1	Inter and Intralaminar Excitation of Parvalbumin Interneurons in Mouse Barrel Cortex
2	Running title: Laminar Response Differences of Parvalbumin Interneurons
3	Kate S. Scheuer ¹
4	Anna M. Jansson ²
5	Xinyu Zhao ³
6	Meyer B. Jackson ²
7	1. Cellular and Molecular Biology Program, 2. Department of Neuroscience, 3. Waisman Center,
8	University of Wisconsin-Madison, Madison, Wisconsin, 53705
9	
10	Author contributions: Data collection (KSS), data analysis (KSS, AMJ), manuscript preparation
11	(KSS, MBJ, XZ), project conception (MBJ, KSS, XZ)
12	
13	Corresponding author address: Department of Neuroscience, Room 5505 WIMR II, 1111
14	Highland Ave., Madison, Wisconsin 53705, Phone: 608-262-2938,
15	ORCID ID 0000-0003-2964-7091
16	Email: meyer.jackson@wisc.edu
17	
18	Keywords: parvalbumin interneuron, genetically-encoded voltage sensor, barrel cortex
19	Conflict of interest statement: The authors declare no competing financial or non-financial
20	interests.
21	
22	Acknowledgements: National Institutes of Health Grants NS127219 and NS093866 to MBJ and
23	NS105200 XZ. Thanks to Dr. Shane McMahon for methodological contributions.

24 Key points summary

25	• Excitatory synaptic responses were imaged in parvalbumin (PV) interneurons in slices of
26	mouse barrel cortex using a targeted genetically-encoded voltage sensor. This approach
27	revealed simultaneous voltage changes in approximately 20 neurons pre slice in response
28	to stimulation.
29	• PV interneurons residing in layer 2/3 had larger amplitudes, longer half-widths, and
30	longer rise-times than PV interneurons residing in layer 4.
31	• Responses of PV interneurons residing in either layer 2/3 or layer 4 had shorter latencies
32	to stimulation of layer 4 compared to stimulation of layer 2/3.
33	• Excitatory synaptic transmission to PV interneurons varies with layer of residence and
34	source of excitation.
35	
36	Abstract
37	Parvalbumin (PV) interneurons are inhibitory fast-spiking cells with essential roles in
38	directing the flow of information through cortical circuits. These neurons set the balance between
39	excitation and inhibition, control rhythmic activity, and have been linked to disorders including
40	autism spectrum and schizophrenia. PV interneurons differ between cortical layers in their
41	morphology, circuitry, and function, but how their electrophysiological properties vary has
42	received little attention. Here we investigate responses of PV interneurons in different layers of
43	primary somatosensory barrel cortex (BC) to different excitatory inputs. With the genetically-
44	encoded hybrid voltage sensor, hVOS, we recorded voltage changes simultaneously in many
45	L2/3 and L4 PV interneurons to stimulation in either $L2/3$ or L4. Decay-times were consistent
46	across L2/3 and L4. Amplitude, half-width, and rise-time were greater for PV interneurons

longer latency compared to stimulation in L4. These differences in latency between layers could influence their windows for temporal integration. Thus PV interneurons in different cortical layers of BC show differences in response properties with potential roles in cortical computations.
influence their windows for temporal integration. Thus PV interneurons in different cortical layers of BC show differences in response properties with potential roles in cortical computations.
layers of BC show differences in response properties with potential roles in cortical computations.
computations.
Introduction
Parvalbumin (PV) interneurons are inhibitory neurons defined by their expression of the
calcium-binding protein PV (Tremblay et al., 2016). These fast-spiking cells are present in
cortical layers 2-6 and play critical roles in controlling excitation/inhibition balance (Ferguson &
Gao, 2018; Nahar et al., 2021), and in the generation of gamma oscillations, 30-80 Hz brain
waves implicated in many functions including working memory, attention, and perceptual
binding (Tallon-Baudry et al., 1998; Gonzalez-Burgos et al., 2015). PV interneurons and gamma
oscillations have both been linked to a variety of psychiatric conditions including schizophrenia
and autism spectrum disorder (Gonzalez-Burgos et al., 2015; Lauber et al., 2018; Kayarian et al.,
2020).
Primary somatosensory barrel cortex (BC) is an attractive place to study PV interneurons
because of its well-defined functions and architecture (Brecht, 2007; Feldmeyer, 2012;
Feldmeyer et al., 2018; Staiger & Petersen, 2021). BC is defined by the presence of barrels,
cytoarchitectural units in L4 which each correspond to a single vibrissa (Woolsey & Van der
Loos 1970) Distinct molecular morphological and electrophysiological cell types form
Loos, 1970). Distinct molecular, morphological, and electrophysiological cell types form

