Skip to main content
[Preprint]. 2023 Jun 2:2023.05.31.542975. [Version 1] doi: 10.1101/2023.05.31.542975

Table 4:

Impact of encoder network B architecture on tomoDRGN heterogeneous network reconstruction.

Box size (px) EncA architecture EncA-EncB intermediate dimensionality EncB architecture Dec architecture # Trainable parameters (encoder) # Data points per particle (encoder) # Trainable parameters (decoder) # Data points per particle (decoder) Training time per 1k particles (min) VRAM per particle (GB)
64 128 × 3 32 64 × 3 256 × 3 577,568 131,528 280,066 96,776 0.41 2.10
64 128 × 3 32 128 × 3 256 × 3 715,040 131,528 280,066 96,776 0.41 2.11
64 128 × 3 128 64 × 3 256 × 3 841,856 131,528 280,066 96,776 0.41 2.10
64 128 × 3 128 128 × 3 256 × 3 1,231,232 131,528 280,066 96,776 0.41 2.10
128 128 × 3 32 64 × 3 256 × 3 1,812,000 526,932 329,218 194,064 0.79 3.95
128 128 × 3 32 128 × 3 256 × 3 1,949,472 526,932 329,218 194,064 0.85 3.96
128 128 × 3 128 64 × 3 256 × 3 2,076,288 526,932 329,218 194,064 0.87 3.95
128 128 × 3 128 128 × 3 256 × 3 2,465,664 526,932 329,218 194,064 0.86 3.95
256 128 × 3 32 64 × 3 256 × 3 6,750,240 2,108,712 427,522 378,516 2.23 9.43
256 128 × 3 32 128 × 3 256 × 3 6,887,712 2,108,712 427,522 378,516 2.22 9.43
256 128 × 3 128 64 × 3 256 × 3 7,014,528 2,108,712 427,522 378,516 2.18 9.43
256 128 × 3 128 128 × 3 256 × 3 7,403,904 2,108,712 427,522 378,516 2.16 9.43

Summary statistics for tomoDRGN heterogeneous network training using the simulated ribosome 4-class particles at various box and pixel sizes, sweeping the encoder A output layer size and the encoder B architecture (number of nodes per layer and number of layers).