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Abstract

Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as 

they record past and ongoing adaptive immune responses. The capacity of machine learning 

(ML) to identify complex discriminative sequence patterns renders it an ideal approach for 

AIRR-based diagnostic and therapeutic discovery. To date, widespread adoption of AIRR ML 

has been inhibited by a lack of reproducibility, transparency, and interoperability. immuneML 

(immuneml.uio.no) addresses these concerns by implementing each step of the AIRR ML process 

in an extensible, open-source software ecosystem that is based on fully specified and shareable 

workflows. To facilitate widespread user adoption, immuneML is available as a command-line 

tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is 

provided. We demonstrate the broad applicability of immuneML by (i) reproducing a large-scale 

study on immune state prediction, (ii) developing, integrating, and applying a novel deep learning 

method for antigen specificity prediction, and (iii) showcasing streamlined interpretability-focused 

benchmarking of AIRR ML

Editor summary:

The proliferation of molecular biology and bioinformatics tools necessary to generate huge 

quantities of immune receptor data has not been matched by frameworks that allow for easy data 

analysis. The authors present immuneML, an open-source collaborative ecosystem for machine 

learning analysis of adaptive immune receptor repertoires.

Introduction

T-cell receptors (TCRs) and B-cell receptors (BCRs), that are collectively known as adaptive 

immune receptor (AIR) repertoires (AIRRs), recognize antigens and record information on 

past and ongoing immune responses1–4. AIRR-encoded information is particularly useful 

for the repertoire-based prediction and analysis of immune states (e.g., health, disease, 

infection, vaccination) in relation to other metadata such as major histocompatibility 
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complex (MHC)5–7, age7,8, and sex9. Together this information shapes the foundation 

for AIRR-based diagnostics6,10–14. Similarly, sequence-based prediction of antigen and 

epitope binding is of fundamental importance for AIR-based therapeutics discovery and 

engineering15–27. In this manuscript, the term AIRR signifies both AIRs and AIRRs (a 

collection of AIRs) if not specified otherwise.

Machine learning (ML) has recently entered center stage in the biological sciences because 

it allows detection, recovery, and re-creation of high-complexity biological information from 

large-scale biological data28–31. AIRRs have complex biology with specialized research 

questions, such as immune state and receptor specificity prediction, that warrant domain-

specific ML analysis15. Briefly, (i) ~108–1010 distinct AIRs exist in a given individual at 

any one time32–34, with little overlap among individuals, necessitating encodings that allow 

detection of predictive patterns. These shared patterns may correspond to full-length AIRs6, 

subsequences, or16 alternative AIR representations11,12,17,18,22,35–37. (ii) In repertoire-based 

ML, the patterns relevant to any immune state may be as rare as one antigen-binding 

AIR per million lymphocytes in a repertoire38 translating into a very low rate of relevant 

sequences per repertoire (low witness rate)11,39,40. (iii) In sequence-based ML, the enormous 

diversity of antigen recognition combined with polyreactivity points to complex high-order 

statistical dependencies in the short sequence known to be the main determinant of antigen 

recognition (complementarity-determining region 3, CDR3)1,16.

Tailored ML frameworks and platforms that account for the idiosyncrasies of the underlying 

data have been published for applications in genomics41,42, proteomics43,44, biomedicine45, 

and chemistry46. Their creation recognizes the infeasibility to define, implement, and train 

appropriate ML models by relying solely on generic ML frameworks such as scikit-learn47 

or PyTorch48. The lack of a standardized framework for AIRR ML has led to heterogeneity 

in terms of technical solutions, domain assumptions, and user interaction options, hampering 

transparent comparative evaluation and the ability to explore and select the ML methodology 

most appropriate for a given study15.

