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ABSTRACT
Cryo-electron tomography (cryo-ET) allows one to observe macromolecular complexes in their native, 
spatially contextualized environment. Tools to visualize such complexes at nanometer resolution via iterative 
alignment and averaging are well-developed but rely on assumptions of structural homogeneity among the 
complexes under consideration. Recently developed downstream analysis tools allow for some assessment of 
macromolecular diversity but have limited capacity to represent highly heterogeneous macromolecules, including 
those undergoing continuous conformational changes. Here, we extend the highly expressive cryoDRGN deep 
learning architecture, originally created for cryo-electron microscopy single particle analysis, to sub-tomograms. 
Our new tool, tomoDRGN, learns a continuous low-dimensional representation of structural heterogeneity in 
cryo-ET datasets while also learning to reconstruct a large, heterogeneous ensemble of structures supported 
by the underlying data. Using simulated and experimental data, we describe and benchmark architectural 
choices within tomoDRGN that are uniquely necessitated and enabled by cryo-ET data. We additionally illustrate 
tomoDRGN’s efficacy in analyzing an exemplar dataset, using it to reveal extensive structural heterogeneity 
among ribosomes imaged in situ.
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INTRODUCTION
Life relies on an array of large, dynamic macromolecular 
complexes to carry out essential cellular functions. The 
conformational flexibility and compositional variability in 
these complexes allow cells to mount targeted molecular 
responses to various stresses and stimuli. Structural biology 
has long aimed to visualize these diverse structures with the 
goals of gaining mechanistic insights into these responses 
and testing hypotheses related to macromolecular 
structure-function relationships. In pursuit of this goal, 
cryo-electron microscopy (cryo-EM) has proven to be a 
powerful tool for visualizing purified complexes with high 
resolution (Bai et al., 2015; Murata and Wolf, 2018). In cryo-
EM, ~104-107 individual particles are imaged by transmission 
electron microscopy (TEM), each from a single unknown 
projection angle. Single particle analysis (SPA) is then used 
to simultaneously estimate the most likely projection angle 
for each particle image and the k≥1 distinct 3-D volumes of 
the target complex, which, when projected to 2-D, are most 
likely to have produced the source dataset (Cheng et al., 
2015). More recently, a number of tools have leveraged SPA 
datasets to deeply explore structural heterogeneity within 
these complexes (Chen and Ludtke, 2021; Dashti et al., 
2020; Kinman et al., 2023; Punjani and Fleet, 2021; Sun et al., 
2022; Zhong et al., 2021), dramatically expanding the range 
of insights and testable biological hypotheses that can be 
derived from cryo-EM. 

Cryo-electron tomography (cryo-ET) is a related imaging 
modality wherein a sample is repeatedly imaged from several 
known projection angles, enabling the reconstruction 
of a 3-D tomogram (Asano et al., 2016). As such, cryo-ET 
disentangles particles that overlap along a projection axis 
and enables the nanometer-scale 3-D visualization of highly 
complex samples, including subcellular volumes. Thus, 
cryo-ET affords the opportunity to inspect macromolecular 
structures in their native cellular context (Gemmer et al., 
2023; Hoffmann et al., 2022; Lovatt et al., 2022; Xue et al., 
2022), in contrast with cryo-EM’s typical requirement that 
particles be isolated from cells and purified.

Sub-tomogram averaging (STA), a particle averaging 
approach analogous to SPA, is often employed in cryo-ET 
data processing. In STA, individual 3-D volumes, each a sub-
tomogram corresponding to a unique particle, are extracted 
from the back-projected tilt series and are iteratively aligned 
to produce an average particle volume with increased SNR 
and resolution (Bharat and Scheres, 2016; Castano-Diez and 
Zanetti, 2019; Pyle and Zanetti, 2021; Zhang, 2019). Critically, 
STA can therefore offer insights to native protein complexes, 
enabling hypothesis generation in identifying unknown 
associated factors or novel complex ultrastructure. 

As with SPA, several tools have recently been developed 
to characterize heterogeneity among individual particles 
relative to the global average (Castano-Diez et al., 2012; 
Harastani et al., 2021; 2022; Himes and Zhang, 2018; 
Stolken et al., 2011), either during or after STA. Although 

these approaches have proven fruitful in answering 
specific biological questions such as nucleosome flexibility 
(Harastani et al., 2021; 2022), and ribosome heterogeneity 
(Himes and Zhang, 2018; Xue et al., 2022), each approach has 
specific constraints that limit their generality. For example, 
sub-tomogram PCA (Himes and Zhang, 2018) assumes 
heterogeneity can be modeled as a linear combination of 
voxel intensity, normal mode analysis (Harastani et al., 2021) 
requires a priori knowledge of an atomic model or density 
map to compute normal modes, and optical flow (Harastani 
et al., 2022) is inherently limited to conformational changes 
of the target particle in which the total voxel intensity across 
each sub-tomogram remains approximately constant. An 
unbiased and expressive tool to analyze heterogeneity is 
therefore highly desirable, particularly for in situ discovery 
of unexpected cofactors whose identity, binding site, and 
occupancy may be unknown. 

Here, we introduce tomoDRGN (Deep Reconstructing 
Generative Networks), a deep learning framework designed 
to learn a continuously generative model of per-particle 
conformational and compositional heterogeneity from cryo-
ET datasets. TomoDRGN is related to our well-characterized 
cryoDRGN software (Kinman et al., 2023; Zhong et al., 2021), 
and therefore shares many overall design, processing, and 
analysis philosophies. As input, tomoDRGN uses particle 
images and corresponding metadata from upstream STA 
tools (Fig. 1a). It then learns to simultaneously embed each 
particle within a continuous low dimensional latent space 
and to reconstruct the corresponding unique 3-D volume 
(Fig. 1b). We have additionally developed and integrated 
software tools to visualize and interpret these outputs, and 
to integrate tomoDRGN outputs with external processing 
software for subsequent analyses, including contextualizing 
the tomoDRGN generated volumes within the in situ cellular 
tomography data.

RESULTS
A deep learning framework to reconstruct heterogeneous 
volumes from TEM tilt-series data.
TomoDRGN was designed to efficiently train a neural network 
capable of: 1) embedding a collection of particles (each 
represented by multiple TEM images collected at different 
stage tilts) in a learned, continuous, low-dimensional 
latent space informed by structural heterogeneity; and 
2) generating a 3-D volume for each individual particle 
using these embeddings. By design, cryoDRGN is unsuited 
for this task as it maps individual images to unique latent 
embeddings, which is expected for cryo-EM single particle 
datasets. Thus, cryoDRGN is not constrained to map multiple 
tilt images of the same particle to consistent regions of latent 
space, leading to uninterpretable learned latent spaces and 
generated volumes (see Discussion). 

To handle tilt-series data, we employed a variational 
autoencoder (VAE) framework (Kingma and Welling, 2013), 
featuring a purpose-built two-part encoder network 
feeding into a coordinate-based decoder network (Bepler 
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et al., 2019; Zhong et al., 2019) (Fig. 1b). For each particle, 
the encoder network first uses encoder A (per tilt image) 
as a “feature extractor” to generate a unique intermediate 
embedding for each tilt image in a manner directly 
analogous to cryoDRGN’s encoder network. Encoder B then 
integrates these intermediate embeddings into a single 
latent embedding for the particle. The decoder network 
is supplied with this integrated latent embedding and a 
featurized voxel coordinate to reconstruct the signal at that 
coordinate. As in cryoDRGN, these operations are performed 
in reciprocal space. With this design, repeatedly evaluating 
the decoder network at multiple coordinates should allow 
for a rasterized reconstruction of the set of tilt images 
originally supplied to the encoder. Following a standard VAE 
(Kingma and Welling, 2013), we designed the network to be 
trained by minimizing a reconstruction loss between input 
and reconstructed images, and a latent loss quantified by 
the KL-divergence of the latent embedding from a standard 
normal distribution.

Once trained, we expected a tomoDRGN network to 
enable detailed and systematic interrogation of structural 
heterogeneity within the input dataset. For example, similar 
to cryoDRGN, tomoDRGN’s learned latent space could be 
visualized either directly along any sets of latent dimensions 
or using a dimensionality reduction technique such as 
UMAP (Becht et al., 2018), where we have empirically found 
that distinct clusters often correspond to compositionally 
heterogeneous states, and diffuse, unfeatured distributions 
correspond to continuous structural variation. We reasoned 
that latent embeddings, sampled individually or following a 
well-populated path in latent space, could then be passed 
to the decoder to generate corresponding 3-D volumes for 
direct visualization. We predicted additional analysis could 
be performed in 3-D voxel space using standard cryoDRGN 
tools (Kinman et al., 2023; Sun et al., 2022). To  complement 
tomoDRGN, we also constructed interactive tools to 
visualize and analyze heterogeneity in the spatial context 
of the original tomograms. Finally, we built tools to isolate 
particle subsets of interest for subsequent refinement  with 
traditional STA software (Fig. 1c) as an iterative approach 
we speculated could maximize the value of a tomographic 
dataset.

