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Abstract

Spatial transcriptomics promises to greatly improve our understanding of tissue organization

and cell-cell interactions. While most current platforms for spatial transcriptomics only o↵er

multi-cellular resolution, with 10-15 cells per spot, recent technologies provide a much denser

spot placement leading to sub-cellular resolution. A key challenge for these newer methods is

cell segmentation and the assignment of spots to cells. Traditional image-based segmentation

methods are limited and do not make full use of the information profiled by spatial transcrip-

tomics. Here we present SCS, which combines imaging data with sequencing data to improve

cell segmentation accuracy. SCS assigns spots to cells by adaptively learning the position of each

spot relative to the center of its cell using a transformer neural network. SCS was tested on two

new sub-cellular spatial transcriptomics technologies and outperformed traditional image-based

segmentation methods. SCS achieved better accuracy, identified more cells, and provided more

realistic cell size estimation. Sub-cellular analysis of RNAs using SCS spots assignments provides

information on RNA localization and further supports the segmentation results.
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Introduction

Spatial transcriptomics provides information on both the expression and the locations of cells in

a sample, enabling the analyses of cell-cell signaling and cell type organization [1, 2]. Spatial

transcriptomics uses a set of barcoded spots placed at regular intervals on the sample to profile the

expression of genes [3]. To date, most platforms (including Visium [3]) use spots that were placed

up to 100 µm apart. In such placement, each spot captures RNAs from 10-20 cells depending on

the tissue, making it hard for this technology to achieve single cell-level analysis. Very recently,

new spatial technologies enable a much denser spot placement. For example, both Stereo-seq [4]

and Seq-scope [5] achieve a spot-to-spot distance of 0.5 µm on average, resulting in more than 1000

spots per cell on average.

While promising, a challenging step in the analysis of such new data is cell segmentation and the

integration of spots to assign an expression profile to each cell. Recently, new segmentation methods

were developed for spatial proteomics [6] or in situ fluorescent hybridization (FISH) based spatial

transcriptomics data [7, 8]. For example, Baysor [7] spatially clusters observed molecules to cells

for FISH based data by modeling each cell as an ellipsoid using Gaussian distribution of transcript

composition. However, the detected molecules in such data are not restricted to predefined spot

locations, which makes it much easier to model cell shapes. In addition, the large number of

genes profiled and the sparseness of the expression captured by each spot make these methods not

appropriate for sequencing based technologies. Most standard cell segmentation methods developed

to date rely on nucleus or membrane straining to identify cell boundaries [9, 10, 11, 12, 13]. While

successful, these methods do not fully utilize the information provided by spatial transcriptomics

data, leading to less accurate results. In addition, most of them [10, 11, 12, 13] require manual

annotations for model training, which are usually not easy to obtain in su�cient quantities when

profiling new tissues.

To address these issues, we developed SCS (Sub-cellular spatial transcriptomics Cell Segmenta-

tion), which combines sequencing and staining data to improve cell segmentation in high-resolution

spatial transcriptomics. SCS performs segmentation in three key steps (Fig. 1). It first identifies

cell nuclei from staining images using the Watershed algorithm [9]. Second, a transformer model

infers for each spot whether it is part of a cell or part of the extracellular matrix (background),
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and its relative position w.r.t. the center of its cell, by adaptively aggregating high-dimensional but

sparse gene expression information from neighboring spots via an attention mechanism. To train

the model, we used as positive examples spots within the identified nuclei and as negative samples

spots sampled from highly confident background regions. Finally, spots that are determined to be

part of the cell are grouped by tracking the gradient flow from spots to nucleus centers. See Methods

for complete details.

We applied SCS to two di↵erent high-resolution spatial transcriptomics platforms: a mouse

brain dataset profiled using Stereo-seq [4] accompanied with nucleus staining, and a mouse liver

dataset from Seq-scope [5] accompanied with H&E staining. To evaluate performance, we compared

SCS with Watershed cell segmentation, which is used by these platforms, and popular deep learning

based segmentation methods, including Cellpose [10], DeepCell [11], and StarDist [12]. As we show,

our method obtained more accurate segmentation, more cells, and more realistic cell sizes when

compared to these methods. In addition, we further used SCS to analyze the sub-cellular localization

of di↵erent RNAs and show that our results agree with prior knowledge further validating the

accuracy of our segmentation.