Results

immuneML overview

Here, we present immuneML, an open-source collaborative ecosystem for AIRR ML 

(Figure 1). immuneML enables the ML study of both experimental and synthetic AIRR-seq 

data that are labeled on the repertoire-level (e.g., immune state, sex, age, or any other 

metadata) or sequence-level (e.g., antigen binding), all the way from preprocessing to model 

training and model interpretation. It natively implements model selection and assessment 

procedures like nested cross-validation to ensure robustness in selecting the ML model. 

immuneML may be operated either via the command line or the Galaxy web interface49, 

which offers an intuitive user interface that promotes collaboration and reusability through 

shareable analysis histories. To expedite analyses, immuneML may also be deployed to 

cloud services such as Amazon Web Services (AWS) and Google Cloud, or on a local server 

for data privacy concerns. Computational reproducibility and transparency are achieved 

by shareable specification files, which include all analysis details (Supplementary Figure 

1). immuneML’s compliance with AIRR community software and sequence annotation 
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standards50,51 ensures straightforward integration with third-party tools for AIRR data 

preprocessing and AIRR ML results’ downstream analysis. For example, immuneML is 

fully compatible with the sequencing read processing and annotation suite MiXCR52 and 

the Immcantation53,54 and immunarch55 frameworks for AIRR data analysis. AIRR data 

from the AIRR Data Commons56 through the iReceptor Gateway57, as well as the epitope-

specific TCR database VDJdb58 may be directly downloaded into the immuneML Galaxy 

environment. Additionally, immuneML is integrated with the AIRR-specific attention-based 

multiple-instance learning ML method DeepRC39, the TCR-specific clustering method 

TCRdist17, and is compatible with GLIPH259.

To get started with immuneML, we refer the reader to Focus Box 1. To demonstrate 

immuneML’s capabilities for performing AIRR ML, we provide an overview of the main 

features of the platform, and then highlight three orthogonal use cases: (i) we reproduce the 

cytomegalovirus (CMV) serostatus prediction study of Emerson et al.6 inside immuneML 

and examine the robustness of the approach showing one way of using immuneML for 

repertoire-based immune state prediction, (ii) we apply a new custom convolutional neural 

network (CNN) for the sequence-based task of antigen-binding prediction based on paired-

chain TCR data and (iii) we show the use of immuneML for benchmarking AIRR ML 

methods.

immuneML allows read-in of experimental single- and paired-chain data from offline and 
online sources as well as the generation of synthetic data for ML benchmarking

Experimental data may be read-in directly if it complies with the major formats used 

for AIRR-seq data V(D)J annotation: AIRR-C standard-conforming50, MIXCR52, 10x 

Genomics60, Adaptive Biotechnologies ImmunoSEQ6,61 or VDJdb formats58. The AIRR-C 

format compatibility ensures that also synthetic data as generated by immuneSIM62 can be 

imported. Importing synthetic data as generated by IGoR63 and OLGA64 is also supported. 

Moreover, immuneML can be configured to read in data from any custom tabular format. 

To facilitate access to large-scale AIRR-seq data repositories, we provide Galaxy49 tools 

to download data from the AIRR Data Commons56 via the iReceptor Gateway57 and 

from VDJdb58 into the Galaxy environment for subsequent ML analysis. Furthermore, 

immuneML includes built-in capacities for complex synthetic AIRR data generation to 

satisfy the need for ground-truth data in the context of ML method benchmarking. Finally, 

read-in data may be filtered by clone count, metadata, and chain.

immuneML supports multiple ML frameworks and allows for interpretation of ML models

immuneML supports two major ML platforms to ensure flexibility: scikit-learn47 and 

PyTorch48 and, therefore, is compliant with all ML methods inside these platforms. 

immuneML features scikit-learn implementations such as logistic regression, support 

vector machine, and random forest. In addition, we provide AIRR-adapted ML methods. 

Specifically, for repertoire classification, immuneML includes a custom implementation of 

the method published by Emerson et al.6, as well as the attention-based deep learning 

method DeepRC39. For paired-chain sequence-based prediction, immuneML includes a 

custom-implemented CNN-based deep learning method, integrates with TCRdist17, and is 

compatible with GLIPH259. immuneML also includes several encodings that are commonly 
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used for AIRR data such as k-mer frequency decomposition, one-hot encoding where each 

position in the sequence is represented by a vector of zeros except one entry containing 

1 denoting appropriate amino acid or nucleotide, encodings by the presence of disease-

associated sequences, and repertoire distances. For the full overview of analysis components, 

see Supplementary Table 1.