Sub-tomogram-specific image processing approaches.
Having conceived the general tomoDRGN framework, we 
next considered additional image processing procedures 
that we hypothesized might improve model quality and 
computational performance. First, we noted that STA 
software tools commonly implement weighting schemes 
to model the signal-to-noise ratio (SNR) of each image as 
a function of the image tilt angle (i.e., electron pathlength 
through the sample) and cumulative dose (i.e., accumulated 
radiative damage) (Bharat et al., 2015; Grant and Grigorieff, 
2015; Tegunov et al., 2021). Thus, we followed standard 
formulations for tilt weighting as the cosine of the stage 
tilt angle and dose weighting using fixed exposure curves, 

TomoDRGN - VAE TomoDRGN - Decoder Only CryoDRGN - VAETraditional STA

c

b

Dec

kx

ky

kz

Loss

Enc A Enc B z

Tilt1

Tilt2

Tilt3

Tilt4

Tilt5

Particle1

a

...

Particle1 Particlen

Tilt1

Tilt
2 Tilt 3

Ti
lt 4

Tilt5

500 nm

30 nm

Figure 1: A neural network architecture to analyze structurally 
heterogeneous particles imaged by cryo-ET. 
(a) A typical sample and data processing workflow to produce 
tomoDRGN inputs. The sample (e.g., a bacterial cell) is applied 
to a grid, plunge frozen, and optionally thinned. A series of TEM 
images of a target region are collected at different stage tilt angles. 
A tomographic volume is reconstructed using weighted back-
projection of all tilt images. Instances of the target particle are 
identified (blue boxes) and extracted as 3-D voxel arrays. Iterative 
sub-tomogram averaging (STA) is used to reconstruct a consensus 
density map. Per-particle 2-D tilt images are then re-extracted from 
the source tilt series images and parameters (e.g. pose, defocus, 
etc.) estimated from STA are associated with the images. 
(b) The tomoDRGN network architecture and training design. Each 
particle’s set of tilt images are independently passed through 
encoder A (Enc A), then jointly passed through encoder B (Enc B), 
thereby mapping all tilt images of a particle to one embedding (z) 
in a low dimensionality latent space. The decoder network (Dec) 
uses the latent embedding and a featurized voxel coordinate to 
decode a corresponding set of images pixel-by-pixel. Note that 
the decoder can learn a homogeneous structure by excluding the 
encoder module. The network is trained using a loss function (grey 
arrows) that depends on the input images, reconstructed images, 
and z (red arrows). 
(c) Graphical signposts for volumes generated or analyzed by 
distinct reconstruction tools. These signposts are used throughout 
this manuscript when volumes are displayed to clarify how they 
were generated.
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and we incorporated such weights into the reconstruction 
error calculated in tomoDRGN’s decoder network 
(Extended Data Fig. 1a). We expected such an approach 
would effectively downweigh the reconstruction loss of 
highly tilted and radiation damaged images, particularly 
at high spatial frequencies (Extended Data Fig. 1b-d).

Second, tomoDRGN’s coordinate-based decoder is trained 
by evaluating a set of spatial frequencies per tilt image that, 
by default, is identical for all tilt images (i.e., independent of 
cumulative dose imparted at each tilt). However, prior work 
has shown that the SNR at a given spatial frequency can 
be maximized at an optimal electron dose (Hayward and 
Glaeser, 1979) and that during cryo-EM movie alignment, 
filtering spatial frequencies in each frame by their optimal 
dose can improve the aligned micrograph quality (Glaeser, 
1979; Grant and Grigorieff, 2015). We therefore implemented 
a scheme applying optimal dose filtering to Fourier 
coordinates evaluated by the decoder during model training 
(Extended Data Fig. 1a). We expected that such filtering 
would restrict the set of spatial frequencies evaluated during 
decoder training without sacrificing 3-D reconstruction 
accuracy, thereby decreasing the computational burden 
of model training, particularly for high resolution 
datasets at large box sizes (Extended Data Fig. 1b-d).

Finally, real-world datasets frequently contain particles 
missing some tilt images, often due to upstream 
micrograph filtering (Extended Data Fig. 2a). To flexibly 
handle such nonuniform input data, we implemented 
an approach that surveys the dataset for the fewest tilt 
images associated with a single particle (n), then randomly 
samples n tilt images from each particle during model 
training and evaluation (Extended Data Fig. 2b). Because 
this approach subsets and permutes tilt images at random, 
encoder B must learn a permutation-invariant function 
mapping from encoder A’s output (per tilt image) to the 
final latent space (per particle), and we hypothesized that 
this permutation-invariant learning goal might provide 
added regularization that could decrease overfitting.

TomoDRGN robustly recovers simulated heterogeneity.
To judge the efficacy of these architectural choices, we 
simulated (Baxter et al., 2009) cryo-ET particle stacks 
(see Methods) corresponding to four assembly states 
(B-E) of the ribosomal large subunit (LSU) from E. coli 
(Davis et al., 2016; Davis and Williamson, 2017) (Fig. 2a). 
We initially tested the ability of the isolated decoder 
network to perform a homogeneous reconstruction of 
the class E particles (i.e., no encoder was trained, and no 
latent space learned). We observed rapid convergence 
of the decoder network, with it reproducing the 
ground-truth density maps within 10 epochs (Fig. 2b).

To assess tomoDRGN’s ability to faithfully embed and 
reconstruct structurally heterogeneous 3-D volumes, we 
next trained the full VAE network using particle stacks 
containing a labeled mixture of all four LSU structural classes. 

After training for 24 epochs, we observed four distinct 
clusters of latent embeddings by PCA and UMAP (Fig. 2c). 
Furthermore, the decoder network generated volumes from 
the center of each latent cluster that were consistent with 
the ground truth volumes (Fig. 2d). Finally, we quantified the 
fidelity of the embeddings to their corresponding ground 
truth volume classes on a per-particle basis. We observed 
a nearly one-to-one mapping between tomoDRGN particle 
embeddings and the correct ground truth class (Fig. 2e), 
indicating that the tomoDRGN network effectively learned 
discrete structural heterogeneity without supervision.

We next assessed the benefits of our aforementioned 
reconstruction loss weighting, lattice coordinate filtering, 
and random tilt sampling approaches. Testing the 
weighting and filtering schemes on the homogeneous 
reconstruction of the LSU class E ribosomes, we observed 
modest improvements to final resolution with either or 
both schemes over using neither. Notably, however, the 
lattice coordinate filtering scheme led to large reductions 
in wall clock runtime and GPU memory utilization 
(Extended Data Fig. 1c-e, Supplementary Table 1). To 
assess the efficacy of the random sampling scheme, we 
compared heterogeneous networks trained on the 4-class 
LSU dataset with and without random tilt sampling. We 
observed higher average volume correlation coefficients 
(CC) for tomoDRGN volumes against ground truth volumes 
when using random sampling. Random sampling also 
provided our hypothesized robustness to model overfitting 
compared to sequential tilt sampling, as evidenced by the 
stable and elevated average CCs during further model 
training (Extended Data Fig. 2c). Finally, using the random 
sampling scheme, we observed an interpretable and well-
featured latent space, even when using as few as 11 of the 
41 available tilt images for each particle (Extended Data 
Fig. 2d-e). We additionally measured the accuracy and 
consistency of volumes generated from each such latent 
embedding to the corresponding ground truth volume, per 
particle per epoch, again observing robust performance 
with the random sampling scheme (Extended Data Fig. 2f). 
Notably, each of these metrics exhibited a dramatic drop in 
quality when only using a single tilt sampled per particle. 
This observation was consistent with our prediction that the 
mapping of one image to one latent embedding would be 
unsuitable for tilt series data.

