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Abstract

Convolutional neural networks (CNNs) have been extremely successful in various medical 

imaging tasks. However, because the size of the convolutional kernel used in a CNN is much 

smaller than the image size, CNN has a strong spatial inductive bias and lacks a global 

understanding of the input images. Vision Transformer, a recently emerged network structure 

in computer vision, can potentially overcome the limitations of CNNs for image-reconstruction 

tasks. In this work, we proposed a slice-by-slice Transformer network (SSTrans-3D) to reconstruct 

cardiac SPECT images from 3D few-angle data. To be specific, the network reconstructs the 
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whole 3D volume using a slice-by-slice scheme. By doing so, SSTrans-3D alleviates the memory 

burden required by 3D reconstructions using Transformer. The network can still obtain a global 

understanding of the image volume with the Transformer attention blocks. Lastly, already 

reconstructed slices are used as the input to the network so that SSTrans-3D can potentially 

obtain more informative features from these slices. Validated on porcine, phantom, and human 

studies acquired using a GE dedicated cardiac SPECT scanner, the proposed method produced 

images with clearer heart cavity, higher cardiac defect contrast, and more accurate quantitative 

measurements on the testing data as compared with a deep U-net.

Index Terms—

Deep Learning; Dedicated Cardiac SPECT; Few-angle Imaging; GE Discovery NM 530/570c; 
Transformer

I. Introduction

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) 

are major causes of death globally. Around 17.9 million people died from CVDs in 

2019, accounting for 32% of all global deaths [1]. Single-photon emission computed 

tomography (SPECT) is a major tool used to detect and manage CVDs. For cardiac imaging, 

conventional dual-head SPECT scanners subject to various limitations and drawbacks such 

as long acquisition time, high radiation dose, low photon sensitivity, etc. The introduction 

of dedicated cardiac SPECT systems addressed the disadvantages of conventional SPECT 

systems and substantially advanced the field [2].

The GE Discovery NM 530/570c (DNM) dedicated cardiac SPECT scanner is one of the 

available SPECT scanners in the field [3]. It consists of 19 cadmium zinc telluride (CZT) 

detector modules, each with a pinhole collimator. The detector array is designed to acquire 

19 projections simultaneously over a 180-degree arch for stationary imaging. We previously 

developed an approach to acquire multiple projection angle sets by rotating and translating 

the detector and reconstructing the images with 76 projection views (19 projections × 4 

angles) [4]. However, because rotating and translating the detector array are not practical in 

reality, a deep convolutional neural network (CNN) was also proposed to learn the mapping 

between one-angle images (19 projections) and four-angle images (76 projections) [4]. In 

this way, the image quality could be improved for data with stationary acquisition of 19 

projections. Previous results showed that the proposed multi-angle reconstruction protocol 

and deep CNN improved the image quality with potentially better defect measurements. 

Sample reconstructed slices from a porcine study using one-angle data (19 projections) and 

four-angle data (76 projections) are presented in Fig. 1.

In the past years, CNNs have been applied to different medical imaging tasks [5]–[7]. 

However, because the dimension of the convolutional kernel used in a CNN is much smaller 

compared to the image size, CNN has a strong spatial inductive bias and lacks a global 

understanding of the input images [8]. Therefore, designing a network that can capture 

global information of the images could potentially improve the image reconstruction results. 
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Transformer [9] is a possible network architecture to overcome the limitations of CNNs for 

image-reconstruction tasks.

Transformer, originally designed for natural language processing (NLP) [9], takes the 

whole language sentence as input to the network. By doing this, Transformer addresses the 

long-range dependencies problem in recurrent neural network (RNN) [10] and its variants 

[11]. Recently, Transformer has been adapted for image-related tasks. For example, vision 

Transformer (ViT) [12] was proposed for image recognition task. ViT crops the input images 

to fixed-size patches as input to the network, and the attention layers in ViT allow it to 

integrate global information across all the patches.

Inspired by the original Transformer network [9] and the ViT [12], we proposed a 

slice-by-slice 3D Transformer (SSTrans-3D) for 3D cardiac SPECT image reconstruction. 

Because it is computationally challenging to reconstruct the entire 3D volume directly 

using Transformer, images are reconstructed in a slice-by-slice manner in SSTrans-3D. 