Results

Application of SCS to high-resolution spatial transcriptomics data

We tested SCS on public subcellular-resolution in situ datasets generated using two di↵erent plat-

forms: a mouse brain dataset profiling using Stereo-seq [4] and a mouse liver dataset that utilized

Seq-scope [5].

The Stereo-seq dataset captures a whole adult mouse brain slice (an area of around 5.3 mm⇥7.0

mm) in a single section. The barcoded spots are arranged in a grid with a distance of 0.5 µm

between spots (which, given an average cell size of 20 µm in diameter means that there are roughly

1200 spots per cell, Extended Data Fig. 1). In total, this dataset profiled 26,177 genes in more than

42,000,000 spots with an average of 3.3 unique molecular identifier (UMI) counts per spot (Extended

Data Fig. 2). The brain slice was imaged with nucleic acid staining, allowing for segmentation of

the nucleus using image based methods.

The Seq-scope dataset contains four tissue sections from mouse liver. Each section captures
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around a 0.93 mm⇥0.80 mm region of the tissue. The center-to-center distance of barcoded spots

is similar to the distance for the Stereo-seq data, 0.5 µm on average. In total, 24,171 genes were

profiled in four sections and each section contains over 570,000 spots (Extended Data Fig. 3), with

5.7 UMI counts per spot on average (Extended Data Fig. 4). Instead of using nuclei staining, the

Seq-scope protocol images tissues with the hematoxylin and eosin (H&E) staining. Therefore, the

entire cell bodies can be segmented using the imaging data.

SCS provides accurate cell segmentation

We first applied SCS to the Stereo-seq data. To evaluate its performance, we compared SCS with

Watershed cell segmentation (Supplementary Note 1), and other popular segmentation methods that

are based on deep learning including Cellpose [10], DeepCell [11], and StarDist [12]. Appropriate

pretrained models of the deep learning methods are used for evaluation (Supplementary Note 2).

Since ground truth for cell segmentation does not exist, we used a popular method for evaluating

cell segmentation methods [6, 7]. In this evaluation, we compare the expression of regions where two

methods (SCS and another method) agree to regions where they disagree (Fig. 2a). Specifically,

for each nucleus, we identified a cell mask using the segmentation of each method. The intersection

and di↵erence regions between the two cell masks for this nucleus were then computed. We next

estimated the correlation of expression profiles between the intersection region and each of the

di↵erence regions. Since the intersection region is often dominated by the nucleus, which is easily

detected by all methods (much easier to stain), we treat it as ground truth and compare the non-

intersecting regions to the intersection. We expect that the more correlated the di↵erence region is

with the intersection region the more accurate the segmentation of the method.

On the Stereo-seq dataset, SCS segmentation achieved an average correlation 24% higher than

that of Watershed (0.61 vs. 0.49) (Fig. 2b), and at least 13% higher than those of all other

deep learning segmentation methods (0.60 vs. 0.53 of DeepCell). While image based methods

on nucleus staining images tend to underestimate cell sizes, SCS is able to accurately capture

cytoplasm regions of cells (Fig. 3a). As a result, the segmented cells of SCS show more realistic

cell diameter [14] compared to other segmentation methods (Fig. 2c, Supplementary Note 4). We

further observed that some cells were completely missed by image based method due to their low

staining signal intensity. However, SCS can identify such cells based solely on transcriptomics data
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(“Novel predictions”, Fig. 3b, Supplementary Note 5). On the other hand, the cells only identified

by image based methods but missed by SCS are much fewer (Supplementary Fig. 1), leading to

at least 1.5% more cells of SCS than all the other methods (56,187 vs. 55,364 of StarDist which

is the 2nd highest, Fig. 2d). The UMAP [15] projection of SCS segmented cells based on their

expression profiles shows that these novel predictions match cells using image segmentation (Fig.

3e), indicating that they are likely real cells. The staining signals for the regions covered by the

novel cell predictions also support the accuracy of these novel predictions (Supplementary Fig. 2).