Combined, these strategies allowed efficient and flexible 
analysis of diverse input datasets, and we have benchmarked 
tomoDRGN performance for a range of network 
architectures (Extended Data Figs. 3-4, Supplemental 
Tables 2-4). Generally, we observe that performance is 
robust to network architecture hyperparameters, with slight 
improvements for deeper and narrower encoder A modules, 
and wider and shallower decoder modules.
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TomoDRGN uncovers structurally heterogeneous 
ribosomes imaged in situ.
We next assessed tomoDRGN’s performance on the 
publicly available cryo-ET dataset EMPIAR-10499 (Tegunov 
et al., 2021), using it to analyze heterogeneity among 
chloramphenicol-treated ribosomes imaged in the 
bacterium Mycoplasma pneumoniae. Following published 
STA methods (Tegunov et al., 2021), we reproduced a Nyquist-

limited ~3.5 Å resolution reconstruction of the 70S ribosome 
(Fig. 3a). We subsequently extracted corresponding 
ribosome images from the aligned tilt micrographs and 
used this particle stack to train a homogeneous tomoDRGN 
model. The tomoDRGN-reconstructed volume recapitulated 
high-resolution features observed in the STA map (Fig. 3a-
c), highlighting the tomoDRGN decoder network’s ability to 
learn to accurately represent high-resolution structures.
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Figure 2: TomoDRGN recovers known heterogeneity in simulated datasets. 
(a) Illustration of the method used to simulate tilt series particle stacks corresponding to four assembly states (B-E) (Davis et al., 2016) of 
the bacterial large ribosomal subunit. 
(b) Left, a tomoDRGN homogeneous network reconstruction of the simulated class E dataset after 50 epochs of training at a resolution 
of 3.55 Å/px. Right, FSC between the tomoDRGN reconstruction and the ground truth volume at each of 50 epochs of training (purple to 
yellow). 
(c) First two principal components (left) and UMAP embeddings (right) of tomoDRGN latent space when trained on the simulated four 
class dataset, colored by k=4 k-means classification of latent space. 
(d) Ground truth ribosomal volumes (top) and corresponding tomoDRGN-reconstructed volumes (bottom) sampled from the median 
latent encoding of each of the k=4 k-means classes in (c).
(e) Confusion matrix of k-means clustering class labels from (c) against ground truth class labels.
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Encouraged by this result, we trained a heterogeneous 
tomoDRGN model on a down-sampled version of the 
particle stack and observed several distinct clusters in the 
resulting latent space (Fig. 4a, left). Generating volumes 
from these populated regions of latent space revealed 
that the majority of latent encodings corresponded to 
bonafide 70S ribosomes, as expected, whereas one subset 
corresponded to 50S ribosomal subunits, and another 
subset corresponded to apparent non-ribosomal particles 
(Fig. 4a, right). The non-ribosomal particles were further 
characterized by localizing them within each tomogram 
and providing them to RELION for ab initio reconstruction. 
Doing so suggested that most of these particles were false 
positive particle picks (Extended Data Fig. 5), highlighting 
tomoDRGN’s efficacy in sorting particles by structural 
heterogeneity generally, and in identifying errant particle 
picks specifically. We explored other approaches to separate 
70S, 50S, and non-ribosomal particles, including using the 
trained tomoDRGN model to generate unique volumes 
corresponding to every particle’s latent embedding and 
either computing each volume’s similarity to the 70S STA 
map (Fig. 4b) or performing principal component analysis 
(PCA) in voxel space (Fig. 4c). Although these approaches 
produced results consistent with the clusters identified in 

latent space, for this dataset, the latent space clustering 
most clearly separated the 70S, 50S, and non-ribosomal 
particles.

Guided by the latent embeddings, we next filtered out 
the non-ribosomal particles and used this ‘clean’ subset 
to train a new heterogeneous tomoDRGN model. The 
resulting latent space and generated volumes revealed an 
array of structurally heterogeneous ribosomes (Fig. 4d). 
Prior analyses of this dataset focusing on translation cycle 
heterogeneity (Xue et al., 2022) identified a major class 
with the A- and P-tRNA binding sites occupied by tRNAs 
and several minor classes featuring variable occupancy 
and positions of tRNAs in the A and P sites and EF-Tu in 
the A site. Consistently, we observed that these states are 
highly represented in our sampled volumes, and we further 
observed additional conformational and compositional 
heterogeneity throughout the ribosome (Supplemental 
Movie 1). For example, we found a set of volumes lacking 
EF-Tu and with helix 17 of the 16S bent towards the now-
unoccupied EF-Tu binding site. In other volumes, we 
observed pronounced motions of the L1 stalk. We also 
observed volumes with clear density for r-proteins L7/L12 in 
the expected 1:4 ratio of L10CTD:L7NTD/L12NTD dimer of dimers. 
This observation was notable as this structural element is 
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Figure 3: TomoDRGN resolves high resolution features from sub-tomograms collected in situ. 
(a) M. pneumoniae in situ ribosomal volume obtained from traditional STA processing (n=22,291 particles) (top) and tomoDRGN 
homogeneous reconstruction of the same particles (bottom). 
(b) Density maps from the tomoDRGN homogeneous reconstruction around indicated ribosome components. 
(c) Map-to-map Fourier Shell Correlations (FSC) of three tomoDRGN reconstructions of the particle stack in (a) extracted at indicated box 
and pixel sizes against corresponding STA volumes. Circles denote the Nyquist limit for each particle stack.
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Figure 4: TomoDRGN uncovers structural heterogeneity in ribosomes imaged in situ
(a) UMAP of tomoDRGN latent embeddings (n=22,291 particles) shown as gray kernel density estimate (KDE), overlaid with scatter plot 
depicting latent embedding locations of large-ribosomal-subunit-only (yellow) or non-ribosomal particles (blue) identified via k=100 
k-means classification of latent space and manual inspection of the 100 related volumes. Representative volumes generated from latent 
embeddings annotated as 70S, 50S, or non-ribosomal (NR) also depicted.
(b) Volumes (box=96 px) were generated from every particle’s latent embedding, and volumetric cross-correlation (CC) between the 
70S STA map and these volumes was calculated. Histograms of CC are shown for volumes assigned as 70S (top), 50S (middle) and non-
ribosomal (bottom) particles as in (a).  
(c) Volumes from panel (b) were subjected to principal component analysis. UMAP dimensionality reduction of the first 128 principal 
components is plotted as a KDE with scatterplot corresponding to assignments of 70S, 50S, or non-ribosomal from (a) superimposed.
(d) UMAP of tomoDRGN latent embeddings (n=20,981; non-ribosomal particles excluded). Colored volumes sampled from correspondingly 
colored points on UMAP plot are shown with red asterisks and insets highlighting regions of notable structural variability. A transparent 
grey volume corresponding to a tomoDRGN reconstruction of a 70S•EF-Tu volume is provided for visual reference. (continued)
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often unresolved in cryo-EM maps (Fromm et al., 2023; 
Stojkovic et al., 2020), likely due to this stalk’s dynamic nature 
and L7/L12’s ability to exchange off of the particle during 
purification (Chen et al., 2012). Observing this structure 
highlighted tomoDRGN’s ability to identify low abundance 
classes and emphasized the promise of the purification-free 
in situ structural analyses afforded by cryo-ET. 

We next applied MAVEn (Kinman et al., 2023; Sun et al., 
2022), which has previously been used to systematically 
interrogate the structural heterogeneity of volume 
ensembles guided by atomic models. Here, we observed a 
broadly uniform distribution of occupancies for all queried 
structural elements (i.e., rRNA helices and r-proteins), with 
a notable exception of the 50S particle block, which lacks 
occupancy for any small subunit structural elements (Fig. 
4e). We thus concluded that compositionally heterogeneous 
assembly intermediates were rare in this sample.

TomoDRGN learns intermolecular heterogeneity.
A grand promise of in situ cryo-ET is its potential to 
structurally characterize interactions between individual 
macromolecular complexes and their local environment 
(Tegunov et al., 2021; Turk and Baumeister, 2020). We 
hypothesized that tomoDRGN might perform well in 
this regard as its variational autoencoder architecture 
has a significant capacity to learn heterogeneity from 
the provided images, independent of the images being 
tightly or loosely cropped to the complexes under 
consideration. Indeed, our initial analysis revealed volume 
classes containing apparent intermolecular density 
truncated by the extracted box borders (Fig. 4d). To test 
tomoDRGN’s ability to analyze inter-complex structural 
heterogeneity, we extracted each ribosomal particle with 
a  larger real-space box, effectively surveying the molecular 
neighborhood of each ribosome in the imaged cell. Training 
a new tomoDRGN model with these images revealed a 
similarly featured latent space with correspondingly diverse 
volumes (Fig. 5a). Many of the structures appeared to be 
disomes and trisomes, as previously reported (Tegunov 
et al., 2021), with measures of interparticle distance 
and the angular distribution to each ribosome’s nearest 
neighbor consistent with this interpretation (Fig. 5b). 
Intriguingly, the 50S population had an exceptionally 
broad distribution of nearest neighbor distances, and a 
subset of tomograms consisted almost exclusively of 50S 
ribosomes, whereas all other tomograms bore a more 
balanced distribution of all structural classes (Fig. 5b-c). 

Through this analysis, we observed a previously unreported 
ribosome structure with additional density corresponding 
to a lipid bilayer (Fig. 5a). To validate that this observed 
membrane density was not an artifact of the neural network, 
we mapped this set of apparently membrane-associated 

ribosomes to their original tomograms and observed that 
they exclusively corresponded to particles at the cell’s 
surface (Fig. 5d). To further identify residual heterogeneity 
within this group, we trained a new tomoDRGN model on 
this particle subset. We observed a relatively unfeatured 
latent space, with the majority (~80%, as quantified by 
MAVEn), of sampled volumes bearing a flexible periplasmic 
density protruding from the membrane (Fig. 5e). Notably, 
we observed significant relative motion between the 
ribosome and the adjacent membrane, indicating that the 
ribosome is not held in rigid alignment with the membrane 
and holotranslocon during translocation (Supplemental 
Movie 2). Traditional STA on this periplasmic-positive 
subpopulation of ribosomes further resolved the 
periplasmic density, as well as smaller arches of density 
connecting the ribosome to the membrane (Fig. 5f, 
Extended Data Fig. 6c). Rigid body docking using atomic 
models of likely transmembrane protein complexes into this 
density supported that we had identified ribosomes bound 
to SecDF, a subcomplex of the Sec holotranslocon with a 
relatively large extracellular globular domain encoded in 
the M. pneumoniae genome (Fig. 5f). This result highlighted 
the efficacy of tomoDRGN’s iterative particle curation and 
refinement approach in unveiling new structures buried in 
highly heterogeneous in situ datasets.