Both input and output to the SSTrans-3D are 3D image volumes, and the network can still 

obtain a global understanding of the input image volume due to the attention mechanism 

in Transformer. We also took advantage of the slice-by-slice reconstruction scheme by 

utilizing the already-reconstructed slices as additional inputs to the network. Because 

already-reconstructed slices are expected to have higher quality than original input (one-

angle images), SSTrans-3D can potentially obtain more informative image features from 

these slices.

II. Materials and Methods

A. Datasets and Acquisition

A total of eight porcine 99mTc-tetrosfomin SPECT/CT studies were acquired prospectively. 

Five of the SPECT/CT image sets were acquired in normal control animals without cardiac 

defects. The remaining three pigs were injected with 99mTc-tetrosfomin during angioplasty 

balloon occlusion of the left anterior descending coronary artery for 90 minutes, creating 

an anteroseptal myocardial infarct and regional myocardial perfusion defect. The SPECT 

detector array was rotated to four different angles for data acquisition. Four projection-sets 

were acquired at 300°, 305°, 310°, and 315° respectively. Detector angle at 315° is the 

default acquisition angle for routine clinical use. The detector array was also translated along 

the diagonal direction to ensure the heart is inside the fully reconstructable field-of-view 

(FOV), which is about 19 cm in diameter. Similar to the porcine studies, two physical 

phantom scans were acquired using the Data Spectrum cardiac torso phantom. One of 

the physical phantom scans is completely normal and has no perfusion defect. The other 

physical phantom scan has two defects that were inserted in the mid-ventricle and the 

basal regions, respectively. The defect placed in the basal region is exactly two times larger 

than that in the mid-ventricle region. Twenty clinical anonymized 99mTc-tetrofosmin human 

studies were also included for evaluation. Note that we have not acquired multi-angle data 

for human studies yet. The use of animal and human data in this study was approved by the 

Institutional Animal Care & Use Committee (IACUC) and Institutional Review Board (IRB) 

of Yale University, respectively.

Xie et al. Page 3

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. Multi-angle Reconstruction with DNM

Because of the special geometry of the scanner, when the detector array is rotated/translated 

to different positions, the center of the FOV is also altered, and system matrix for multi-

angle reconstructions was not available. Hence, we were unable to combine projections 

acquired at different angles directly. During the multi-angle reconstruction process, the 

amount of rotation (5 degrees in this work) and the distance between the centers of 

FOVs were incorporated into the maximum likelihood expectation maximization (MLEM) 

algorithm [13]. Computed tomography (CT) attenuation maps acquired at 315° were used 

for attenuation corrections (AC).

C. U-net Structure

The proposed Transformer network was compared with the 3D CNN network we proposed 

previously [4]. The 3D CNN adapted a U-net-like [14] structure with four down-sampling 

and four up-sampling layers. 3D convolutional layers with 32 filters and 1 × 3 × 3 kernel 

were used for down-sampling and up-sampling, so that the number of slices did not change 

throughout the network. A four-layer dense-net [15] was added after each down-sampling 

and up-sampling layer. Each 3D convolutional layer in dense-net block had 32 kernels with 

dimension 3 × 3 × 3. Conveying paths were used to connect earlier layers to later layers. 

Both input and output to the network are a batch of 3D image volumes with dimension Nb × 

50 × 70 × 70, where Nb denotes the number of input batches. Rectified Linear Unit (ReLU) 

was used as the activation function after each convolutional layer. Stride equaled 1 in all 

convolutional layers. Zero-padding was not implemented. The overall network structure of 

the U-net is presented in Fig. 2.

D. Transformer Network Structure

Here, we proposed a slice-by-slice Transformer network (SSTrans-3D) for 3D SPECT 

cardiac image reconstructions. The overall structure of SSTrans-3D is presented in Fig. 

3. The input to the Transformer is a batch of 3D image volumes with dimension Nb × 

50 × 70 × 70. In ViT, input images are divided into small patches and then fed into 

the Transformer blocks. These divided patches can be understood as individual words in 

the case of NLP. Similarly, in SSTrans-3D, the input image volumes are divided into 50 

patches/slices as the input to the Transformer blocks (i.e., each slice is treated as a patch in 

SSTrans-3D). Each patch/slice P ∈ ℝ70 × 70 is projected to a vector with dimension 1 × 500. 