For the Seq-scope data, the di↵erences were less dramatic due to the use of H&E images. Still,

SCS had a higher correlation of 0.88 vs. 0.86 for Watershed and also higher correlations than all

the other deep learning based methods (Fig. 2b). All methods achieved higher correlations when

using cell stained images when compared to nucleus staining, as expected (although, as we show,

by using the expression values SCS can still improve for this type of staining as well). As the cell

stained images were used, di↵erent methods show similar cell sizes. SCS segmentation leads to cell

diameters (19.9 ± 6.4 µm) that are slightly larger when compared to Watershed (18.3 ± 9.4 µm)

and StarDist (16.2 ± 7.6 µm) but slightly smaller when compared to Cellpose (21.1 ± 4.8 µm) and

DeepCell (20.1 ± 6.0 µm) (Fig. 2c and 3c). Again, SCS determined cell size is consistent with

previous findings [16]. In addition, we observed that when the boundaries of two cells are unclear

in the staining images, image based methods tend to merge them, while SCS can segment them

with the help of transcriptomics data (Fig. 3d) leading to at least 2.3% more cells when using

SCS segmentation (4,456 vs. 4,354 of Watershed) (Fig. 2d). The UMAP projection shows that

the novel cell predictions are mixed with cells that overlap with image based predictions, however

mainly correspond to a subset of cell clusters (Fig. 3f). Further investigation by cell type annotation

(Supplementary Note 6) indicates that these novel predictions are more likely to be non-parenchymal

cells (such as kup↵er cells and monocyte-derived cells) than hepatocytes (Fig. 3h, j). Such cells are

known to be smaller and so harder to identify using H&E staining [5]. We observe a similar trend

when comparing SCS segmentation to other methods as well (Supplementary Figs. 3a-c).

Cell type analysis for the Stereo-seq dataset confirmed the fact that SCS can help recover cells

from cell types with smaller cell sizes (Figs. 3g, 3i, Supplementary Fig. 4a). These results hold for

all methods we compared to (Supplementary Figs. 3d-f, 4b-d). Spatial analysis of the location of

cell types with novel predictions by SCS shows that they are located in areas that are consistent

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2023. ; https://doi.org/10.1101/2023.01.11.523658doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.11.523658
http://creativecommons.org/licenses/by-nc-nd/4.0/


with the relevant histological features of the tissues (Supplementary Figs. 5-6).

Although SCS is designed for high-resolution sequencing based platforms, in situ fluorescent

hybridization (FISH) based spatial transcriptomics techniques also provide subcellular resolution

and are highly multiplexed. We therefore tested SCS on two datasets generated using state-of-the-

art FISH based platforms, seqFISH+ [17] and MERFISH [18]. To process the FISH-based data,

we transformed detected RNA points to grid-shaped spots (Supplementary Notes 7, 8). Here, in

addition to the image-based methods, we also compared SCS with two cell segmentation methods

specifically designed for FISH data, Baysor [7] and JSTA [8] (Supplementary Notes 9, 10). Results

show that SCS outperforms all image-based segmentation methods on the FISH based data, and

outperforms Baysor and JSTA on most of the four datasets we looked at (Supplementary Figs.

7-9). In addition, for the seqFISH+ dataset, manually annotated cell segmentation ground-truth is

available [17]. We thus validated the performance of di↵erent methods using this data by quantifying

the agreement of their segmentation with the ground truth (Intersection over Union (IoU)). SCS

achieved a much higher IoU (0.75) than all the other methods (0.47 of Baysor which is the second

highest) (Supplementary Fig. 7).

Finally, we also tested DeepCell with the Mesmer model [13] (Supplementary Note 2) and

observed that using Mesmer does not improve the DeepCell results (Supplementary Figs. 7-9).

SCS enables sub-cellular analysis of spatial transcriptomics

While traditional spatial transcriptomics is a powerful method for studying cell type expression and

interactions [19, 20], the use of high-resolution methods opens the door to characterizing molecular

heterogeneity within individual cells. This can be important to study RNA dynamics and to fully

understand cellular variability in tissues [21]. We therefore used SCS to investigate how RNAs

are distributed within cells. Specifically, we divided each cell into two regions, the nucleus region

(identified using the staining image data) and the cytoplasm region (the rest of the cell mask

identified by SCS, Fig. 4a). Genes whose RNAs localize di↵erentially between two groups of

regions were identified using t-test (Fig. 4b-c). Interestingly, in both datasets, RNAs that have

been experimentally shown to reside in the nucleus or cytoplasm [22] are significantly enriched in

our identified RNAs in the corresponding regions (P = 4.0⇥ 10�50 for Stereo-seq, P = 6.4⇥ 10�4

for Seq-scope, Fisher’s exact test, one-sided, Extended Data Fig. 5). For example, the long non-
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coding RNA (lncRNA) of gene Kcnq1ot1 is a nuclear transcript that interacts with chromatin and

regulates transcription of multiple genes [23]. The lncRNA of gene Neat1 is a well-known nuclear

transcript that forms the core component of organelles in nucleus [24]. Both RNAs are identified

as being di↵erentially localized to nucleus in SCS segmentation (Fig. 4b). In contrast, gene Rab3a

and gene V amp2 both encode proteins that are involved in neurotransmitter release and associated

with cytoplasmic vesicles [25, 26]. They are both found with high expression levels in the cytoplasm

regions in SCS segmentation (Fig. 4b).