DISCUSSION
In this work, we introduce tomoDRGN, which, to our 
knowledge, is the first neural network framework capable of 
simultaneously modeling compositional and conformational 
heterogeneity from cryo-ET data on a per-particle basis. 
TomoDRGN achieves this using a bespoke deep learning 
architecture and numerous accelerations designed to 
exploit redundancies inherent to cryo-ET data collection. We 
note that the major heterogeneity analyses demonstrated 
in this manuscript were also tested with cryoDRGN (Zhong 
et al., 2021). However, cryoDRGN ultimately did not match 
tomoDRGN’s performance on cryo-ET data as it incorrectly 
classified simulated data, predominantly learned non-
biological structural heterogeneity, and produced highly 
variable latent embeddings and volumes for different tilt 
images of the same particle (Extended Data Figs. 7-9). 
We note that an alternative approach of mapping single 
sub-tomogram volumes to single latent coordinates would 
theoretically function within the cryoDRGN framework but 
would: 1) be less computationally tractable due to cubic 
scaling of the number of voxel coordinates to be evaluated 
per particle; and 2) may be predisposed towards learning 
heterogeneity driven by missing wedge artifacts common 
to sub-tomogram volumes.

Other tools to explore conformational heterogeneity from 
a cryo-ET dataset exist (Bharat and Scheres, 2016; Harastani 
et al., 2021; 2022; Himes and Zhang, 2018). However, they 

(e) MAVEn analysis (Sun et al., 2022) of 500 volumes sampled from the tomoDRGN model in panel (d) plotted as a clustered heatmap 
with columns corresponding to proteins and rRNA structural elements (Ward-linkage, Euclidean-distance), and rows corresponding 
to the 500 sampled volumes (Ward-linkage, Correlation-distance). Distinct volume classes corresponding to 50S and 70S particles as 
identified by a row-wise threshold on this clustermap are also shown.
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Figure 5: TomoDRGN captures intermolecular heterogeneity in situ.
(a) UMAP of tomoDRGN latent embeddings of particles (n=20,981) re-extracted with box size ~3x particle radius. Colored volumes 
sampled from correspondingly colored points in UMAP are shown.
(b) Violin plot of the distance from each particle in the indicated classes from panel (a) to its nearest neighbor ribosome. Distribution 
colors are paired with those in (a). The right bound of the x-axis corresponds to the box diameter, and the red interval on the x-axis 
corresponds to typical inter-ribosome distances in a prokaryotic polysome. Mollweide projection histograms for each class highlighted in 
panel (a), depicts directions to each ribosome’s nearest neighbor ribosome, following rotation to the consensus pose. 
(c) Distribution of k=20 k-means classification of latent embeddings per tomogram. Column width is proportional to each tomogram’s 
fraction of the total particle count. Within a column, the height of each color is proportional to the population of that k-means class within 
that tomogram. Classes are colored as in (a).
(d) Screenshot from tomoDRGN’s interactive tomogram viewer showing all ribosomes for a single tomogram (blue cones) with ribosomes 
corresponding to membrane-associated classes further annotated as red spheres.
(e) UMAP of tomoDRGN latent embeddings (n=482) of membrane-associated ribosomes. Colored volumes are sampled from 
correspondingly colored points in latent space. Relative occupancy of globular periplasmic density (n=482) is plotted as a histogram with 
a red line noting manually assigned threshold defining particles bearing the periplasmic density (n=380).
(f) STA reconstruction of membrane-associated ribosomes bearing periplasmic density identified by tomoDRGN with docked atomic 
model of Mycoplasma pneumoniae SecDF predicted using Alphafold (AF: A0A0H3DPH3) .
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each rely on some degree of imposed prior knowledge, 
either in the form of “mass conservation” to describe 
continuous changes from a consensus structure, which is 
often derived from a provided atomic model (Harastani et 
al., 2021; 2022); assumptions of linear relationships between 
structures (Himes and Zhang, 2018); or the assertion that 
a small number of discrete structures exist (Bharat and 
Scheres, 2016). In contrast, the cryoDRGN/tomoDRGN 
approaches provide a greater degree of generality that 
we have found enables largely unsupervised learning 
of highly complex combinations of compositional and 
continuous conformational heterogeneity. Given the extent 
of structural heterogeneity observed with cryoDRGN in 
single particle datasets using purified samples (Sekne et al., 
2022; Vasyliuk et al., 2022), we expect tomoDRGN to uncover 
similar structural variation within a rapidly expanding set of 
samples imaged in situ with cryo-ET.

In addition to characterizing the structural heterogeneity 
of isolated particles, we expect that tomoDRGN’s ability 
to reanalyze particle stacks at different spatial scales (i.e., 
different real space box sizes) will prove widely useful 
in correlating intramolecular structural changes with 
structural variability in areas adjacent to the particle 
(Fig. 6). For example, when analyzing isolated ribosomal 
particles in EMPIAR-10499, we identified a set of particles 
decoding EF-Tu•tRNA and, when analyzing particles in 
a larger spatial context, we found a set of ribosomes 
associated with the cell membrane. A straightforward 

a b

Figure 6: TomoDRGN visualizes structurally heterogeneous macromolecular complexes with spatial context. 
(a) Ribosomes from one EMPIAR-10499 tomogram rendered in ChimeraX. Volumes were generated for each ribosome using tomoDRGN 
and colored according to the intramolecular latent classification shown in Fig. 4d, and positioned correspondingly within the reconstructed 
cell. Transparent ribosomes correspond to k=20 k-means classes not highlighted in Fig. 4d.
(b) Ribosomes from the same tomogram depicted in (a) rendered in ChimeraX. Volumes were generated for each ribosome and colored 
according to the intermolecular latent classification shown in Fig. 5a, and positioned correspondingly within the reconstructed cell. 
Transparent ribosomes correspond to k=20 k-means classes not highlighted in Fig. 5a.

comparison enabled calculating the co-occurrence of 
these properties, revealing that approximately 13% of 
the membrane-associated ribosomes also appear to be 
decoding EF-Tu•tRNA. Of particular note, tomoDRGN allows 
us to generate a unique 3-D volume corresponding to each 
particle’s latent embedding. We anticipate this approach 
will allow researchers to populate low SNR tomograms with 
particle-specific density maps at approximately nanometer 
resolution and to explore the resultant spatial distributions 
of heterogeneous structures. 

Finally, the analyses enabled by tomoDRGN are inherently 
iterable. Our initial tomoDRGN analysis of EMPIAR-10499 
revealed a population of non-ribosomal particles that we 
had failed to filter with traditional classification-based 
approaches. Excluding such particles and retraining at 
multiple spatial scales resolved intra- and inter-molecular 
structural heterogeneity, and retraining exclusively on 
a subset of membrane-associated ribosomes identified 
extracellular density that likely corresponded to the SecDF 
subcomplex. Given that tomoDRGN has the potential to 
identify many such distinct classes, we encourage users to 
embrace this iterative, branching approach. Some recently 
introduced software packages (Rice et al., 2022; Tegunov 
et al., 2021) explicitly support such “molecular sociology” 
where co-refinement of multiple distinct structures derived 
from a common data source enables global improvement of 
map quality. We anticipate tomoDRGN will form a virtuous 
cycle when interfacing with such software.
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MATERIALS AND METHODS
TomoDRGN design and software implementation
General architecture
TomoDRGN is forked from cryoDRGN, and although we 
summarize the core aspects of the method here, readers 
are pointed to related cryoDRGN publications for further 
details (Bepler et al., 2019; Kinman et al., 2023; Zhong et al., 
2021; Zhong et al., 2019). In brief, tomoDRGN is a variational 
autoencoder (VAE) with encoder and decoder networks 
comprised of multi-layer perceptrons (MLPs). TomoDRGN’s 
encoder learns a function ( ) to map a set of j distinct tilt 
images (size ×  pixels) of particle i to a low dimensional 
latent encoding zi of dimension z; that is, :
. The encoder MLP is comprised of two sub-networks that 
process j tilt images for each particle as follows. First, the 
2-D Hartley transform of each tilt image is passed separately 
through encoder A to produce a set of j intermediate 
encodings. These j intermediate encodings are then 
pooled and passed together through encoder B to output 
the particle’s final latent embedding zi. The pooling step 
concatenates intermediate encodings along the tilt image 
axis by default, but also supports operations such as max 
and mean, which are inherently permutation-invariant. All 
experiments presented here concatenate the intermediate 
encodings. 