70	morphological subgroups, basket cells and chandelier cells, are distributed differently across
71	cortical layers in BC. Chandelier cells form axoaxonic contacts and are not present in L4 (Li &
72	Huntsman, 2014), while basket cells provide perisomatic inhibition and can be found in L2-6
73	(Naka & Adesnik, 2016; Frandolig et al., 2019; Staiger & Petersen, 2021). These two
74	morphological subgroups can form distinct interlaminar circuits (Xu & Callaway, 2009). In
75	addition to these morphological differences, PV interneurons in different layers may have
76	different roles in functions such as intracortical and thalamic integration (Staiger & Petersen,
77	2021). Additionally, optogenetically generated gamma oscillations within a given cortical layer
78	inhibit locally within that layer but facilitate in other layers. Furthermore, peak gamma
79	oscillation power was higher for L6 compared to L2/3 (Adesnik, 2018). These results raise the
80	important question of whether the roles of PV interneurons in different layers reflect differences
81	in their responses to excitatory synaptic inputs. However a simultaneous assessment of voltage
82	responses of PV neurons in different cortical layers has not been carried out.
83	Here we use the genetically-encoded hybrid voltage sensor (hVOS) to record excitatory post-
84	synaptic potentials (EPSPs) optically from L2/3 and L4 PV interneurons in slices of mouse BC
85	(Chanda et al., 2005; Wang et al., 2010; Bayguinov et al., 2017). We determined PV interneuron
86	response amplitude, half-width, latency, rise-time, and decay-time elicited by stimulation in L2/3
87	and L4. Regardless of stimulation layer, L2/3 PV interneuron responses had higher amplitudes,
88	longer rise-times, and broader half-widths than L4 PV interneurons. Additionally, responses to
89	stimulation in L2/3 had longer latencies than responses to L4 stimulation, even after accounting
90	for the effect of conduction distance. By contrast, responses in these layers had similar decay-
91	times. Thus, hVOS imaging reveals variations in electrophysiological properties of PV

4

92 interneurons between cortical layers. These differences have implications for how the cortex

- 93 performs computations and integrates inputs between different layers.
- 94
- 95 Methods
- 96 Animals

PV-Cre driver mice (B6.129P2-Pvalb^{tm1(cre)Arbr}/J, JAX strain 017320) were crossed with
Ai35-hVOS1.5 Cre-reporter mice (C57BL/6-*Gt(ROSA)26Sor<sup>tm1(CAG-hVOS1.5)Mbja*/J, JAX strain
031102) to generate animals with hVOS probe targeted to PV interneurons (Bayguinov *et al.*,
2017). Animal procedures were approved by the University of Wisconsin-Madison School of
Medicine and Public Health Animal Care and Use Committee (IACUC protocol: M005952). *hVOS probe*</sup>