A variety of tabular and graphical analysis reports may be automatically generated as part 

of an analysis, providing details about the encoded data (e.g., feature value distributions), 

the ML model (e.g., interpretability reports), and the prediction accuracy (a variety of 

performance metrics across training, validation, and test sets). Additionally, the trained 

models may be exported and used in future analyses.

immuneML facilitates reproducibility, interoperability, and transparency of ML models

immuneML draws on a broad range of techniques and design choices to ensure that it meets 

the latest expectations with regard to usability, reproducibility, interoperability, extensibility, 

and transparency65–68 (Figure 1).

Usability is achieved by a range of installation and usage options, catered to novices and 

experts, and to small and large-scale analyses. A Galaxy web interface49 allows users 

to run analyses without the need for any installation and without requiring any skills in 

programming or command-line operations. Availability through GitHub, pip, and Docker 

streamlines usage at scales ranging from laptops to high-performance infrastructures such as 

Google Cloud and AWS (docs.immuneml.uio.no/latest/installation/cloud.html).

Reproducibility is ensured by leveraging the Galaxy framework49 that enables sharing 

of users’ analysis histories, including the data and parameters, so that they can be 

independently reproduced. If working outside Galaxy, reproducibility is ensured by 

shareable analysis specification (YAML) files. YAML specification files produced in the 

Galaxy web interface can also be downloaded to seamlessly switch between Galaxy and 

command-line operation. Note that we are here referring to reproducibility mainly in the 

sense of repeating a computational analysis in its exact form, also referred to as methods 

reproducibility69, although the YAML files are also well suited to explore the extent to 

which results are affected by modifications of analysis parameters.

Interoperability is ensured by supporting the import from multiple data sources and export 

into AIRR-C format (MiAIRR standard) for post-analysis by third-party tools that are 

AIRR-compliant50.

Extensibility of immuneML, signifying straightforward inclusion of new ML methods, 

encodings, reports, and preprocessing, is ensured by its modular design (Supplementary 

Figure 2). The code is open-source and available on GitHub (Focus Box 2). 

The documentation details step-by-step developer tutorials for immuneML extension 

(docs.immuneml.uio.no/latest/developer_docs.html).

Transparency is established by (i) a YAML analysis specification in which the assumptions 

of the AIRR ML analysis are explicitly defined, and default parameter settings are exported, 

(ii) separate immunologist-centric Galaxy user interfaces that translate parameters and 
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assumptions of the ML process to aspects of immune receptors that immunologists may 

better relate to (Supplementary Figure 3) and (iii) for each analysis report, the availability of 

underlying data for further user inspection.

Use case 1: Reproduction of a published study inside immuneML

To show how a typical AIRR ML analysis may be performed within immuneML, we 

reproduced a previously published study by Emerson et al. on the TCRβ-repertoire-based 

classification of individuals into CMV seropositive and seronegative6 (Figure 2A). Using 

the standard interface of immuneML, we set up a repertoire classification analysis using 

10-fold cross-validation on cohort 1 of 563 patients to choose optimal hyperparameters 

for immuneML’s native implementation of the statistical classifier introduced by Emerson 

and colleagues. We then retrained the classifier on the complete cohort 1 and tested it on 

a second cohort (cohort 2) of 120 patients, as described in the original publication (see 

Methods).

immuneML exports classifier details, such as a list of immune-status-associated sequences 

for each classifier created during cross-validation, as well as a performance overview using 

the metrics of choice. We replicated the predictive performance achieved by Emerson et al.6, 

finding 143 of the same CMV-associated TCRs (out of 164) reported in the original study.

We further used built-in robustness analysis of immuneML to explore how classification 

accuracy and the set of immune-status-associated sequences varied when learning classifiers 

based on smaller subsets of repertoires (Figure 2 A and B). While the exact set of learned 

immune-status-associated sequences varied across subsampled data of sizes close to the full 

dataset, the classification accuracy was nonetheless consistently high (>0.85) as long as the 

number of training repertoires was 400 or higher (below this, classification accuracy on the 

separate test sets deteriorated sharply) (Figure 2 B and C).