TomoDRGN’s decoder follows from that of cryoDRGN (Zhong 
et al., 2021), and uses a Gaussian featurization scheme for 
positional encoding in Fourier space (Tancik et al., 2020) as 
follows. Spatial coordinates are normalized to span [-0.5, 
0.5] in each dimension, and a (fixed) positional encoder 
transforms each spatial coordinate to a basis set of D 
sinusoids with frequencies sampled from a scaled standard 
normal _ × (0,1) for each spatial coordinate 
axis, where D is the box size of an input image, and feat_
sigma is set to 0.5. These positionally encoded coordinates, 
concatenated with the z-D latent coordinate, are then 
passed to the decoder; that is, in totality,, :  
Unless otherwise specified, models were trained for 50 
epochs with batch size 1 (particle), AdamW optimizer with 
learning rate 0.0002, and weight decay 0.

Training system
Input images are modeled as linear 2-D projections of 
3-D volumes, convolved by the contrast transfer function 
(CTF), with externally-derived rotation, translation, and CTF 
parameters. Heterogeneity among volumes is modeled 
via a continuous latent space sampled by a latent variable 
z per particle. The latent encoding for a given image  is 
taken as the maximum a posteriori of a Gaussian distribution 
parameterized by outputs from the encoder network, |   
and Σ | , whereas the prior on the latent distribution is a 
standard normal distribution (0, ). Thus, the variational 
encoder ( | ) produces a variational approximation of 
the true posterior ( | ). 

The coordinate-based decoder models structures in 
reciprocal space: given a spatial frequency  and a 

latent variable , the decoder predicts the corresponding 
voxel intensity as ( | , ). Applying the Fourier Slice 
Theorem (Bracewell, 1956), 3-D Fourier coordinates 
corresponding to 2-D projection image  are derived by 
rotating a 2-D lattice by the orientation of the volume  
during imaging. Given a fixed latent coordinate sampled 
from ( | ) and the posed coordinate lattice, the 
reciprocal space image is reconstructed pixel-by-pixel via 
the decoder ( | , ).. The reconstructed image is then 
translated in-plane and multiplied by the CTF. The negative 
log-likelihood of the image is then computed as the 
mean squared error between the input and reconstructed 
image. The optimization function is the sum of the image 
reconstruction error and the KL divergence (KLD) of the 
latent encoding:

( ; , ) = (log ( | )) ( ( | )|| ( ))

In this equation, the regularizing KLD term is weighted by   

, which is set to | |  

where D is the box size, t is the number of tilts, and | |  is the 
dimensionality of the latent space.

Lattice masking and reconstruction weighting
Critical dose is calculated for each spatial frequency using an 
empirical exposure-dependent amplitude attenuation curve 
derived for cryo-EM data  (Grant and Grigorieff, 2015). The 
optimal dose is approximated to 2.51284 ×   
as in the original study (Grant and Grigorieff, 2015; Hayward 
and Glaeser, 1979). Spatial frequencies (coordinates) of 
a tilt image exceeding the corresponding optimal doses 
are excluded from decoder network evaluation and loss 
calculation by a lattice mask during network training. 
Following error calculation of the input image against 
the reconstructed and CTF-weighted voxels, the squared 
differences are weighted (1) per-frequency by the exposure 
dependent amplitude attenuation curve (a function of tilt 
image index and spatial frequency), and (2) globally by the 
cosine of the stage tilt angle (a function of tilt image index). 
This weighted reconstruction error is backpropagated 
accordingly.

Random tilt sampling
During dataset initialization, the number of tilt images per 
particle is parsed via the rlnGroupName star file column 
using the syntax in Warp/M of tomogramID_particleID. The 
minimal number of tilt images present for any particle is then 
stored as the number of images to be sampled from each 
particle during network training and evaluation (this value 
also sets the input dimensionality of encoder B when using 
concatenation pooling). By default, sampling is performed 
randomly without replacement per-particle, and the subset 
and ordering of sampled tilts is updated each time a particle 
is retrieved during training or evaluation.

Simulated dataset generation
Cryo-ET data simulation was performed using scripts in 
the cryoSRPNT (cryo-EM Simulation of Realistic Particles 
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via Noise Terms) GitHub repository. Density maps of four 
assembly states of the bacterial 50S ribosome (classes B - E) 
were obtained from EMD-8440, EMD-8441, EMD-8445, and 
EMD-8450, respectively  (Davis et al., 2016). The project3d.
py script was used to create noiseless projections of each 
volume as follows. First 5,000 random particle poses were 
sampled over SO(3). Each randomly posed particle was then 
rotated following a dose-symmetric tilt series scheme from 
0° to ±60° with 3° steps in groups of 2 over 41 tilts, resulting 
in a total of 205,000 unique poses per volume. Each posed 
volume was projected along the z-axis to create noiseless 
images. 

The acn.py script was used to corrupt the noiseless 
projections using a standard cryo-EM image formation 
model (Baxter et al., 2009) augmented by tilt-series specific 
subroutines as follows. First, noiseless projections were 
Fourier-transformed, dose-weighted following an empirical 
exposure dependent amplitude attenuation curve at 3 e-/Å2/
tilt to simulate SNR decrease due to radiation damage (Grant 
and Grigorieff, 2015), and inverse Fourier-transformed. 
Structural noise was added with an SNR of 1.4, and particles 
were then weighted by cosine(tilt) to simulate SNR decrease 
due to increased sample thickness. Projections were then 
convolved with the 2-D CTF with defocus values sampled 
from a mixture of Gaussian-distributed defoci with means 
between -1.5 µm to -3.5 µm in 0.5 µm steps and a standard 
deviation of 0.3 µm. Other CTF parameters included no 
astigmatism, 300 kV accelerating voltage, 2.7 mm spherical 
aberration, 0.1 amplitude contrast ratio, and 0° phase shift. 
Finally, shot noise was added with a SNR of 0.1, for a final SNR 
of 0.05. Particle stacks of each class were Fourier cropped to 
box sizes of 256px (bin1), 128px (bin2), and 64px (bin4). 

TomoDRGN network training on simulated data
TomoDRGN homogeneous network training was performed 
on the 5,000 simulated class E particles. TomoDRGN 
heterogeneous network training was performed on 
all 20,000 simulated particles from classes B-E. Unless 
otherwise specified, figures illustrate results on the bin2 
datasets, with network architectures summarized as nodes_
per_layer x layers as follows: of 128x3 (encoder A), 128x3 
(encoder B), and 256x3 (decoder). The dimensionality of the 
intermediate encoding was 32 and that of the final latent 
encoding was 128. Each model was trained utilizing dose 
and tilt loss weighting, dose frequency masking, and random 
tilt sampling, unless specified otherwise. Classification was 
performed directly on the latent embeddings with k=4 
k-means clustering as implemented in scikit-learn. The 
dataset’s latent value nearest each k-means cluster center 
was used to generate a 3-D volume representative of that 
cluster.

Sub-tomogram averaging of EMPIAR-10499 ribosomes
Raw tilt movie data was downloaded from EMPIAR-10499. 
Movies were aligned and initial CTF estimation was 
performed in Warp (Tegunov and Cramer, 2019) as 
previously (Tegunov et al., 2021). Automated fiducial-based 

tilt series alignment was performed using dautoalign4warp 
(Burt et al., 2021) within the Dynamo package running in a 
Matlab environment (Castano-Diez et al., 2012). Alignment 
parameters were then used to generate tomograms at 10 
Å/px in Warp. Template matching was performed in Warp 
using a 40 Å lowpass filtered ribosome volume generated 
from manually picked particles, keeping particles with a 
minimum separation of 80 Å (974,804 particles). The top 3% 
of particles by figure-of-merit across all tomograms were 
kept (29,245 particles). Sub-tomograms were extracted 
in Warp at 10 Å/px. Ab initio model generation and 3-D 
refinement were performed in RELION 3.1 (Bharat and 
Scheres, 2016) resulting in a density map with Nyquist-
limited resolution. Sub-tomograms were re-extracted in 
Warp at 4 Å/px for further RELION 3-D refinement and 3-D 
classification with k=4 classes to remove false positive 
particle picks. The remaining 22,291 ribosomal particles 
were refined to a nominal resolution of 8.1 Å.  Between 
each round of refinement and classification, particles 
were deduplicated in RELION with a cutoff distance of 80Å 
(removing a total of 360 particles throughout processing). 
The final 22,291 particles were imported to M and to 
produce a 3.5 Å resolution map as reported previously 
(Tegunov et al., 2021). Particles were then exported as image 
series sub-tomograms from M at several pixel and box sizes 
for tomoDRGN training, including three “single ribosome 
diameter” scales: 96 px at 3.71 Å/px, 210 px at 1.71 Å/px, 352 
px at 1.71 Å; and one “multiple ribosome diameter” scale: 
200 px at 3.71 Å/px. Particles were also exported as volume 
series sub-tomograms using M at 64 px 6 Å/px and 192 px 
4 Å/px for validation of tomoDRGN heterogeneity analysis 
with traditional STA tools (see below) and for generation 
of requisite metadata for mapping particles to tomogram-
contextualized locations in the tomoDRGN analysis Jupyter 
notebook.