These experiments were repeated for the other segmentation methods we compared to. We

found that for all other methods, we obtained fewer RNAs that are experimentally verified when

compared to those identified by SCS (Supplementary Fig. 10). These results indicate that SCS

segmentation can better help sub-cellular analysis in high-resolution spatial transcriptomics data

and partially explains why our model can obtain better cell segmentation with transcriptomics data.

Discussion

A key step in the analysis of spatial transcriptomics data is cell segmentation. This is especially

true when using the very recent sub-cellular profiling platforms. For such data, accurate cell seg-

mentation is essential as errors in identifying cell boundaries can directly impact gene expression

level quantification in cells, and further influence downstream analysis. Existing cell segmentation

methods for this data only rely on the stained image, which do not fully utilize the information

provided by the experiment leading to less accurate results.

In this study, we developed a cell segmentation method that combines both the staining in-

formation and the expression data to refine cell segmentation. Unlike prior methods, our method

focuses on the spots but not the staining. For each spot, the method attempts to determine whether

it is within a cell and if so, which cell. Once such assignments are determined, cells are naturally

segmented by grouping all the spots that belong to the same cell. To enable spot assignment, SCS

first aggregates information from neighboring spots and then maps spots to low-dimensional latent

representations to determine their relative positions to the centers of cells. To train the supervised

model, we first identify the nucleus regions which serve as ground truth and then use as posi-

tive examples spots in these regions and as negative samples spots sampled from highly confident
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background regions to train the transformer model, which is then applied to the whole section.

Applications of SCS to two datasets generated using very recent state-of-the-art in situ capturing

platforms demonstrates the advantage of our method. SCS segmentation achieves higher segmen-

tation accuracy, detects more cells, and yields more realistic cell sizes when compared to several

widely used image based segmentation methods. Analysis of the spatial distribution of RNAs iden-

tified many RNAs enriched in di↵erent sub-cellular regions and these agree with experimentally

confirmed results. These findings further validate SCS segmentation and suggest the ability of SCS

in facilitating sub-cellular analysis on high-resolution spatial transcriptomics.

Although SCS works well for the platforms we tested, there are a number of ways to further

improve it. Cell shape information can be further utilized to better obtain cell masks given the

high-density spot placement. In addition, feature selection can be improved. In this study, we

used the 2,000 variable genes as the input of the transformer model though better results may be

obtained by a more sophisticated feature selection method. Moreover, if RNA spatial distribution

patterns are found to vary by cell types in the datasets [27], cell-type specific attention layers can be

introduced (based on the expression profile) to allow the model to learn di↵erent patterns and better

segment cells. Finally, while the integration of high-dimensional transcriptomics and imaging data

is computationally intensive, such runtime is still reasonable for the analysis of this complex data

(Supplementary Table 1). In addition, runtime and memory can be further optimized for specific

platforms.

Since ground truth is generally unavailable for most spatial transcriptomics data, finer-grained

cell type analysis might provide more evidence for cell segmentation quality. For example, a method

that can recover more reasonable cell type distributions or detect rare cell types missed by other

methods might be more powerful. We have performed some preliminary analysis of this in the paper

(Supplementary Fig. 11) but more detailed analysis may be required to fully validate this point.

SCS was implemented in Python and is available for download at: https://github.com/chenhcs/SCS.

While sub-cellular spatial transcriptomics is still very new, we believe that its advantages and ability

to provide spatially resolved single cell information would make it very popular going forward. We

hope that SCS would be a useful pre-processing method to enable all downstream analysis of such

data.
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Figure Captions

Figure 1: Workflow of SCS. a, Barcoded spots (cyan dots) that reside inside a cell nuclei (red

masks) are first identified by segmenting the stained image. A transformer model is next trained on

these spots and some background spots to predict the gradient direction (arrow) from each spot to

the center of the cell to which it belongs and the probability that it is part of a cell (yellow arrow)

or part of the extracellular matrix (purple arrow). The transformer model is then applied to all

other spots. A gradient flow tracking algorithm is used to segment cells by grouping spots based on

their gradient prediction. b, The transformer model predicts for each input spot the probabilities

from this spot to its cell center for 16 predefined directions (d̂) and the probability that the spot

is part of a cell (ŷ). For each spot (red dot), the transformer model aggregates information from

its 50 nearest neighboring spots (cyan dots) by adaptively learning a weighting based on the spot

expression (x) and relative positions (s). c, The structure of one transformer encoder layer, see
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“Methods” for details.