103 An hVOS probe was used to image voltage changes in PV interneurons. The probe used 104 here is comprised of cerulean fluorescent protein (CeFP) tethered to the inner leaflet of the cell 105 membrane with a truncated h-ras motif (Wang et al., 2010). Cells expressing the probe fluoresce, 106 and this fluorescence is modulated by a Förster resonance energy transfer interaction with 107 dipicrylamine (DPA), a small, hydrophobic anion which partitions into the cell membrane and 108 moves when the membrane potential changes. Depolarization drives DPA towards the CeFP and 109 fluorescence is guenched. Repolarization drives DPA back away from the CeFP so fluorescence 110 increases. Fluorescence thus reports voltage changes of cells expressing the hVOS probe 111 (Chanda et al., 2005; Wang et al., 2010). hVOS has sub-millisecond temporal resolution (Chanda 112 et al., 2005; Bradley et al., 2009) and can be genetically targeted to specific cell types using a 113 Cre-lox system (Bayguinov et al., 2017). Our crossing of hVOS Cre-reporter animals with PV

5

114 Cre-driver animals produces mice previously shown to have 99.2% targeting specificity and

115 express the hVOS probe in 83% of PV interneurons (Bayguinov *et al.*, 2017).

116 Slice preparation

117 Mice 7-8 weeks old were deeply anesthetized with isoflurane and sacrificed with cervical 118 dislocation (institutional protocol noted above). Brains were rapidly dissected and placed into 119 ice-cold cutting solution (in mM: 10 glucose, 125 NaCl, 4 KCl, 1.25 NaH₂PO₄, 26 NaHCO₃, 6 120 MgSO₄, 1 CaCl₂) bubbled with a mixture of 95% O₂ / 5% CO₂. After approximately five 121 minutes, brains were mounted and cut into 300 µm thick coronal slices with a with a Leica 122 VT1200S vibratome. Slices were placed into a chamber filled with 95% O₂ / 5% CO₂-bubbled 123 artificial cerebrospinal fluid (ACSF) with the same composition as cutting solution except with 124 1.3 mM MgSO₄ and 2.5 mM CaCl₂, and allowed to recover for at least 45 minutes. 125 Electrophysiology and Imaging 126 Imaging experiments were performed in 95% O₂ / 5% CO₂-bubbled ACSF containing 4 127 μ M DPA. Slices were placed into a custom recording chamber, and viewed with a BX51 128 Olympus microscope. Stimulus pulses 200 μ A, 180 μ sec were applied with a stimulus isolator 129 (World Precision Instruments, Sarasota, Florida) through fire-polished, ACSF-filled KG-33 glass 130 electrodes (King Precision Glass, Claremont, California) with tip diameters of about 6-8 µm. 131 Stimulating electrodes were positioned in L2/3 or L4 of BC using a micromanipulator. Slices 132 were illuminated with an LED with peak emission at 435 nm (Prizmatix, Holon, Israel) through a 133 CFP filter cube. PV interneuron responses were acquired with a CCD-SMQ camera (RedShirt 134 Imaging, Decatur, Georgia) at 2000 Hz with 80x80 spatial resolution. Bandpass filters of 5 and 135 10 nm centered at 435 nm were added to the excitation pathway when resting light intensities 136 saturated the CCD-SMQ camera. Gradient contrast and higher resolution fluorescence images

6

137 were captured by directing light to a Kiralux CMOS camera (Thorlabs, Newton, New Jersey).

138 Data acquisition and analysis was performed with custom software (Chang, 2006).

139 Identifying individual responsive PV interneurons

140 PV interneurons have extensive axonal and dendritic arbors which allow them to sample 141 input from many cells, and to provide strong, widespread inhibition (Fukuda & Kosaka, 2003; 142 Povysheva et al., 2008; Packer & Yuste, 2011; Hu et al., 2014). Cortical PV interneurons contact 143 about 43-50% or more of pyramidal cells within about < 200 µm (Packer & Yuste, 2011; Inan et 144 al., 2013), and fast-spiking interneuron to excitatory cell connectivity in BC can be as high as 145 67% for a sub-group of PV interneurons in L4 (Koelbl et al., 2015). Given the dense dendritic 146 and axonal arbors of PV interneurons, a plasma membrane label such as the hVOS probe 147 produces broad diffuse fluorescence throughout a slice, obscuring the fluorescence from PV 148 interneuron cell bodies. This makes it difficult to identify individual PV interneuron cell bodies, 149 despite clearly identifiable cortical layers in both gradient contrast (Fig. 1A) and fluorescence 150 (Fig. 1B) images.

