Skip to main content
[Preprint]. 2023 Jun 2:2023.05.31.542975. [Version 1] doi: 10.1101/2023.05.31.542975

Table 2:

Impact of network architecture on tomoDRGN homogeneous network reconstruction.

Box size (px) Architecture # Trainable parameters # Data points per particle Training time per 1k particles (min) VRAM per particle (GB) Max resolution (1/px) Epochs to max resolution Wall clock to max resolution (min)
64 64 × 3 24,962 96,776 0.15 1.42 0.48 1 0.75
64 128 × 3 74,498 96,776 0.17 1.54 0.48 1 0.85
64 256 × 3 247,298 96,776 0.22 1.76 0.48 1 1.11
64 512 × 3 887,810 96,776 0.37 2.15 0.48 1 1.84
64 768 × 3 1,921,538 96,776 0.58 2.79 0.48 1 2.88
128 64 × 3 37,250 194,064 0.28 1.85 0.38 43 60.74
128 128 × 3 99,074 194,064 0.33 2.04 0.49 15 24.94
128 256 × 3 296,450 194,064 0.43 2.47 0.49 4 8.69
128 512 × 3 986,114 194,064 0.75 3.33 0.49 2 7.48
128 768 × 3 2,068,994 194,064 1.22 4.53 0.49 1 6.12
256 64 × 3 61,826 378,516 0.88 3.48 0.20 42 185.81
256 128 × 3 148,226 378,516 0.94 3.67 0.26 47 221.67
256 256 × 3 394,754 378,516 1.15 4.42 0.32 33 190.30
256 512 × 3 1,182,722 378,516 1.81 6.10 0.34 22 199.42
256 768 × 3 2,363,906 378,516 3.61 11.92 0.35 20 360.84

Summary statistics for tomoDRGN homogeneous network training using the simulated ribosome class E particles at various box and pixel sizes, sweeping the number of nodes per layer in the decoder network.