Trainable position encoding was also implemented in SSTrans-3D. The structures of the 

Transformer encoder and Transformer decoder are similar to that proposed in the original 

Transformer [9]. No normalization layer was implemented in SSTrans-3D. The outputs 

from both Transformer encoder and decoder are projected to a vector with dimension 70 

× 70, and then added together to generate one reconstructed slice. This whole process 

is repeated 50 times to generate the entire volume with dimension 70×70×50, with a 

voxel size of 43mm3. An eight-layer CNN is added afterward to further remove artifacts 

and noise. These eight convolutional layers have 32 kernels with dimension 3 × 3 × 3, 

followed by ReLU as the activation function. The one-angle image volumes are added to 

the output from CNN for final reconstructions. Note that the red patches/slices in Fig. 3 

represent the slices reconstructed by the network during the repeating process. Because these 
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reconstructed slices are expected to have better quality than the original input slices, using 

these reconstructed slices as the input could help the network to gather more informative 

features and potentially improve the final results. To be specific, the network loops 50 

times to generate the whole reconstructed volume. In the ith loop, the patches/slices before 

ith patch/slice are replaced by the reconstructed slices. Each loop has different trainable 

parameters.

E. Optimization and Training

The objective function used to optimize both U-net and SSTrans-3D includes mean-

absolute-error (MAE), and structural similarity index measurement (SSIM) [16]. The 

composite loss function for both networks can be formulated as:

min 
θG

L = ℓMAE G Ione , Ifour + λa ℓSSIM G Ione , Ifour (1)

where G denotes either the U-net or SSTrans-3D, and θG represents the trainable parameters 

of G. λa denotes a hyper-parameter used to balance the MAE loss ℓMAE and SSIM loss 

ℓSSIM. Ione and Ifour represent image volumes reconstructed using one-angle data and four-

angle data respectively. λa = 0.8 was fine-tuned experimentally.

SSIM measures structural similarity between two images. The Gaussian filter size used to 

measure SSIM is set as 11×11. The maximum possible value for SSIM is 1 when two 

images are identical. Hence, ℓSSIM is defined as:

ℓSSIM = 1 − 1
NbD ∑

i = 1

Nb

∑
j = 1

D
SSIM Xij, Y ij (2)

where Xij and Yij represent 2D image slices in a batch of 3D image volumes.

The Adam method [17] was used to optimize both U-net and SSTrans-3D with two 

exponential decay rates β1 = 0.9 and β2 = 0.999. The Xavier method [18] was used for 

parameter initialization. Due to the limited amount of multi-angle data, both networks 

were first pre-trained with 250 volumes of simulated 4D extended cardiac-torso (XCAT) 

phantoms [19] and then fine-tuned using multi-angle porcine and physical phantom data. 

The 250 volumes of XCAT phantom were simulated with varying heart sizes, genders, heart 

orientations, body anatomy, etc.

For XCAT phantom simulations, projection data were simulated by multiplying the system 

matrix and the simulated XCAT volumes. Projection data at different angles were acquired 

by rotating the simulated phantom volumes along the center axis, so that the centers of FOV 

are consistent and the problem mentioned above can be avoided. Also, because there was 

no attenuation effect during the simulations, AC was not considered for XCAT phantoms. 

Lastly, because the DNM scanner has a small FOV, 50 × 70 × 70 is not sufficiently larger 

to cover all the tissues in the simulated phantoms. For a more realistic simulation, a larger 

system matrix covering 150 × 150 × 150 was used to generate projection data and then 

reconstructed into the 50×70×70 matrix size. Calculated based on NVIDIA Quadro RTX 

8000 GPUs, training time of U-net and SSTrans-3D for one update with one image volume 
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were 0.3 and 6.2 seconds, respectively. The corresponding testing time for one image 

volume were 0.2 and 2.6 seconds respectively.

F. Statistical and Clinical Evaluations

In this work, network performance was evaluated using root-mean-square error (RMSE), 

peak signal-to-noise ratio (PSNR), and SSIM [16]. Paired t-test was used to test the 

statistical significance in this study (p-value p < 0.05 indicates statistical significance)

The FDA 510(k)-cleared Wackers-Liu Circumferential Quantification (WLCQ™, VoxelOn 

Inc., Watertown, CT) software [20] was used to calculate the myocardial perfusion defect 

size. Defect size was calculated based on the circumferential count profiles of the short 

axis (SA) and horizontal long axis (HLA). Specifically, the circumferential count profiles 

were compared with a normal database precalculated from a population of normal subjects. 