Figure 2: Performance evaluation of SCS and comparisons with other methods. a,

The benchmark used for evaluating the performance and for comparison of di↵erent segmentation

methods. The intersection region and respective di↵erence (unique) regions between two segmen-

tation are calculated for each cell. The segmentation is said to have higher accuracy if its unique

cell region is better correlated with the intersection region. b, Comparison between SCS and the

four other image segmentation methods using the correlation benchmark. Each cell used for evalu-

ation contributes one point to the correlation presented in the boxplot. SCS achieved significantly

higher segmentation accuracy than other methods on both datasets (Wilcoxon signed-rank tests,

one-sided; for SCS vs. Watershed, N=17,811 cells on Stereo-seq, N=2,757 cells on Seq-scope; for

SCS vs. Cellpose, N=13,310 cells on Stereo-seq, N=2,446 cells on Seq-scope; for SCS vs. DeepCell,

N=26,916 cells on Stereo-seq, N=3,513 cells on Seq-scope, for SCS vs. StarDist, N=6,370 cells

on Stereo-seq, N=2,635 cells on Seq-scope. Supplementary Note 3 for cell filtering criteria). c,

Comparison of the sizes of cells segmented by SCS and other methods. SCS obtained segmented

cells with larger cell diameters than all the other methods with significant di↵erences on Stereo-

seq (Kruskal-Wallis tests; for Stereo-seq, N=56,187 for SCS, N=52,004 for Watershed, N=50,020

for Cellpose, N=55,260 for DeepCell, N=55,364 for StarDist; for Seq-scope, N=4,456 for SCS,

N=4,354 for Watershed, N=2,527 for Cellpose, N=4,157 for DeepCell, N=3,832 for StarDist).

The red dashed lines show the expected cell diameters from the literature. d, The number of cells

identified by the segmentation methods for the two datasets. b,c, Boxplots show medians (horizon-

tal line in each box), interquartile ranges (boxes), 1.5 interquartile (whiskers), and remaining point

individuals.

Figure 3: Cell segmentation examples and the distributions of cells in low dimensional

space. a, SCS captured cytoplasm regions of cells in the nucleus staining and thus segmented cells

with larger sizes. b, Example of segmentation results on the Stereo-seq dataset where Watershed

missed three cells due to their low staining signal intensity while SCS identified them (green dots).

c, Two segmentations show similar cell sizes but with disagreement on cell boundaries on the Seq-

scope dataset. d, Segmentation example on the Seq-scope dataset where Watershed merged two
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cells as one cell (pink dot) due to their unclear boundary in the image while SCS successfully seg-

mented them (green dots). e, UMAP projection of SCS segmented cells on the Stereo-seq dataset

based on their expression profiles. Novel predictions (darker nodes) are mixed with cells identified

using image segmentation. f, UMAP projection of SCS segmented cells on the Seq-scope dataset. g,

Cell type annotation for the Stereo-seq dataset. h, Cell type annotation for the Seq-scope dataset.

i, The number of novel cell predictions by SCS compared to Watershed vs. the number of cells that

are commonly identified by SCS and Watershed in di↵erent cell types for the Stereo-seq dataset.

Cell types with more novel predictions are usually those with smaller nucleus sizes as shown in

Supplementary Figure 4a. j, The same comparisons for the Seq-scope dataset. a-d, Experiments

that generated the examples were independently repeated three times with similar results. Scale

bars: 10 µm.

