R increases the expression of IL-6, an 
essential mediator of scar formation (21). However, AT2 
receptor stimulation with an AT2 receptor agonist (C21) 
has been shown to reduce TNF-α-induced IL-6 expression 
in human skin fibroblasts (34). Furthermore, TGF-β and 
CTGF, the two most essential mediators of scar formation, 
are produced following AT1R activation (4). ACEIs (such 
as ramipril and captopril) have been found to decrease the 
expression levels of  TGF-β in full-thickness skin wounds of 
mice (35). ARBs (such as losartan) reduce CTGF expression 
in the lung fibrosis model in mice (36). Losartan also has 
been shown to inhibit the migration and contractile activity 
of human dermal fibroblasts and reduce scar formation in 
rats (32).   The ratio between MMPs and TIMPs is essential 
in tissue fibrosis and scar pathogenesis. MMPs function in 
the collagen and extracellular matrix degradation, while 
TIMPs inhibit MMPs activity and thus involve hypertrophic 
scar and keloid development (25). Ang II has been found 
to increase collagen content accompanied by an increase in 
TIMP-1 expression in mice skin fibroblasts. These increases 
were inhibited by valsartan while being augmented by AT2R 
inhibition, representing that stimulation of AT1R and AT2R 
differentially regulates collagen production in mouse skin 
fibroblasts (37). 
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ARBs beyond wound healing and scar
Role of RAS components in skin cancer 

Angiogenesis and proliferation are two critical driving 
forces leading to cancer progression. According to the 
pivotal role of Ang II as a growth-stimulating factor in 
promoting angiogenesis and, therefore, tumorigenesis, the 
chemopreventive role of ARBs has been proposed in several 
types of cancer, such as nasopharyngeal carcinoma and 
breast cancer (38-41). Here is the evidence pointing to the 
involvement of Ang II in the progression and promotion 
of skin cancers. AT1R is highly expressed in squamous cell 
carcinoma (SCC) while being poorly expressed in basal cell 
carcinoma (BCC) (42). A randomized clinical trial showed 
that in a population at high risk of skin cancer, ACEI or 
ARB users had a lower incidence of BCC and SCC (41). 
Another survey that evaluated the incidence of skin cancer 
in renal transplant recipients revealed that the incidence of 
BCC and SCC cancers dropped with the consumption of 
ACEI or ARB (43). 

Moreover, the inhibitory effect of losartan on the growth 
of murine melanoma confirms the oncogenic properties of 
AT1R (44). Hematogenous metastasis in mouse melanoma 
cells following administration of a non-selective receptor 
agonist of AT1R and AT2R was suppressed with valsartan 
(45). AT1R had an essential role in the angiogenesis and 
growth of melanoma tumor cells engrafted in mice. 
Although angiogenesis was prominent in wild-type (WT) 
mice, it was reduced in AT1R-deficient mice, and TCV-
116, a selective AT1R blocker, decreased melanoma growth 
and angiogenesis in WT mice (46). Besides the evidence 
regarding the protective effects of ARBs, the oncogenic 
properties of AT1Rs are confirmed by the down-regulation 
of the AT1R encoding gene using miRNA miR-410, which 
consequently suppressed tumor growth and migration (47). 
Although AT1R is known as an oncogenic receptor with 
a proliferative effect (2, 7-9), a recent study showed the 
AGTR1 (encoding AT1R) suppressor effect following ectopic 
expression of AGTR1 (encoding AT1R) in melanoma cell 
lines lacking endogenous expression of AT1R (47). 

Some studies have shown the opposite effects of ARBs 
and ACEi drugs in the occurrence of skin cancer(48), which 
may be due to the different administration methods and 
dosage. 

ARBs in autoinflammatory/autoimmune skin diseases
Ang II via AT1R has proinflammatory effects mediated 

through several chemokines and cytokines and induces 
specific inflammatory signaling pathways (reactive oxygen 
species (ROS), nuclear factor-κB, IL-6, and TGF-β) (21, 49-
51). Hence, it could contribute to several autoinflammatory 
and autoimmune diseases like systemic lupus erythematosus 
(SLE) (52). 