Use case 2: Extending immuneML with a deep learning component for antigen specificity 
prediction based on paired-chain (single immune cell) data

To illustrate the extensibility of the immuneML platform, we added a new CNN component 

for predicting antigen specificity based on paired-chain AIR data. The ML task is to discover 

motifs in the two receptor chains (sequences) and to exploit the presence of these motifs 

to predict if the receptor will bind the antigen. As the immuneML platform provides 

comprehensive functionality for parsing and encoding paired-chain data, for hyperparameter 

optimization, and for presenting results, the only development step needed was to add the 

code for the CNN-based method itself (Supplementary Figure 5). Briefly, the added CNN 

consists of a set of kernels for each chain that act as motif detectors, a vector representation 

of the receptor obtained by combining all kernel activations, and a fully-connected layer 

that predicts if the receptor will bind the antigen or not. Furthermore, we show how to run 

analyses with the added component and compare its results with those of alternative models, 

such as a logistic regression model based on 3-mer frequencies and a k-nearest neighbor 

classifier relying on TCRdist17 as the distance metric (available directly from immuneML 

through the tcrdist3 package70). We also show that the motifs can be recovered from the 

CNN model, the logistic regression, TCRdist, and GLIPH259 (Figure 2 D).
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Use case 3: ML methods benchmarking on ground-truth synthetic data

Given the current rise in AIRR ML applications, the ability for method developers and 

practitioners to efficiently benchmark the variety of available approaches is becoming 

crucial1,15,62. Due to the limited current availability of high-resolution, labeled experimental 

data, rigorous benchmarking relies on a combination of experimental and simulated ground-

truth data. The immuneML platform natively supports both the generation of synthetic 

data for benchmarking purposes and the efficient comparative benchmarking of multiple 

methodologies based on synthetic as well as experimental data. To exhibit the efficiency 

with which such benchmarking can be performed within the immuneML framework, we 

simulated, using the OLGA framework64, 2000 human IgH repertoires consisting of 105 

CDR3 amino acid sequences each, and implanted sequence motifs reflecting five different 

immune events of varying complexity (Figure 2 G, Supplementary Table 2). We examined 

the classification accuracy of three assessed ML methods (Figure 2 H) and used a native 

immuneML report to examine the overlap between ground truth implanted motifs and 

learned model features (Figure 2 I, Supplementary Figure 6).

Discussion

We have presented immuneML, a collaborative and open-source platform for transparent 

AIRR ML, accessible both via the command line and via an intuitive Galaxy web 

interface49. immuneML supports the analysis of both BCR and TCR repertoires, with single 

or paired chains, at the sequence (receptor) and repertoire level. It accepts experimental data 

in a variety of formats and includes native support for generating synthetic AIRR data to 

benchmark the performance of AIRR ML approaches. As a flexible platform for tailoring 

AIRR ML analyses, immuneML features a broad selection of modular software components 

for data import, feature encoding, ML, and performance assessment (Supplementary Table 

1). The platform can be easily extended with new encodings, ML methods, and analytical 

reports by the research community. immuneML supports all major standards in the AIRR 

field, uses YAML analysis specification files for transparency, and scales from local 

machines to the cloud. Throughout the platform development phase, we have tried to 

adhere to best practices of software engineering, so as to improve software extensibility and 

maintainability. With the field of ML maturing, we see such aspects connected to longevity 

and interoperability of ML functionality as increasingly deserving of attention. Extensive 

documentation for both users and contributors is available (docs.immuneml.uio.no).

immuneML caters to a variety of user groups and usage contexts. The Galaxy web tools 

make sophisticated ML-based receptor specificity and repertoire immune state prediction 

accessible to immunologists and clinicians through intuitive, graphical interfaces. The 

diversity of custom preprocessing and encoding used in published AIRR ML studies hinders 

their comparison and reproducibility. In contrast, the YAML-based specification of analyses 

on the command line or through Galaxy improves the collaboration, transparency, and 

reproducibility of AIRR ML for experienced bioinformaticians and data scientists. The 

integrated support for AIRR data simulation and systematic ML method benchmarking helps 

method users to select those approaches most appropriate to their analytical setting, and to 

assists method developers to effectively evaluate ML-related methodological ideas.
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From a developer perspective, the impressive sophistication of generic ML frameworks 

such as TensorFlow71 and PyTorch48 may suggest that these frameworks would suffice 

as a starting point for AIRR ML method development. These frameworks are, however, 

limited to the specification of ML methods on generic data representations, meaning that 

it is up to every AIRR ML developer to implement (reinvent) all remaining parts of a 

full AIRR workflow, including data read-in, pre-processing, hyperparameter optimization 

strategies, interpretability, results presentation. The fact that the immuneML architecture 

builds strictly on top of frameworks such as PyTorch underlines the breadth of additional 

functionality needed for robust ML development and execution in the AIRR domain. For 

ML researchers, the rich support for integrating novel ML components within existing code 

for data processing, hyper-parameter optimization, and performance assessment can greatly 

accelerate method development.