Figure 4: Sub-cellular analysis using SCS. a, Identification of genes whose RNAs are di↵er-

entially localized. b, Volcano plot that shows quantitative changes in expression levels for genes

between the nucleus and cytoplasm of SCS segmented cells for the Stereo-seq dataset. Genes with

P -values < 0.01 and fold changes greater than 1.3 were identified from each group (t-tests, one-

sided, the Benjamini-hochberg method was used to adjust P -values; N=31,763 nucleus regions,

N=37,940 cytoplasm regions, subcellular regions with at least 100 genes were used for this analy-

sis). Genes whose RNAs have been experimentally shown to reside in the nucleus or cytoplasm are

colored accordingly. c, Volcano plot for the Seq-scope dataset. The top 100 genes with the smallest

P -values were identified from each group (t-tests, one-sided, raw P -values are shown to avoid most

of the P -values being corrected to the same value; N=2,779 nucleus regions, N=3,006 cytoplasm

regions, regions with at least 100 genes were used for this analysis).
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Methods

Data preprocessing

Gene counts in each barcoded spot were collected from the original paper of Stereo-seq [1] and

Seq-scope [2], and used to generate a gene expression profile vector for each spot. Each element in

the profile represents the number of transcripts observed in the spot for that gene.

To identify nuclei, the paired staining image and sequencing section are first aligned to match

image pixels and spot coordinates. For this, a count heat map was created for the sequencing

section, where each element in the heat map contains the total number of detected transcripts in a

spot. The staining image was then aligned to the heat map using transformations implemented in

Spateo (https://spateo-release.readthedocs.io) [1]. This step was omitted for the Seq-scope dataset

as the images have been prealigned. Watershed algorithm implemented in Spateo was next used

to segment nuclei from the aligned staining image, and the mask of each individual nucleus was

obtained (Supplementary Note 1).

Transformer model for spot-level predictions

An overview of the model is depicted in Figure 1b. The model contains two components: an encoder

and a classifier. The encoder maps each spot to a hidden representation z. Given the very sparse

set of genes that are usually detected for each spot, we combine neighborhood gene expression

information when generating the hidden representation for a spot as follows. For each spot, we use

its expression profile and combine it with the profiles of the 50 nearest neighbor spots, represented

as x = (x0, x1, ..., x50). Each vector xi has N dimensions which represent the number of detected

transcripts in that spot for each of the N genes used in the study. The nearest neighbors are defined

by using the euclidean distance between spot coordinates. To enable the model to use the relative

locations of di↵erent neighbors, we include in the input to the encoder the distance from the center

spot to each of the neighbor spots denoted as s = (s0, s1, ..., s50), where si is a two dimensional

vector containing distances on two axes. Given the resulting hidden vector z for a spot, a classifier

then predicts the direction from the spot to the center of its cell denoted by d̂, and the probability

it belongs to part of a cell, ŷ.

Encoder : The expression profiles, x, and the distance vectors, s, for the center spot and
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neighbor spots are first projected to a set of D = 64 dimensional vectors r through two separate

fully connected layers followed by summation:

r = xW1 + sW2, (1)

where W1 2 RN⇥D and W2 2 R2⇥D are weights matrices of the two dense layers.

We used a similar network architecture as the one proposed in the original Transformer paper

[3]. In this architecture, the encoder is composed of a stack of L = 8 identical layers. Each layer

has two blocks. The first is a self-attention block (SA):

[q, k, v] = rUqkv,

A = softmax(
qk>p
D
),

SA(r) = Av,

(2)

where the tensor Uqkv 2 RD⇥3D projects each spot representation ri to three D dimensional vectors,

qi (query), ki (key), and vi (value). The dot product between every query and all the keys, scaled by
p
D, passes through a softmax function to obtain attention scores, A. The attention scores are the

weighting of neighbor spots, which are then multiplied by their values, v, and each spot obtains a

weighed representation with D dimensions. The second block further transforms the representation

using a two-layer fully connected network (MLP) with 128 and 64 nodes. GELU [4] activation

function is used to introduce non-linearity. Dropout [5] with rate 0.1 is applied after each layer.

Layer normalization (LN) [6] is applied before every block, and residual connection [7] after

every block. Taking together, one encoder layer can be described as:

r0l�1 = SA(LN(rl�1) + rl�1,

rl = MLP(LN(r0l�1)) + r0l�1,
(3)

each encoder layer uses the output from the previous layer, rl�1, and generates the next, rl. The

representation of the center spot from the last encoder layer, r0L, is taken as the input of the classifier.

Classifier : We use the classifier to predict for a spot the gradient direction from it to its cell

center and whether it is within a cell or outside a cell. The classifier has three components: (i) The
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spot representation r0L is first transformed using a two-layer MLP with 1024 and 256 nodes. LN

is applied before the transformation. The output from the MLP is then used as input to two fully

connected layers. (ii) One layer connects to a softmax function that outputs the probabilities, d̂, for

each of the 16 possible directions to the cell center. (iii) Another layer generates a scalar output,

ŷ, which is the object probability of the spot. Multi-class cross entropy is used as the loss function

for the direction output:

Ld(d, d̂) = �
15X

k=0

d(k) log(d̂(k)), (4)

where d is the one-hot encoded direction label, where the bit with 1 indicates the correct direction.