151 To address this problem, we developed a semi-automated method of analyzing imaging 152 data for objective, reproducible identification of responsive PV interneuron somata. This method 153 relied on a hybrid approach using both geometric constraints and K-means clustering of signal-154 to-noise ratio (SNR) values. SNR was calculated as the peak stimulus-evoked fluorescence 155 change divided by the baseline root-mean-square fluorescence in a 20-msec pre-stimulus time 156 window. Pixels with a SNR below the baseline noise were discarded as clearly unresponsive 157 (gray pixels near top, Fig. 1C). For the geometric constraints, we required regions of interest 158 (ROIs) representing responsive PV interneurons to be spatially distinct, with no shared faces. 159 Acceptable ROIs were groups of up to nine contiguous pixels three or fewer pixels across. With

160	$6 \ \mu m$ pixel dimensions this constrains groups to the size of a murine PV interneuron soma, which
161	is approximately 20 µm in diameter (Wang et al., 2002; Selby et al., 2007; Kooijmans et al.,
162	2020). This criterion excluded some larger groups of pixels as potentially representing more than
163	one cell even though they had very clear responses with a high SNR. For example, the red,
164	orange, and yellow regions in the lower left and lower right corners of Fig. 1C and 1E had high
165	SNR values but formed groups which were much larger than 3 pixels across and clearly
166	contained several responsive cells. Pixels in these areas were excluded from analysis. Because a
167	single pixel (6 μ m) is too small to be a cell body and could contain several overlapping PV
168	interneuron dendrites (<0.5-3 µm in rats, smaller in mice (Muller et al., 2005; Judak et al.,
169	2022)) and/or axons (< 1 μ m, (Stedehouder <i>et al.</i> , 2019)), single isolated pixels were not
170	considered to be responsive PV interneurons, again despite their high SNR. Responses from
171	pixels obscured by the stimulating electrode (outlined in black, Fig. 1C-E) were also excluded.
172	Finally, responses $< 45 \ \mu m$ from the tip of the stimulating electrode were assumed to be the
173	result of direct stimulation and excluded.
174	To refine and corroborate this procedure, ROIs corresponding to putative responsive PV
175	interneurons satisfying the geometric constraints were subjected to one-dimensional K-means
176	clustering of SNR values. One-dimensional K-means clustering was performed on pixels with
177	SNR above baseline noise (all but the gray pixels in Fig. 1C). Clustering served two main
178	purposes. First, it divided pixels into groups with similar SNR values. Pixel clusters with higher
179	average SNR are more likely to contain cell bodies (yellow, Fig. 1D) while those with lower
180	average SNR are more likely to contain small processes or lack responsive cells (purple, Fig.
181	1D). We therefore set a response SNR cutoff for K-means clusters to 5 and excluded pixels in
182	clusters of pixels with average SNR < this cutoff (purple, Fig. 1D), as they likely contained

183	processes or unresponsive cells. For acceptable clusters (average $SNR > 5$) we assumed that if
184	pixels within a group satisfying the geometric requirements have SNR values in the same K-
185	means cluster, they are likely to represent the same cell body. K-means clustering identified
186	groups of geometrically associated pixels with similar SNR and assigned them to specific cells.
187	This method basically compared each pixel to its neighbors and grouped them based on the
188	likelihood they represent the same cell. In summary, this method was conservative,
189	implementing multiple exclusion criteria to focus on small groups of pixels with similar SNR
190	that represent distinct, spatially separated neurons.
191	Traces of fluorescence versus time from groups of pixels identified in this way were
192	manually inspected to verify appropriate responses to stimulation (Fig. 1F). We implemented an
193	additional cutoff based on amplitude, and discarded pixel groups with average $\Delta F/F < 0.1\%$.
194	Responses with amplitudes more than 3 times the standard deviation above the mean value (>
195	1.165%) were also excluded. Such instances were very rare (4 PV interneurons total), and
196	occurred in particularly dark areas or corners of the field of view where resting light was very
197	low and dividing resulted in implausibly high values. Because our analysis compares PV
198	interneuron properties based on cortical layer, occasional cells on a border between cortical
199	layers were also excluded.
200	