WLCQ quantified the defect size into four anatomical regions, including apical, mid-

ventricle, basal, and apex. The calculated defect size is expressed as a percentage of left 

ventricular myocardium (%LV) that has lower tracer uptake than normal subjects. Note that 

because a normal database was not available for porcine and physical phantom studies, a 

80% threshold of the circumferential count profiles was used to calculate defect size. We 

expect that the network results and multi-angle reconstructions should have improved image 

resolution, higher measured defect size for abnormal subjects, and lower measured defect 

size for normal subjects. Myocardium to blood-pool ratio was also included as a metric for 

human, porcine, and physical phantom studies. It is defined as the ratio between the mean 

activities of the myocardium and the mean activities of the blood pool. We expect the image 

resolution to be improved after applying the neural networks, leading to higher myocardium 

to blood-pool ratios. For 99mTc-tetrosfomin imaging, higher ratio is favorable and typically 

represents higher image resolution.

III. Results

A. Physical Phantom Results

Fig. 4 presents the physical phantom scan with perfusion defects. All the cardiac images 

were re-sliced to SA, HLA, and vertical long axis (VLA) slices and presented in this work. 

Two defects in this scan were added in the mid-ventricle and basal regions, respectively. As 

presented in Fig. 4, the measured defect size is larger in neural networks and multi-angle 

reconstructions, which is consistent with our expectations and the presented polar maps. 

Compared with U-net, SSTrans-3D produced images with better defect contrast in the 

mid-ventricle regions (blue arrows in Fig. 4). Also, as shown in the SA slice, pointed by 

the green arrows, there are some undesired artifacts in the one-angle image, which may be 

noise. But U-net enhanced these undesired artifacts. SSTrans-3D, however, suppressed these 

undesired artifacts, producing a better reconstruction in this scan. Lastly, because the defect 

added in the basal region is exactly two times larger than that in the mid-ventricle region, the 

ratio between the defect sizes in basal and mid-ventricle regions can be computed. This ratio 

should be exactly 2. The calculated ratios for one-angle, U-net, SSTrans-3D, and four-angle 

image volumes are 1.72, 1.75, 1.86, and 2.14 respectively. Compared with the U-net results, 

SSTrans-3D demonstrates better defect quantification in this scan as the ratio is closer to 2.
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B. porcine Results

A representative porcine study was selected and presented in Fig. 5. This pig had a large 

perfusion defect identified by the green arrows in the anterior septal wall corresponding 

to the perfusion territory of the left anterior descending artery that was injected with 99mTc-

tetrofosmin during a 90 minutes coronary occlusion. U-net, SSTrans-3D, and four-angle 

results had improved image quality and better defect contrast. Also, as identified in the polar 

maps, the defect is deeper in SSTrans-3D than the U-net result.

C. Human Results

Three representative human studies were selected and presented in Fig. 6 – 8. Cardiac 

defect information and diagnostic results were provided by professional radiologists at the 

Yale New Haven Hospital. As shown in Fig. 6, clinical diagnostic results showed that 

this patient had a small-size defect in the apical region, which can be clearly seen in the 

polar maps. Compared with U-net, SSTrans-3D produced images with a denser defect in 

the apical region. As identified by the green arrows in the HLA slice, the apical defect is 

clearly presented in images reconstructed by SSTrans-3D, but not in images reconstructed 

by one-angle data and U-net. SSTrans-3D also produced images with clearer contours of the 

right ventricle for this patient (blue arrows in Fig. 6).

For the patient presented in Fig. 7, clinical diagnostic results showed that this patient had a 

medium-size defect in the apical region. In this scan, both U-net and SSTrans-3D produced 

images with a denser defect (green arrows in Fig. 7). Also, SSTrans-3D produced images 

with a clearer blood pool region, especially in the second VLA slice.