The binary cross entropy loss is used for the object probability:

Ly(y, ŷ) = �y log(ŷ)� (1� y) log(1� ŷ), (5)

where y is a binary label indicating whether the spot is part of a cell. Considering all the M spots

in the training data, the overall loss function is:

MX

i

yiLd(d
i, d̂i) + Ly(y

i, ŷi). (6)

The direction loss is masked by the object label so the background spots will not contribute to this

loss.

The selection of di↵erent model parts is discussed in Supplementary Figure 12.

Training data preparation for the deep model

Spots within cell nucleus regions and spots sampled from highly confident background regions are

used for model training. All spots within nucleus masks are labeled as 1 for the object label. For the

direction label, the center of each nucleus is first computed by averaging the X and Y coordinates

of spots assigned to this nucleus from the staining image. The direction from each spot within the
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nucleus to the nucleus center, d, is then computed as follows:

d =

8
>>>>>><

>>>>>>:

floor(
arctan( Yc�Y

Xc�X )

2⇡ ⇤ 16) if Yc � Y >= 0 and Xc �X >= 0

floor(
arctan( Yc�Y

Xc�X )+⇡

2⇡ ⇤ 16) if Xc �X < 0

floor(
arctan( Yc�Y

Xc�X )+2⇡

2⇡ ⇤ 16) if Yc � Y < 0 and Xc �X >= 0

, (7)

where X and Y are the coordinates of the spot for two axes, and Xc and Yc are the coordinates of

the nucleus center. The 16 direction classes evenly divide a full circle. On the other hand, the same

number of spots as nucleus spots are sampled from background and labeled as 0 for the object label.

The background spots have to meet the following two criteria: (i) The staining signal intensity of

the corresponding pixel is smaller than a predefined threshold. (ii) The distance from the spot to

any of the nucleus centers is greater than a predefined threshold.

Cell boundary generation

Spot-level predictions are adjusted based on the locations of identified nuclei (Supplementary Note

11) and then smoothed (Supplementary Note 12), which are next used to group spots to cells. Spots

with object probabilities smaller than 0.1 are determined to be background. The direction vectors

of the rest of spots are treated as gradients and the gradient flow tracking algorithm [8] is performed

to segment cells. In the algorithm, the vectors flow toward a sink, which corresponds to the center

of the nuclei for each cell. Starting from a spot b = (X,Y ), the next spot b0 to which the flow is

directed is selected using:

b0 = b+ round(
v(b)

||v(b)||), (8)

where v(b) is the gradient vector at b. When the angle between two consecutive steps is equal to

or greater than ⇡
2 , the gradient flow tracking procedure stops, and a sink is reached. The angle is

computed as:

arccos(
v(b)

||v(b)|| ,
v(b0)

||v(b0)||), (9)

The set of spots that flow to the same sink produces an attraction basin of the sink. If the euclidean

distance between two sinks is less than 3.5 spots, the attraction basins of the two sinks are combined

together to obtain a larger attraction basin. An attraction basin with at least a certain number of
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spots is segmented as a cell (Supplementary Note 13).

Correlation benchmark

We evaluate the performance of di↵erent methods by examining the transcriptional correlation

between di↵erent regions of a segmentation mask. Specifically, for each nucleus detected using

the staining, a target cell c is assigned using our cell segmentation by selecting the cell with the

largest overlap with the source nucleus. A similar approach is used to select c0 based on the cell

segmentation of compared method. Gene expression profiles considering all the genes for three

regions are computed: (i) intersection between c and c0, denoted as xint, (ii) region covered by c

but not c0, denoted as xc, (iii) and region covered by c0 but not c, denoted as x0c. Then the Pearson

linear correlation is used to measure the similarity of gene expression between xc and xint, as well

as x0c and xint. The segmentation is said to be better if its di↵erence region has a higher correlation

with the intersection region.

Sub-cellular analysis

To perform sub-cellular analysis in SCS cell segmentation, we divided each cell mask into two regions,

a nucleus region and a cytoplasm region. The nucleus region was identified using Watershed from

the staining image data, while the cytoplasm region is the rest of the cell mask identified by SCS.