TomoDRGN network training on EMPIAR-10499
TomoDRGN homogeneous network training was performed 
on the 22,291 image series particles extracted at each of the 
“single ribosome diameter” image series sub-tomograms 
described above, or on select subsets at 96 px at 3.71 Å/px 
for interrogating heterogeneity in specific particle subsets. 
Unless specified otherwise, the network architecture was 
512x3 (decoder). Each model was trained utilizing dose and 
tilt loss weighting, dose frequency masking, and random tilt 
sampling. 

TomoDRGN heterogeneous network training was performed 
on the same stack of 22,291 image series particles at box 96 
px and 3.71 Å/px. Unless specified otherwise, the network 
architecture was 256x3 (encoder A), 256x3 (encoder B), and 
256x3 (decoder) with the dimensionality of the intermediate 
encoding set to 128, and that of the final latent encoding 
set to 128. Each model was trained utilizing dose and tilt 
loss weighting, dose frequency masking, and random tilt 
sampling. Classification was performed directly on the 
latent embeddings with either k=20 (used for general 
visualization) or k=100 (used for detailed visualization and 
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particle filtering) k-means clustering as above. The dataset’s 
latent value nearest each k-means cluster center was used 
to generate a 3-D volume representative of that cluster. 
Following exclusion of 1,310 non-ribosomal particles 
by separation of such volumes from k-100 classification, 
the remaining 20,981 particles were used to train new 
tomoDRGN models at box sizes of 96 and 200 px with 3.71 
Å/px sampling. Membrane associated ribosomes (482) 
identified by k-100 classification of the 200 px trained 
dataset were further isolated to train a new tomoDRGN 
model with the parameters noted as above.

Visualization and validation
Python scripts
A number of Python scripts were generated to quantify 
various properties of tomoDRGN outputs. Classification 
accuracy of tomoDRGN latent encodings learned for 
simulated datasets was evaluated by generating a 
confusion matrix (Fig. 2e). Classification reproducibility 
was evaluated for 100 randomly initialized classifications 
by calculating the Adjusted Rand Index (ARI) (Hubert and 
Arabie, 1985) (Extended Data Fig. 7f). The ARI measures 
a label-permutation-invariant similarity between two 
sets of clusterings and scales from 0 (random labeling) to 
1 (identical labeling). Here, we used ARI to measure the 
similarity between the tomoDRGN or cryoDRGN latent 
clusters and the ground truth class labels.

Volume consistency was assessed by calculating the map-
map correlation coefficient (Real space) and map-map 
FSC scripts available within the tomoDRGN software. 
Before calculating map-map FSC curves, a soft mask was 
calculated and applied in Real space. Masks were defined 
by binarizing the map at ½ of the 99th voxel intensity 
percentile, dilating the mask by 3 px, and softening the 
mask using a falling cosine edge applied over 10 px. 
For computational efficiency, in some instances, the 
map-map correlation coefficient metric (CC) (Afonine et 
al., 2018) was used to quantify map-to-map similarity. 

Heterogeneity of a set of EMPIAR-10499 pre-filtered 
ribosome volumes generated by tomoDRGN was quantified 
by generating all volumes from the final epoch of training’s 
latent values and either (1) calculating the map-map CC to 
the STA 70S map for each tomoDRGN volume (Fig. 4b), or 
(2) performing principal component analysis on the array 
of all volume’s voxels (shape ×  )  followed by 
UMAP dimensionality reduction of the first 128 principal 
components (Fig. 4c).

Finally, Python scripts were used to identify each particle’s 
nearest neighbor in each tomogram, calculate the distance 
to the nearest neighbor, and calculate the angle to the 
nearest neighbor after rotating to the STA consensus 
reference frame (Fig. 5c).

Volume subset validation
Subsets of the EMPIAR-10499 ribosomes were identified 

by tomoDRGN as non-ribosomal (n=1,310), 50S (n=852), 
70S (n=20,129), or membrane-associated (n=482). Non-
ribosomal particles were reprocessed in RELION 3.1 using 
ab initio volume generation with k=5 volume classes 
and all other parameters at their defaults. The 50S, 70S, 
and membrane-associated ribosome populations were 
reprocessed in RELION 3.1 using 3-D refinement against a 
corresponding real-space cropped 70S volume lowpass 
filtered to 60 Å. The same three particle subsets were also 
used to train tomoDRGN homogeneous networks as an 
additional validation, with identical training parameters to 
the full particle stack training detailed above.

Visualization of tomoDRGN volumes in situ
The subtomo2chimerax script (https://zenodo.org/
record/6820119) was adapted to handle tomoDRGN’s 
unique sub-tomogram volumes per particle and is 
implemented in tomoDRGN. This script places each 
particle’s volume at its source location and orientation in 
the tomogram context using ChimeraX for visualization 
(Goddard et al., 2018; Pettersen et al., 2021). All volumes 
corresponding to EMPIAR-10499 tomogram 00256 were 
generated by tomoDRGN at box size 64 px and 5.55 Å/px 
using latent coordinates from tomoDRGN models in Fig. 4d 
and Fig. 5a, and placed in tomogram 00256 with coordinate 
and angle values extracted from the STA refinement in M.

Atomic model-guided analyses
To aid interpretation of tomoDRGN density maps, atomic 
models of the 70S ribosome (7PHA, 7PHB, and 4V89 
which highlighted the L7/L12 dimers) were docked into 
density maps as rigid bodies using ChimeraX. The rRNA of 
7PHB was segmented into distinct chains corresponding 
to rRNA helices (Petrov et al., 2014) following the MAVEn 
protocol (Kinman et al., 2023) for model-based analysis of 
volume ensembles (https://github.com/lkinman/MAVEn). 
The predicted atomic model for M.pneumoniae SecDF 
was downloaded from AlphaFold (ID: A0A0H3DPH3) and 
docked into the membrane-associated ribosome STA map in 
ChimeraX as a rigid body. Other components of the canonical 
Sec holotranslocon and oligosaccharyltransferases were 
either absent in the M. pneumoniae genome or lacked the 
observed extracellular domain.

CryoDRGN network training
CryoDRGN v0.3.4 was used to train models for both the 
simulated ribosome dataset (n=20,000) and the unfiltered 
EMPIAR-10499 dataset (n=22,291), using corresponding 
simulated or STA-derived poses and CTF parameters. 
Because cryoDRGN treats each input image independently, 
each dataset was reshaped to collapse the tilt axis dimension, 
resulting in particle stacks of size n=820,000 and n=913,931, 
respectively. Networks were trained with architecture 128x3 
or 128x6 (encoder), latent dimensionality 8 or 128, and 
256x3 (decoder), as annotated. All models were trained 
with hyperparameters intended to maximize similarity to 
the respective tomoDRGN analysis: batch size 40, gaussian 
positional featurization, 50 epochs of training, automatic 
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mixed precision enabled, and all other parameters adopting 
default values. Latent space classification and volume 
sampling were performed as described for tomoDRGN 
above. 

Performance benchmarking
All tomoDRGN and cryoDRGN models were trained on a 
cluster with nodes each equipped with 2x Intel Xeon Gold 
6242R CPU (3.10 GHz, 512 GB RAM) and 2x Nvidia GeForce 
RTX 3090. Reported training times may in some cases be 
overestimates as up to two jobs were allowed to train or 
evaluate simultaneously on the same node.
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SUPPLEMENTARY MOVIES
Supplemental Movie 1: Structural heterogeneity in the 
large ribosomal subunit.
Volumes were sampled from the tomoDRGN model in Fig. 
4d using k=100 k-means clustering of latent space. Density 
for the 30S was removed using the Volume Zone feature in 
ChimeraX, guided by atomic model 7PHB, to reveal distinct 
conformation and compositional states of the large subunit. 
Note conformational and compositional heterogeneity in 
tRNA and elongation factor binding sites, which are found 
along the midline of the particle.