The current version of immuneML includes a set of components mainly focused on 

supervised ML, but the platform is also suitable for the community to extend it 

with components for settings such as unsupervised learning72 or generative receptor 

modeling15,20,73. We also aim to improve the general support for model introspection, in 

particular in the direction of supporting causal interpretations for discovering and alleviating 

technical biases or challenges related to the study design74.

In conclusion, immuneML enables the transition of AIRR ML method setup representing 

a bona fide research project to being at the fingertips of immunologists and clinicians. 

Complementally, AIRR ML method developers can focus on the implementation of 

components reflecting their unique research contribution, relying on existing immuneML 

functionality for the entire remaining computational process. immuneML facilitates the 

increased adoption of AIRR-based diagnostics and therapeutics discovery by supporting the 

accelerated development of AIRR ML methods.

Methods

immuneML availability: immuneML can be used (i) as a web tool through the Galaxy 

web interface (galaxy.immuneml.uio.no), (ii) from a command-line interface (CLI), (iii) 

through Docker (hub.docker.com/repository/docker/milenapavlovic/immuneml), (iv) via 

cloud services such as Google Cloud (cloud.google.com) through Docker integration, or 

(v) as a Python library (pypi.org/project/immuneML). It is also deposited on Zenodo with 

DOI: doi.org/10.5281/zenodo.511874175.

immuneML analysis specification: immuneML analyses are specified using a YAML 

specification file (Supplementary Figure 1), which allows streamlined specification of full 

analyses based on an external domain-specific language for AIRR ML76. When using 

Galaxy, the user may choose to provide a specification file directly or use a graphical 

interface that compiles the specification for the user. When used as a CLI tool, locally or in 

the cloud, with or without Docker, the specification file is provided by the user. Examples 

of specification files and detailed documentation on how to create them are available at 

docs.immuneml.uio.no/latest/tutorials/how_to_specify_an_analysis_with_yaml.html.
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immuneML supports different types of instructions: (i) training and assessment of ML 

models, (ii) applications of trained ML models, (iii) exploratory data analysis, and (iv) 

generation of synthetic AIRR datasets. Tutorials detailing these instructions are available at 

docs.immuneml.uio.no/latest/tutorials.html.

immuneML public instance: the immuneML Galaxy web interface is available at 

galaxy.immuneml.uio.no. In addition to core immuneML components, the Galaxy instance 

includes interfaces towards the VDJdb58 database and the iReceptor Gateway57. The 

documentation for the Galaxy immuneML tools is available at docs.immuneml.uio.no/latest/

galaxy.html.

immuneML architecture: immuneML has a modular architecture that can easily be 

extended (Supplementary Figure 2). In particular, we have implemented glass-box 

extensibility mechanisms77, which enable the creation of customized code to implement 

new functionalities (encodings, ML methods, reports) that might be needed by the users. 

Such extensibility mechanisms allow the users to adapt immuneML to their specific cases 

without the need to understand the complexity of the immuneML code. As an example, 

immuneML orchestrates the exploration (grid search) of alternative components for data 

processing, encodings and ML method hyperparameters on data subsets for the inner splits 

of a nested cross-validation (CV), allowing newly developed components for either of these 

parts (data processing, encoding, ML method) to be selected in competition against existing 

components as part of an unbiased hyperparameter selection and prediction performance 

estimation. For tutorials on how to add a new ML method, encoding, or an analysis report, 

see the developer documentation: docs.immuneml.uio.no/latest/developer_docs.html.