Figure 1. Identifying individual responsive PV interneurons. Gradient contrast image taken with the Kiralux camera (A) and fluorescence image taken with the CCD-SMQ camera (B) of a BC slice. Black stars indicate the tip of the stimulating electrode, and dashed lines indicate layer boundaries in A-E. C. SNR heatmap of slice in A and B. Gray pixels near the top have signals below the baseline noise and were excluded from analysis. The electrode is outlined in black on the lower left edge in C-E. D. K-means cluster map. K-means clustering of SNR was performed on pixels with SNR > baseline (colored in C). The data were best fitted with two clusters, with averages of 4.8 and 9.2. The yellow cluster with higher average SNR is likely to contain responsive PV interneurons, while the purple cluster with lower average SNR probably contains processes and unresponsive neurons. E. SNR heatmap overlaid with identified responsive PV interneurons outlined in black or red (color choice based on ease of view and not cell properties). F. Traces of fluorescence versus time for the PV interneurons outlined and numbered in E show clear depolarization in response to stimulation (triangle). G. Expanded portion of a trace (12 msec) shaded in F illustrating response parameters. Amplitude (red) is the maximum change in fluorescence; latency (purple) is the time from stimulation to half-maximal change in fluorescence; half-width (green) is the time between half-maximal change in fluorescence from depolarization to repolarization; rise-time (blue) is the time between halfmaximal and maximal change in fluorescence; decay-time (gold) is the time from peak to halfmaximal fluorescence.

10

203 Despite the conservative nature of this analysis, our procedure identified an average of 21 204 responsive PV interneurons per slice. Although anatomical estimates of PV interneuron density 205 vary widely, conservative estimates suggest that our 480x480 μm field of view may contain up to 206 approximately 75 PV interneurons (Keller *et al.*, 2018). Our numbers are generally well below 207 this, supporting our procedure as a conservative method of identifying responsive somata. This 208 method provided a reproducible, objective, and robust procedure to identify individual 209 responsive PV interneurons. A test of validity is presented in Results (Fig. 2).

210 Response parameters were extracted from traces of fluorescence versus time for pixel 211 groups identified as corresponding to responsive PV interneurons (Fig. 1G). Amplitude is the 212 maximum change in fluorescence. Latency is the time from stimulation to half-maximal change 213 in fluorescence during depolarization. To account for the effect of distance on latency, we also 214 divided the latency by distance to the stimulating electrode (distance-normalized latency). Half-215 width is the time between half-maximal change in fluorescence during depolarization and 216 repolarization. Rise-time is the time from half-maximal to maximal fluorescence during 217 depolarization. Decay-time is the time from maximum to half-maximal fluorescence during 218 repolarization. All responses were examined visually and 4 were excluded because noise resulted 219 in anomalous start times with obvious errors in parameters.