Psoriasis is an autoinflammatory skin disease associated 
with high serum levels of ACE (53, 54) and hyperactivity of 
components of RAS in the skin (55). Polymorphism of the 
ACE I/D (insertion (I) and deletion (D)) gene is reported in 
psoriatic patients which might contribute to the high levels 
of serum ACE (56). Overproduction of tissue ACE and Ang 
II levels negatively affects the balance between keratinocyte 
proliferation and differentiation (2). In our previous animal 
study of imiquimod-induced psoriatic inflammation in 
mice, we found that the topical administration of losartan 
1% significantly decreased the psoriasis area and severity 

index (PASI) score accompanied by reduced levels of IL-
17a, Ang II, and AT1R expression (57). Previous studies 
showed that Ang II increases the level of IL-17 and losartan 
decreases Th17 infiltration cells (58, 59). Although there are 
data on the negative effect of ARBs on psoriatic skin lesions 
(60-62), we still need to assess the impact of RAS-modifying 
therapies on psoriasis precisely.

Systemic lupus erythematosus is a chronic autoimmune 
disease involving the skin in many cases (63). ACE gene 
polymorphisms are associated with SLE pathogenesis (64). 
however, data supporting the therapeutic effects of these 
classes of drugs in cutaneous lupus is limited. Recently, 
Soto et al. have shown the therapeutic effect of losartan and 
lisinopril as well as angiotensin (1-7) [A(1-7)], Nor-Leu-3 
angiotensin (1-7), the other RAS-modifying reagent, in the 
MRL-lpr mouse model of SLE. Their findings demonstrated 
that the RAS-modifying therapies significantly reduced the 
onset and severity of skin rashes (65). Overall, the limited 
presented data set on the effectiveness of ARBs on the 
cutaneous lesion of SLE is not sufficient to decide the relative 
conclusion in this regard, and it needs more experimental 
and clinical data.

Epidermolysis bullosa is a genetic skin disorder associated 
with chronic inflammation and scarring. There is a case 
report of the therapeutic effect of losartan on epidermolysis 
bullosa in a 6-year-old patient (66). It also has been shown 
that losartan ameliorates dystrophic epidermolysis bullosa 
in recessive dystrophic epidermolysis bullosa (RDEB) mice 
by reducing the TGF-β signaling and thus halting fibrosis. 
Interestingly, their findings of proteomics analysis reveal the 
decrease of multiple proteins related to tissue inflammation 
(67). Further studies are needed to evaluate the effect of 
losartan and other ARBs on epidermolysis bullosa. Other 
studies have shown losartan to have beneficial effects in the 
treatment of Myhre syndrome characterized by connective 
tissue disorders and skin thickening (68).

Conclusion
This review study aimed to evaluate the role of RAS in 

dermatology and skin disorders. It has been clear that Ang 
II, throughout AT1R, increases angiogenesis, inflammation, 
migration of fibroblasts, keratinocytes, and melanocytes, 
and consequently enhances fibrosis and scar formation in 
the skin (4). Some research indicated that the expression of 
VEGF was reduced in knockout (AT1a

-/-) mice, and AT1R 
antagonist decreased VEGF and the wound healing process 
(69). On the other hand, activation of AT2R alleviates 
angiogenesis, and the release of proinflammatory cytokines 
(IL-6, TNF-α, and TGF-β) contributes to skin fibrosis (34, 
70). 

Based on previous studies, it seems that ARBs and ACEi 
drugs can inhibit the production of excessive inflammation 
in skin wounds and accelerate the healing of chronic 
wounds such as diabetic ulcers (12). Inflammation and pro-
inflammatory cytokines play an important role in collagen 
production and scar formation, the use of ARBs and ACEi 
drugs may have a therapeutic role in reducing scars.

Furthermore, there is a growing body of evidence in 
favor of the therapeutic effects of ARBs in the context of 
autoimmunity and autoinflammation. ARBs are commonly 
used to inhibit AT1Rs; however, agonists and antagonists 
for AT2R have not yet been approved for clinical use. The 
compound 21 (C21) is an agonist of non-peptide AT2R 
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owned by vicore pharma (Sweden) Which is in phase II 
clinical trials with approved anti-inflammatory effects.

Further studies recommended using AT2R agonists for 
dermatological diseases. The topical formulation of ARBs 
would be a better therapeutic option for skin disorders. 
Still, the epidermal layers prevent drugs from penetrating 
deeper into the skin (71). The solubility, molecular weight, 
and lipophilicity of the ARBs and their potency and affinity 
for AT1Rs are different (72). Therefore, it may be necessary 
to use novel drug delivery carriers or methods for increased 
penetration into deeper layers of the skin (73). 
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