The patient study presented in Fig. 8 had multiple perfusion defects in the basal (red 

and blue arrows) and apical to mid-left ventricular (green arrows) regions. Both U-net 

and SSTrans-3D produced images with overall better image quality and enhanced defect 

contrast. In the basal SA slice, the defect pointed by the red arrows is deeper and larger 

in the images reconstructed by SSTrans-3D. In the apical SA slice, the defect pointed by 

the green arrows is deeper and larger in the images reconstructed by U-net. Both U-net and 

SSTrans-3D produced images with similar defect contrast for the defects pointed by the blue 

arrows. SSTrans-3D produced images with an overall larger defect size than U-net did.

D. Quantitative Results

Quantitative results (SSIM, PSNR, and RMSE) for images reconstructed using one-angle 

data, U-net, and SSTrans-3D are presented in Table I. Note that because there is no multi-

angle data for human studies, only porcine and physical phantoms scans were included 

in this quantitative analysis. Based on paired t-tests of the quantitative results, U-net and 

one-angle results are statistically significant different. SSTrans-3D and one-angle results are 

also statistically significant different. However, there is no statistically significant difference 

between U-net and SSTrans-3D results.

Box plots presented in Fig. 9 summarize the measured defect sizes for all the porcine, 

physical phantom, and human studies used in this work. For porcine and physical phantom 

studies, compared with one-angle results, both SSTrans-3D and U-net demonstrated smaller 
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measured defect sizes for studies without defects (p < 0.05), and larger measured defect 

sizes for studies with known defects (p < 0.05), which are consistent with our expectations. 

Compared with U-net results, SSTrans-3D produced images with smaller measured defect 

sizes for normal porcine and physical phantom studies (p < 0.05). For the abnormal subjects, 

neither network produced images with statistically different measurements compared with 

four-angle results, which may due to the limited amount of data used for statistical testing 

(p = 0.11 for SSTrans-3D and p = 0.14 for U-net). For the normal subjects, both networks 

produced images with larger measured defect sizes compared with four-angle results (p < 

0.05), which served as the training labels.

For human studies, U-net and SSTrans-3D produced images with increased measured defect 

sizes for normal patients, which is contrary to our expectations. However, as discussed in 

the original publication of the WLCQ software [20], such a small difference (less than 1% 

for both U-net and SSTrans-3D) may not affect clinical decisions. For the human studies 

with known perfusion defects, both U-net and SSTrans-3D tend to improve defect contrast 

and increase the measured defect sizes. Across all the human studies with cardiac defects, 

SSTrans-3D results had larger measured defect sizes than those of both one-angle (p < 

0.001) and U-net results (p < 0.001).

For porcine and physical phantom studies, the mean myocardium to blood-pool ratios for 

one-angle, U-net, SSTrans-3D, and four-angle images are 4.44, 10.51, 12.03, and 19.37, 

respectively. The ratios derived from SSTrans-3D are higher than those of U-net ratios (p < 

0.05). For human studies, the ratios for one-angle, U-net, and SSTrans-3D are 3.69, 6.09, 

and 6.28 respectively. SSTrans-3D also produced images with higher ratios than U-net did (p 
< 0.001).

IV. Discussion and Conclusion

In this work, we proposed a novel slice-by-slice Transformer network (SSTrans-3D) for 

mapping 3D one-angle cardiac SPECT images to four-angle counterparts. Both deep 

learning and multi-angle results demonstrated significantly better quality than the one-angle 

scans.

The proposed SSTrans-3D is adapted from the original Transformer and the vision 

Transformer networks. Because it is computationally difficult to reconstruct 3D image 

volumes using Transformer directly, 3D image volumes were reconstructed in a slice-

by-slice looping manner to alleviate the memory burden in SSTrans-3D. Note that 

SSTrans-3D is still a fully 3D network and can obtain 3D contextual information for image 

reconstructions. During the looping process, the already-reconstructed slices were used as 

the input to the decoder part of SSTrans-3D, so that the network could obtain information 

from both one-angle slices and the already-reconstructed slices. By doing so, SSTrans-3D 

may obtain more informative image features for reconstructions. Compared with a U-net 

proposed in our previous work, SSTrans-3D produced images with perceivable improvement 

although not statistically significant quantitative differences in terms of whole image quality 

metrics (PSNR, SSIM, and RMSE). But we found that our proposed SSTrans-3D produced 

images with statistically better defect quantification based on the defect sizes calculated 
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using the WLCQ software, especially in human studies. Because whole image quality 

metrics were calculated based on entire image volumes, and the scanner used in this work 

is a dedicated cardiac scanner with small FOV, we believe that the defect size measured 

by WLCQ is a more clinically-relevant image metric in this work as it only focuses on 

the cardiac region. Future studies with larger numbers of clinical cases are needed for 

more comprehensive evaluations of this approach. Also, we believe the SSTrans-3D can be 

directly adapted for more widely used general-purpose SPECT scanners and other dedicated 

SPECT scanners as the proposed method is purely image-based and it does not incorporate 

the scanner geometry into the network.