Supplemental Movie 2: Membrane-associated ribosomes 
exhibit flexible attachment.
Volumes were generated for all particles used to train the 
model in Fig. 5d. The tertile of volumes with highest SecDF 
occupancy are displayed, ordered by increasing occupancy 
(n = 162). Note significant dynamics in the orientation of the 
membrane relative to the associated ribosome.
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EXTENDED DATA FIGURES
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Extended Data Figure 1: Training on a weighted subset of pixels improves reconstruction quality and compute performance.
(a) Graphical overview of the dose filtering scheme (applied upstream of the decoder) and dose and tilt weighting scheme (applied during 
reconstruction error calculation) for a single representative tilt image. Filtering: the fixed optimal exposure curve is used to determine  
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which spatial frequencies will be considered as a function of dose; the decoder processes only Fourier lattice coordinates within this 
mask (green lattice circle). Weighting: the squared error of the reconstructed Fourier slice is weighted per-frequency by the exposure-
dependent amplitude attenuation curve and per-slice by the cosine of the corresponding stage tilt angle, before mean reduction and 
backpropagation (red arrows).
(b) Relative weight of each tilt image assigned to a particle’s reconstruction error during model training as a function of spatial frequencies 
(x-axis), and tilt and dose, which are colored yellow to blue from low-to-high dose and tilt angle, assuming a dose symmetric tilt scheme 
(Hagen et al., 2017).
(c) Map-map FSC of simulated class E large ribosomal subunit volumes (Davis et al., 2016) compared to tomoDRGN homogeneous network 
reconstructions in the presence or absence of the weighting or masking schemes at varying box and pixel sizes. 
(d) Spatial frequencies corresponding to FSC=0.5 map-map correlation with the ground truth volume plotted against wall time for model 
training. 
(e) Final tomoDRGN reconstructed volumes (left and center) and ground truth volumes (right) in the presence or absence of the weighting 
or masking schemes at box and pixel sizes assessed in panels (c) and (d).
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Extended Data Figure 2: Random per epoch tilt selection enables flexible and robust model training for datasets with non-uniform 
numbers of tilt-images per particle.
(a) Graphical summary of a dataset with non-uniform numbers of tilt images per particle. Here, the minimum number of tilt images for 
any particle is 3.
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(b) Corresponding tomoDRGN network architecture for random sampling and ordering of 3 tilt images per particle. 
(c) Mean per-class volumetric correlation coefficient for identical tomoDRGN models trained on 41 sequentially sampled tilts (top) or 41 
randomly sampled tilts (bottom). At 5 epoch intervals, 25 random volumes were generated from each class for correlation coefficient 
calculation to ground truth ribosome assembly intermediate volumes (classes B-E). Error bars denote standard error of the mean CC.
(d) Nine tomoDRGN models with identical architectures were trained with the indicated number of tilts sampled per particle (total 
available tilts = 41). PCA (left) and UMAP (right) dimensionality reduction of each final epoch’s latent embeddings. Once trained, up 
to 10 randomly sampled and permuted tilt images for one representative particle from each volume class were embedded using the 
corresponding pretrained tomoDRGN model and are superimposed as colored points. Note increased dispersion of colored points as 
number of tilts sampled during training decreased.
(e) For each ribosomal large subunit class (B-E), 25 particles were randomly selected and up to 10 subsets of their tilt images were randomly 
sampled and permuted as in (d). In the heatmap, row indices refer to models trained in (d) using different numbers of sampled tilts (1-
41), and columns denote epochs of training with that model. For each particle, each tilt subset was evaluated with the corresponding 
tomoDRGN model and the ratio of standard deviations of each particle’s 10 latent embeddings to all particles’ latent embeddings was 
calculated. The mean ratio across all particles, which measures the dispersion of encoder embeddings, is plotted per ribosomal LSU class. 
Here, lower dispersion indicates better performance.
(f) Particles and tilt subsets were selected as in (e). At each indicated epoch of training, the corresponding tomoDRGN model was used to 
generate volumes for each particle’s tilt subsets. For each such volume, the correlation coefficient was calculated between that volume 
and the corresponding ground truth volume. The mean across all particles at each epoch for each model is shown as a heatmap per 
ribosomal LSU class. Here, higher CC indicates improved performance.

a

b

Extended Data Figure 3: TomoDRGN training statistics for homogeneous simulated datasets as a function of decoder architecture. 
(a) Map-map FSC of final volumes generated from tomoDRGN homogeneous network training on simulated class E ribosomes with 
indicated decoder architectures against the corresponding ground truth volume. Panels correspond to different box and pixel sizes; 
colors correspond to different tomoDRGN model architectures. 
(b) Volumes were generated at each epoch during training and spatial frequencies at which map-map FSC=0.5 are plotted against 
cumulative wall time for models of different architectures (colors) on images of different box and pixel sizes (panels). Circles note total 
wall time elapsed and resolution achieved after 50 epochs of training.
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a

b

Extended Data Figure 4: TomoDRGN model quality with heterogeneous simulated datasets as a function of encoder architectures.
(a, b) Mean per-class volumetric correlation coefficient for tomoDRGN models trained with indicated encoder A architectures (panel 
A titles) or encoder B architectures (panel B titles). At 5 epoch intervals, 10 volumes from each volume class were generated and used 
to calculate volumetric correlation coefficients to the corresponding ground truth ribosome assembly intermediate volume. Error bars 
denote standard error of the mean in correlation coefficient among the tomoDRGN volumes at that epoch and the corresponding ground 
truth volume.
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Extended Data Figure 5: Using tomoDRGN to identify non-ribosomal particles picked from EMPIAR-10499 tomograms.
(a) UMAP and corresponding sampled volumes from tomoDRGN heterogeneous network training from Fig. 4a. Eight representative 
non-ribosomal particles identified through manual inspection of k=100 k-means clustering of latent space are rendered at a constant 
isosurface and pose.
(b) Two tomograms are shown in slice view using Cube (https://github.com/dtegunov/cube) with locations of particles labeled as non-
ribosomal annotated within each tomogram.
(c) RELION3-based multiclass (k=5) ab initio sub-tomogram volume generation using particles annotated as non-ribosomal (n=1,310).
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a b c

70S 50S SecDF-positive ribosome

Extended Data Figure 6: Validation of tomoDRGN-generated volumes. 
Comparison of volumes generated by a full tomoDRGN network (row 1), an isolated decoder neural network (row 2), or traditional sub-
tomogram averaging (row 3). A full tomoDRGN network was trained on the heterogeneous ribosomal particle stack (row 1, n=20,981, see 
Figs. 4d and 5a) and representative volumes are depicted. Separate tomoDRGN homogeneous decoder networks were trained on one of 
three homogeneous substacks corresponding to (a) 70S particles (n=20,129); (b) 50S particles (n=852); or (c) SecDF-positive ribosomes 
(n=380). Traditional STA was also performed on each of these three particles stacks.
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Extended Data Figure 7: CryoDRGN fails to consistently encode structural heterogeneity using a simulated tilt series dataset
(a) Schematic of two cryoDRGN network architectures that were tested, and the tomoDRGN architecture used in Fig. 2c-e. Each model was 
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trained using the same simulated dataset of ribosome large subunit assembly classes B-E (Davis et al., 2016) consisting of 41 tilt images 
for each of 5,000 particles for each of the four assembly states and thus the dataset was treated by cryoDRGN as n=820,000 images (see 
Methods). 
(b) UMAP of final epoch latent embeddings of each particle image, represented as a kernel density estimate (KDE) is plotted, with KDEs 
independently estimated and plotted for each of the four ground truth assembly states (bottom).
(c) UMAP of final epoch latent embedding with k=4 k-means latent classification of the resulting latent space. KDEs were independently 
estimated and plotted for each of the four k-means classes. The predicted labels are annotated by both the k-means class index (0-3) and 
corresponding ground truth class label (B-E) of the central particle within each k-means class.
(d) Confusion matrix of ground truth class labels versus k=4 k-means latent classification. 
(e) Volumes sampled at the k=4 k-means cluster centers illustrated in (c). Volumes are annotated by the k-means class index and ground 
truth class label and colored by the ground truth class label. 
(f) Violin plot of consistency of k=4 k-means clustering of each model by Adjusted Rand Index (Hubert and Arabie, 1985) (n = 100 randomly 
seeded initializations, higher values correspond to greater fidelity to ground truth classification).
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Extended Data Figure 8: CryoDRGN learns non-physical structural heterogeneity in an exemplar tomographic dataset.
Two cryoDRGN models (a, b) were trained on the unfiltered particle stack of Mycoplasma pneumoniae ribosomes from Fig. 4a (n = 22,291 
particles, treated as n = 913,931 images). The latent space is shown as a KDE plot following UMAP dimensionality reduction, with k=20 
k-means class center particles annotated (left) and corresponding volumes visualized (right). Note that many putative 70S particles lack 
density in the particle core. A reference 70S volume sampled from tomoDRGN’s model in Fig. 4a is shown in the same pose for comparison. 
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Extended Data Figure 9: CryoDRGN’s learned embeddings exhibit undesirable correlations with tilt image index.
(a) Two cryoDRGN models were tested on the unfiltered particle stack of Mycoplasma pneumoniae ribosomes from Fig. 4a. The latent 
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space is shown as a KDE plot following UMAP dimensionality reduction. The latent embeddings were binned by the tilt image index, and 
the median value across each bin is annotated.  
(b) KDEs from panel A replotted after binning by tilt image index quartiles. 
(c) KDEs from panel A with annotated positions corresponding to three representative particles evaluated using their 5th, 15th, 25th, or 35th 
tilt images.
(d) Volumes generated from cryoDRGN using the latent embeddings highlighted in panel C.