Use cases:

Use case 1: Reproduction of a published study inside immuneML—We 

reproduced the study by Emerson and colleagues using a custom implementation of the 

encoding and classifier described in the original publication6. Out of the 786 subjects listed 

in the original study, we removed 103 subjects (1 with missing repertoire data, 25 with 

unknown CMV status, 3 with negative template counts for some of the sequences, and the 

rest with no template count information, all of which occurred in cohort 1), and performed 

the analysis on the remaining 683 subjects. We achieved comparable results to the original 

publication, as shown in Supplementary Figure 4. Supplementary Table 3 shows TCRβ 
receptor sequences inferred to be CMV-associated, comparing them to those published by 

Emerson et al.

In addition to reproducing the Emerson et al. study, we retrained the classifier on datasets 

consisting of 400, 200, 100, and 50 TCRβ repertoires randomly subsampled from cohort 1 

and cohort 2. We show how the performance and the overlap of CMV-associated sequences 

changes with such reductions of dataset size (Figure 2 B and C). While most of the 

results are consistent within the subsampled dataset size, in Figure 2 B, a less stringent 

p-value threshold was selected during the hyperparameter optimization for one of the 

cross-validation splits for the dataset of 400 subjects, resulting in a higher number of 

CMV-associated sequences.
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The YAML specification files for this use case are available in the 

immuneML documentation under use case examples: docs.immuneml.uio.no/latest/usecases/

emerson_reproduction.html. The complete collection of results produced by immuneML, as 

well as the subsampled datasets, can be found in the NIRD research data archive78.

Use case 2: Extending immuneML with a deep learning component for 
antigen specificity prediction based on paired-chain (single immune cell) 
data—To demonstrate the ease of extensibility for the platform, we added a CNN-

based receptor specificity prediction ML method to the platform (Supplementary 

Figure 5). Detailed instructions for adding such a new component to immuneML can 

be found in the developer documentation: docs.immuneml.uio.no/latest/developer_docs/

how_to_add_new_ML_method.html. Subsequently, we ran the added component through 

the standard immuneML model training interface, comparing its predictive performance 

with TCRdist17,70 and logistic regression across three datasets. Additionally, we recovered 

motifs from the kernels of the neural network by limiting the values of the kernels 

similar to Ploenzke and Irizarry79, and from the hierarchical clustering based on 

TCRdist distance, and compare these recovered motifs with the motifs extracted by 

GLIPH259 on the same datasets. Each dataset includes a set of epitope-specific TCR-β 
receptors downloaded from VDJdb and a set of naive, randomly paired TCR-β receptors 

from the peripheral blood samples of 4 healthy donors80. Epitope-specific datasets are 

specific to cytomegalovirus (KLGGALQAK epitope, with 13000 paired TCR-β receptors), 

Influenza A (GILGFVFTL epitope, with 2000 paired TCR-β receptors), and Epstein-Barr 

virus (AVFDRKSDAK epitope, with 1700 paired TCR-β receptors). Dataset details are 

summarized in Supplementary Table 4. The code for creating the datasets and YAML 

specifications describing the analysis can be found in the immuneML documentation: 

docs.immuneml.uio.no/latest/usecases/extendability_use_case.html. The three datasets of 

epitope-specific receptors, the complete collection of kernel visualizations produced by 

immuneML, as well as the results produced by GLIPH2, have been stored in the NIRD 

research data archive81.

Use case 3: ML methods benchmarking on ground-truth synthetic data—To 

show immuneML’s utility for benchmarking AIRR ML methods, we constructed a synthetic 

AIR dataset with known implanted ground-truth signals and performed a benchmarking of 

ML methods and encodings inside immuneML. To create the dataset for this use case, 2000 

human IgH repertoires of 105 CDR3 amino acid sequences were generated using OLGA64. 

Subsequently, immuneML was used to simulate five different immune events of varying 

complexity by implanting signals containing probabilistic 3-mer motifs (Supplementary 

Table 2). The signals of each immune event were implanted in 50% of the repertoires, 

without correlating the occurrence of different immune events. Signals were implanted in 

0.1% of the CDRH3 sequences of the repertoires selected for immune event simulation. 