RNAs detected in all spots within each region were aggregated to generate a gene expression profile,

which was then summarized in a region by gene matrix. Genes whose RNAs localize di↵erentially

between two groups of regions were identified using t-test from the matrix.

For the Stereo-seq dataset, genes with P -values < 0.01 and fold changes greater than 1.3 were

identified from each group. We then searched them in the RNALocate v2.0 database [9] for ex-

perimental evidence of RNA localization. As fewer genes were identified when using the Seq-scope

dataset, likely due to smaller number of cells and challenges involved in identification of nucleus

regions from H&E images, the top 100 genes with the smallest P -values were identified from each

group and searched for experimental evidence.
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Application to Stereo-seq

Stereo-seq sequencing section : The Stereo-seq dataset captures a whole adult mouse brain slice

in a single section (an area of around 5.3 mm⇥7.0 mm). The barcoded spots are arranged in a grid

with a distance of 0.5 µm between spots. Due to the large size of the assay, we cut it into small

patches for model training, each with an area of 600 µm⇥600 µm (1200 spots⇥1200 spots) resulting

in 87 patches, and processed one patch at a time. To obtain stable gene compositions for spots,

we merged 3⇥3 spots into one spot. Therefore, each merged spot aggregates RNAs detected in a

1.5 µm⇥1.5 µm region. We computed the 2,000 variable genes across the spots using Scanpy [10],

which decide the scope of genes in the expression profiles of spots.

Stereo-seq staining : The mouse brain tissue section was imaged with nucleic acid staining

that visualized regions of nuclei. The stained image was aligned with the RNA assay in the original

paper and we further refined the alignment using the linear transformation.

Application to Seq-scope

Seq-scope sequencing sections: The Seq-scope dataset contains four tissue sections from mouse

liver. Each section captures around a 0.93 mm×0.80 mm region of the tissue. The center-to-center

distance of barcoded spots is similar to the distance for the Stereo-seq data, 0.5 µm on average.

Similar to Stereo-seq, we merged spots in each 1.5 µm⇥1.5 µm region into one spot. We again

computed the 2,000 variable genes across the spots for each section.

Stereo-seq staining : The hematoxylin and eosin (H&E) image is provided for each of the

sequencing sections. Therefore, the entire cell bodies are visualized in the imaging data. The

stained image has been manually aligned with the RNA assay in the Stereo-seq paper. As a result,

no further transformation was performed. We converted the H&E images to one channel grayscale

images for the processing by Watershed.

Data availability

All data used in this study have been previously published. The spatial transcriptomics data

and nucleus staining images for the Stereo-seq dataset are available in the MOSTA data portal

(https://db.cngb.org/stomics/mosta/download/) with file names Mouse brain Adult GEM bin1.tsv.gz
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and Mouse brain Adult.tif. The spatial transcriptomics data for the Seq-scope dataset are available

in the Gene Expression Omnibus (GEO) database under accession number GSE169706. Tiles

2104, 2105, 2106, and 2107 were used in this study. The H&E staining images for the Seq-

scope dataset are available at Deep Blue Data (https://doi.org/10.7302/cjfe-wa35). The seq-

FISH+ NIH/3T3 cell line data are available at Zenodo (https://doi.org/10.5281/zenodo.2669683).

The spatial transcriptomics data of the MERFISH human brain dataset are available at Dryad

(https://datadryad.org/stash/dataset/doi:10.5061/dryad.x3↵bg7mw). The section of H22.26.401.MTG.4000

was used in this study. Experimental RNA subcellular localization data are available in the RNALo-

cate v2.0 database (https://www.rna-society.org/rnalocate/download.html).

Code availability

The source code of SCS is public available at https://github.com/chenhcs/SCS. The following open

source Python (3.9.7) packages were used to build SCS: anndata (0.7.5), matplotlib (3.5.0), numpy

(1.22.4), pandas (1.3.4), scanpy (1.8.2), scikit-learn (1.0.1), scipy (1.7.2), tensorflow (2.8.2). The

open source software Spateo (0.0.0) was used to align staining image pixels with spatial transcrip-

tomics spots. Watershed implemented in Spateo (0.0.0), open source Python packages DeepCell

(0.12.3), Cellpose (2.1.1), StarDist (0.8.3), Baysor (0.5.2), and JSTA (0.0.0) were applied to seg-

ment staining images and compared with SCS.
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