Box 
size 
(px)

Pixel 
size 
(Å)

Weighting Masking Architecture # Trainable 
parameters

# Data 
points 

per 
particle

Training 
time per 1k 

particles (min)

VRAM per 
particle 

(GB)

Max 
resolution 

(1/px)

Epochs 
to max 

resolution

Wall clock 
to max 

resolution 
(min)

64 6.55 - - 256 x 3 247,298 131,528 0.26 1.95 0.48 1 1.30
64 6.55 + - 256 x 3 247,298 131,528 0.26 1.95 0.48 1 1.30
64 6.55 - + 256 x 3 247,298 96,776 0.22 1.76 0.48 1 1.11
64 6.55 + + 256 x 3 247,298 96,776 0.22 1.76 0.48 1 1.10
128 3.28 - - 256 x 3 296,450 526,932 0.88 4.59 0.49 16 70.58
128 3.28 + - 256 x 3 296,450 526,932 0.88 4.59 0.49 3 13.17
128 3.28 - + 256 x 3 296,450 194,064 0.43 2.47 0.49 3 6.38
128 3.28 + + 256 x 3 296,450 194,064 0.43 2.47 0.49 3 6.39
256 1.63 - - 256 x 3 394,754 2,108,712 4.42 18.88 0.25 30 662.49
256 1.63 + - 256 x 3 394,754 2,108,712 4.47 18.88 0.33 36 804.64
256 1.63 - + 256 x 3 394,754 378,516 1.21 4.42 0.33 42 253.25
256 1.63 + + 256 x 3 394,754 378,516 1.20 4.42 0.32 39 234.58

Table 1: Impact of weighting and masking on performance of tomoDRGN homogeneous reconstruction.
Summary statistics for tomoDRGN homogeneous network training using the simulated ribosome class E particles at different box and 
pixel sizes, in the presence or absence of reconstruction weighting and masking. 

Box size 
(px)

Architecture # Trainable 
parameters

# Data points 
per particle

Training time per 
1k particles (min)

VRAM per 
particle (GB)

Max resolution 
(1/px)

Epochs to max 
resolution

Wall clock to max 
resolution (min)

64 64 x 3 24,962 96,776 0.15 1.42 0.48 1 0.75
64 128 x 3 74,498 96,776 0.17 1.54 0.48 1 0.85
64 256 x 3 247,298 96,776 0.22 1.76 0.48 1 1.11
64 512 x 3 887,810 96,776 0.37 2.15 0.48 1 1.84
64 768 x 3 1,921,538 96,776 0.58 2.79 0.48 1 2.88
128 64 x 3 37,250 194,064 0.28 1.85 0.38 43 60.74
128 128 x 3 99,074 194,064 0.33 2.04 0.49 15 24.94
128 256 x 3 296,450 194,064 0.43 2.47 0.49 4 8.69
128 512 x 3 986,114 194,064 0.75 3.33 0.49 2 7.48
128 768 x 3 2,068,994 194,064 1.22 4.53 0.49 1 6.12
256 64 x 3 61,826 378,516 0.88 3.48 0.20 42 185.81
256 128 x 3 148,226 378,516 0.94 3.67 0.26 47 221.67
256 256 x 3 394,754 378,516 1.15 4.42 0.32 33 190.30
256 512 x 3 1,182,722 378,516 1.81 6.10 0.34 22 199.42
256 768 x 3 2,363,906 378,516 3.61 11.92 0.35 20 360.84

Table 2: Impact of network architecture on tomoDRGN homogeneous network reconstruction.
Summary statistics for tomoDRGN homogeneous network training using the simulated ribosome class E particles at various box and pixel 
sizes, sweeping the number of nodes per layer in the decoder network. 
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Box 
size 
(px)

EncA 
architecture

EncA-EncB 
intermediate 

dimensionality

EncB 
architecture

Dec 
architecture

# Trainable 
parameters 

(encoder)

# Data 
points per 

particle 
(encoder)

# Trainable 
parameters 

(decoder)

# Data 
points per 

particle 
(decoder)

Training 
time 

per 1k 
particles 

(min)

VRAM 
per 

particle 
(GB)

64 64 x 2 128 128 x 2 256 x 3 959,936 131,528 280,066 96,776 0.41 2.10
64 64 x 4 128 128 x 2 256 x 3 968,256 131,528 280,066 96,776 0.43 2.10
64 128 x 2 128 128 x 2 256 x 3 1,198,208 131,528 280,066 96,776 0.42 2.10
64 128 x 4 128 128 x 2 256 x 3 1,231,232 131,528 280,066 96,776 0.43 2.10
64 256 x 2 128 128 x 2 256 x 3 1,723,904 131,528 280,066 96,776 0.42 2.10
64 256 x 4 128 128 x 2 256 x 3 1,855,488 131,528 280,066 96,776 0.44 2.11
128 64 x 2 128 128 x 2 256 x 3 1,577,152 526,932 329,218 194,064 0.83 3.95
128 64 x 4 128 128 x 2 256 x 3 1,585,472 526,932 329,218 194,064 0.84 3.95
128 128 x 2 128 128 x 2 256 x 3 2,432,640 526,932 329,218 194,064 0.88 3.95
128 128 x 4 128 128 x 2 256 x 3 2,465,664 526,932 329,218 194,064 0.83 3.95
128 256 x 2 128 128 x 2 256 x 3 4,192,768 526,932 329,218 194,064 0.79 3.97
128 256 x 4 128 128 x 2 256 x 3 4,324,352 526,932 329,218 194,064 0.81 3.97
256 64 x 2 128 128 x 2 512 x 3 4,046,272 2,108,712 1,248,258 378,516 3.05 11.07
256 64 x 4 128 128 x 2 512 x 3 4,054,592 2,108,712 1,248,258 378,516 3.03 11.07
256 128 x 2 128 128 x 2 512 x 3 7,370,880 2,108,712 1,248,258 378,516 3.23 11.12
256 128 x 4 128 128 x 2 512 x 3 7,403,904 2,108,712 1,248,258 378,516 2.95 11.10
256 256 x 2 128 128 x 2 512 x 3 14,069,248 2,108,712 1,248,258 378,516 2.66 11.07
256 256 x 4 128 128 x 2 512 x 3 14,200,832 2,108,712 1,248,258 378,516 2.67 11.22

Table 3: Impact of encoder network A architecture on tomoDRGN heterogeneous network reconstruction. 
Summary statistics for tomoDRGN heterogeneous network training using the simulated ribosome 4-class particles at various box and 
pixel sizes, sweeping the encoder A architecture (number of nodes per layer and number of layers). 

Box 
size 
(px)

EncA 
architecture

EncA-EncB 
intermediate 

dimensionality

EncB 
architecture

Dec 
architecture

# Trainable 
parameters 

(encoder)

# Data 
points per 

particle 
(encoder)

# Trainable 
parameters 

(decoder)

# Data 
points per 

particle 
(decoder)

Training 
time per 1k 

particles 
(min)

VRAM 
per 

particle 
(GB)

64 128 x 3 32 64 x 3 256 x 3 577,568 131,528 280,066 96,776 0.41 2.10
64 128 x 3 32 128 x 3 256 x 3 715,040 131,528 280,066 96,776 0.41 2.11
64 128 x 3 128 64 x 3 256 x 3 841,856 131,528 280,066 96,776 0.41 2.10
64 128 x 3 128 128 x 3 256 x 3 1,231,232 131,528 280,066 96,776 0.41 2.10
128 128 x 3 32 64 x 3 256 x 3 1,812,000 526,932 329,218 194,064 0.79 3.95
128 128 x 3 32 128 x 3 256 x 3 1,949,472 526,932 329,218 194,064 0.85 3.96
128 128 x 3 128 64 x 3 256 x 3 2,076,288 526,932 329,218 194,064 0.87 3.95
128 128 x 3 128 128 x 3 256 x 3 2,465,664 526,932 329,218 194,064 0.86 3.95
256 128 x 3 32 64 x 3 256 x 3 6,750,240 2,108,712 427,522 378,516 2.23 9.43
256 128 x 3 32 128 x 3 256 x 3 6,887,712 2,108,712 427,522 378,516 2.22 9.43
256 128 x 3 128 64 x 3 256 x 3 7,014,528 2,108,712 427,522 378,516 2.18 9.43
256 128 x 3 128 128 x 3 256 x 3 7,403,904 2,108,712 427,522 378,516 2.16 9.43

Table 4: Impact of encoder network B architecture on tomoDRGN heterogeneous network reconstruction. 
Summary statistics for tomoDRGN heterogeneous network training using the simulated ribosome 4-class particles at various box and 
pixel sizes, sweeping the encoder A output layer size and the encoder B architecture (number of nodes per layer and number of layers). 
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