While signal rates down to one antigen-binding AIR per million lymphocytes have been 

reported for certain disease states38, we here chose a signal rate substantially higher than 

these most challenging cases, so as to allow for a demonstration of how benchmarking may 

be performed using basic ML approaches.
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Using immuneML, three different ML methods (logistic regression, random forest, support 

vector machine) combined with two encodings (3-mer and 4-mer frequency encoding) were 

benchmarked. Hyperparameter optimization was done through nested cross-validation. For 

the model assessment (outer) cross-validation loop, the 2000 repertoires were randomly 

split into 70% training and 30% testing data, and this was repeated three times. In the 

model selection (inner) cross-validation loop, 3-fold cross-validation was used. The test set 

classification performances of the trained classifiers for each immune event are shown in 

Figure 2 H.

The immune signals implanted in this dataset can be used to examine the ability of the 

ML methods to recover ground-truth motifs by comparing the coefficient value (logistic 

regression, support vector machine) or feature importance (random forest) of a given feature 

with the overlap between that feature and an implanted signal (Figure 2 I, Supplementary 

Figure 6).

The bash script for generating the OLGA sequences, as well as the YAML specification files 

describing the simulation of immune events and benchmarking of ML methods are available 

in the immuneML documentation under use case examples: docs.immuneml.uio.no/latest/

usecases/benchmarking_use_case.html. The benchmarking dataset with simulated immune 

events as well as the complete collection of figures (for all cross-validation splits, immune 

events, ML methods, and encodings) can be downloaded from the NIRD research data 

archive82.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Focus Box 1:

Getting started with immuneML

• Visit the project website at immuneml.uio.no. immuneML may be used 

(i) online via the Galaxy web interface (galaxy.immuneml.uio.no), (ii) 

through a Docker container, or (iii) from the command line by installing 

and running immuneML as a Python package. Detailed instructions for 

each of these options are available in the immuneML documentation: 

docs.immuneml.uio.no/latest/installation.html.

Getting started: web interface

• For immunologists, we recommend the Quickstart guide based on simplified 

interfaces for training ML models: docs.immuneml.uio.no/latest/quickstart/

galaxy_simple.html. Explanations of the relevant ML concepts can be 

found in the documentation (sequence classification docs.immuneml.uio.no/

latest/galaxy/galaxy_simple_receptors.html and repertoire classification 

docs.immuneml.uio.no/latest/galaxy/galaxy_simple_repertoires.html)

• Alternatively, to have full control over all details of the analysis, see 

the YAML-based Galaxy Quickstart guide: docs.immuneml.uio.no/latest/

quickstart/galaxy_yaml.html.

• For guidance on how to use each immuneML Galaxy tool, see 

the immuneML & Galaxy documentation (docs.immuneml.uio.no/latest/

galaxy.html) and the list of published example Galaxy histories 

(galaxy.immuneml.uio.no/histories/list_published).

Getting started: command-line interface

• For the command-line Quickstart guide, see docs.immuneml.uio.no/latest/

quickstart/cli_yaml.html

• For detailed examples of analyses that can be performed with immuneML, see 

the tutorials (docs.immuneml.uio.no/latest/tutorials.html), use case examples 

(docs.immuneml.uio.no/latest/usecases.html), and see all supported analysis 

options in the YAML specification documentation (docs.immuneml.uio.no/

latest/specification.html).

For any questions, contact us at contact@immuneml.uio.no, visit the troubleshooting 

page in the documentation (docs.immuneml.uio.no/latest/troubleshooting.html), or open 

an issue on our GitHub repository (github.com/uio-bmi/immuneML/issues).
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Focus Box 2:

How to contribute to immuneML

There exist multiple avenues for contributing and extending immuneML:

• ML workflows for specific research questions can be shared on 

galaxy.immuneml.uio.no, which allows other researchers to use them directly 

in their own data analysis.

• Questions, enhancements, or encountered bugs may be reported on the 

immuneML GitHub under “Issues” (github.com/uio-bmi/immuneML/issues).

• To improve or extend the immuneML platform, obtain the source 

code from GitHub at github.com/uio-bmi/immuneML. The immuneML 

codebase is described in the immuneML developer documentation 

docs.immuneml.uio.no/latest/developer_docs.html, along with tutorials on 

how to add new ML methods, encodings, and report components to the 

platform. A new ML method may initially be developed as a separate 

component and subsequently integrated into immuneML to benefit from 

available immuneML functionalities related to importing datasets from 

different formats, using various data representations, benchmarking against 

existing methods and robustly assessing the performance, all through a 

convenient user interface.