Because Transformer networks process images as 1D visual tokens, they have weaker spatial 

inductive bias than convolutional models. Thus, they typically require more data to achieve 

optimal training [8]. Convolutional models process images as multi-dimensional matrices, 

assuming a certain type of spatial structure present in the data. Limited volumes of fine-

tuning data may negatively affect the performance of SSTrans-3D. In the future, we plan to 

further explore the possibility of Transformer in various medical imaging tasks and acquire 

more multi-angle data in clinical settings. Since earlier studies using projection-domain 

methods with CNN achieved great success, we anticipate that applying Transformer in the 

projection domain may offer a possible advantage and additional direction of study in the 

future. [21]–[23].
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Fig. 1. 
A porcine study reconstructed using one-angle data and four-angle data. Note that the 

image resolution significantly improved using four-angle data with the proposed multi-angle 

reconstruction protocol in our previous work [4]. rectangles enclosed by the L-shape arc 

represent CZT detector modules in the scanners. Mounted on an L-shaped arc, all the 19 

CZT detectors in the detector array were arranged in three rows. The center row has 9 

detectors and each of the outer two rows has 5 detectors. The white circles denote the FOV 

of the scanner.
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Fig. 2. 
U-net structure proposed in our previous work [4].
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Fig. 3. 
Proposed SSTrans-3D. The slices/volumes in red represent the network-reconstructed 

results. The patches in blue represent the input to the network (images reconstructed using 

one-angle data). Structures of encoder and decoder are the same as the proposed in the 

original Transformer without normalization layers. During the repeating process, already 

reconstructed slices (red) are used to replace the one-angle patches in the input to the 

decoder part of the network.
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Fig. 4. 
Physical phantom scan with defects reconstructed with different methods. Red and blue 

arrows point to the two defects added in this phantom scan. Green arrows point to some 

undesirable artifacts in the U-net image. Numbers in parentheses are the calculated defect 

sizes. The corresponding polar maps are presented in the last row.
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Fig. 5. 
A porcine study reconstructed with different methods. Green arrows point to the defect 

in this porcine study. Numbers in parentheses are the calculated defect sizes. The 

corresponding polar maps are presented in the last row.
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Fig. 6. 
A human study reconstructed with different methods. Green arrows point to the defect in 

this human study. Blue arrows point to the contour of the right ventricle that was better 

reconstructed by SSTrans-3D. Numbers in parentheses are the calculated defect sizes. The 

corresponding polar maps are presented in the last row.
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Fig. 7. 
A human study reconstructed with different methods. Green arrows point to the defect in 

this human study. Numbers in parentheses are the calculated defect sizes. The corresponding 

polar maps are presented in the last row. Arrows with the same color point to the same 

defect.
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Fig. 8. 
A human study reconstructed with different methods. Green, blue, and red arrows point to 

the different defects in this human study. Numbers in parentheses are the calculated defect 

sizes. The corresponding polar maps are presented in the last row.
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Fig. 9. 
Box plots that summarize the calculated defect sizes for porcine, physical phantom, and 

human studies used in this work. The numbers in each column were obtained by averaging 

the values in each category (MEAN ± STD).
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TABLE I

Quantitative assessment for porcine and physical phantom images reconstructed with different methods 

(MEAN ± STD). The measurements were obtained by averaging the values on the testing dataset. Best values 

are marked in bold.

One-angle Image U-net SSTrans-3D

PSNR 33.582 ± 3.822 34.429 ± 3.521 34.444 ± 3.549

SSIM 0.934 ± 0.019 0.938 ± 0.018 0.939 ± 0.019

RMSE 0.023 ± 0.009 0.021 ± 0.008 0.021 ± 0.008
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