• We encourage developers to contribute their improvements and extensions 

back to the community, either by making their own versions public or 

by submitting their contributions as GitHub “pull requests” to the main 

immuneML codebase.
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Figure 1 |. Overview of immuneML.
The main immuneML application areas are sequence- and repertoire-based prediction 

of AIRR with application to (a) immunodiagnostics and therapeutics research, as well 

as to (b) develop AIRR-based methods. We show three use cases belonging to these 

application areas. Use case 1: reproduction of the study by Emerson et al.6 on repertoire 

classification, use case 2: extending the platform with a novel convolutional neural network 

(CNN) classifier for prediction of TCR-pMHC binding that allows paired-chain input, 

use case 3: benchmarking ML methods with respect to their ability to recover a sequence-

implanted signal corresponding to the simulated immune event. The immuneML core is 

composed of three pillars, which are (c) AIRR-seq data input and filtering, (d) ML, 

and (e) Interpretability analysis. Each of these pillars has different modules that may 

be interconnected to build an immuneML workflow. (f) immuneML uses a specification 

file (YAML), which is customizable and allows full reproducibility and shareability with 

collaborators or the broader research community. An overview of how immuneML analyses 

can be specified is given in Supplementary Figure 1. (g) immuneML may be operated via 

the Galaxy web interface or the command line. (h) All immuneML modules are extendable. 

Documentation for developers is available online. (i) immuneML is available as a Python 
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package, a Docker image, and may be deployed to cloud frameworks (e.g., AWS, Google 

Cloud). Abbreviations: CMV (cytomegalovirus).
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Figure 2 |. Use cases demonstrating ML model training, benchmarking, and platform extension.
We showcase three use cases to exemplify immuneML usage. (a-c) Use case 1: 

Reproduction of a published study6 where the task consisted in distinguishing between 

TCRβ repertoires from CMV (cytomegalovirus) positive and negative individuals, as well as 

the identification of TCRβ sequences that are associated with CMV status. In addition, we 

assessed the robustness of the respective statistical approach, measured by the predictive 

performance, as a function of decreasing dataset size. We show how a lower number 

of repertoires (400, 200, 100, and 50) leads to decreased prediction accuracy (AUROC: 

0.86–0.46) and a lower number of CMV-associated TCRβ sequences (with almost none 

found in datasets of 100 and 50 subjects). (d-f) Use case 2: We developed a new ML 

method for antigen-specificity prediction on paired-chain T-cell receptor data using a 

convolutional neural network (CNN) architecture. The method separately detects motifs in 

paired chains and combines the motif scores corresponding to kernel activations to obtain 
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the receptor representation which is then used as input to a classifier. We compared the 

CNN method with the TCRdist-based k-nearest neighbor classifier and logistic regression 

on a dataset consisting of epitope-specific and naive TCRαβ sequences (assumed to be 

non-epitope-specific). For epitope-specific sequences, we used Epstein-Barr-virus-specific 

TCRαβ sequences binding to the GILGFVFTL epitope. We also show the motifs recovered 

by CNN, TCRdist, and GLIPH2 among the epitope-specific sequences. (g-i) Use case 3: 

We show how ground-truth synthetic data may be used to benchmark AIRR ML methods. 

The dataset consists of 2000 immune repertoires generated by OLGA64. Using immuneML, 

five immune events of increasing complexity are simulated by implanting synthetic signals 

into the OLGA-generated repertoires. This dataset is subsequently used to benchmark 

three different ML methods (logistic regression (LR), support vector machine (SVM), and 

random forest (RF)) in combination with two encodings (3-mer and 4-mer encoding) inside 

immuneML, showing the classification performance with standard deviation that drops as 

the immune event complexity increases. The quality of the ML models was further assessed 

by comparing the feature coefficient sizes with how well these features represent the ground-

truth signals. This revealed that models with a good classification performance were indeed 

able to recover the ground-truth signals. Error bars in (h) represent standard deviation.
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