220 Data processing and statistical tests

Fluorescence traces were processed with a nine-point binomial temporal filter and a spatial filter with $\sigma = 1$. A baseline determined from a polynomial fit was subtracted. Peak fluorescence change was divided by resting light intensity to give Δ F/F. Our method of responsive cell identification yielded 1086 PV interneurons from 52 slices from 7 animals (3 female, 4 male). Relationships between distance and half-width or amplitude were evaluated

11

226	with Pearson's product-moment correlation tests using individual PV interneurons as the unit of
227	analysis. For remaining statistical tests, within a given slice layers with fewer than 8 responsive
228	PV interneurons were excluded, values were averaged for all PV interneurons within each layer,
229	and this average was used as the unit of analysis.
230	Normality was evaluated using Shapiro-Wilks tests. All parameters were normally
231	distributed (amplitude: $W = 0.982$, $p = 0.591$; half-width: $W = 0.986$, $p = 0.757$; rise-time: $W = 0.986$
232	0.975, $p = 0.300$) or log-normally distributed (distance-normalized latency: $W = 0.971$, $p =$
233	0.210; decay-time: $W = 0.986$, $p = 0.750$). Variance between analysis groups was evaluated with
234	Levene's tests. Variance did not differ significantly for any parameter based on sex (amplitude:
235	F(1,53) = 0.903, p = 0.346; half-width: $F(1,53) = 0.078$, p = 0.782; distance-normalized latency:
236	F(1,53) = 3.808, p = 0.056; rise-time: $F(1,53) = 0.353$, p = 0.555; decay-time: $F(1,53) = 0.252$, p
237	= 0.618). The effect of sex was evaluated with t-tests and showed no significant impact
238	(amplitude: $t(52.857) = 0.488$, $p = 0.628$; half-width: $t(50.648) = -1.018$, $p = 0.314$; distance-
239	normalized latency: $t(52.438) = -1.252$, $p = 0.216$; rise-time: $t(48.567) = -0.652$, $p = 0.517$;
240	decay-time: $t(52.005) = -0.893$, $p = 0.376$).
241	Variance did not differ significantly based on PV interneuron layer or stimulation layer
242	for any parameter (amplitude ($F(3,51) = 0.465$, $p = 0.708$); half-width ($F(3,51) = 0.593$, $p = 0.593$, $p = 0.465$, $p = 0.708$); half-width ($F(3,51) = 0.593$, $p = 0.465$, $p = 0.708$); half-width ($F(3,51) = 0.593$, $p = 0.593$, p
243	0.623); distance-normalized latency ($F(3,51) = 1.052$, $p = 0.378$); rise-time ($F(3,51) = 0.596$ $p = 0.596$
244	0.321); decay-time (F(3,51) = 0.223, $p = 0.880$)). The effects of stimulation layer and/or PV
245	interneuron residence layer on each parameter were therefore evaluated with ANOVA and post-
246	hoc Tukey's honestly significant differences tests.
247	Code availability

248 R code, Python code, and custom software available on request.

12

249 Results

250 Validation of single cell identification

We tested our procedure of cell identification by examining variations with distance. If pixel groups actually represent multiple neighboring neurons rather than a single neuron, we would expect response half-width to broaden and response amplitude to decrease with distance from the stimulating electrode, as the activation of more distant groups should be less synchronous compared to closer groups. In plots versus distance neither parameter was significantly correlated with distance (Fig. 2, half-width: R = 0.006, p = 0.854; amplitude: R = 0.042, p = 0.170), indicating that pixel clusters do not contain more than one PV interneuron.

Figure 2. PV interneuron response half-width and amplitude do not vary with distance. Neither halfwidth (A, R = 0.006, p = 0.854) nor amplitude (B, Pearson's product-moment correlation: R = 0.042, p = 0.170) are significantly correlated with distance from the stimulating electrode. This is consistent with single-cell responses, as half-width would be expected to increase, and amplitude would decrease with distance for a population response. Each point on the scatterplot corresponds to one PV interneuron. Linear regression best fit lines are shown in blue. N = 1086 cells from 52 slices.

258

259 PV interneuron responses vary between cortical layers

260 Stimulation in L2/3 (Fig. 3A-B, left) or L4 (Fig. 3A-B, right) elicited responses across

261 L2/3 through L5 as shown in SNR heatmaps (Fig. 3C). Although PV interneurons in L5

- 262 responded to stimulation in either L2/3 or L4, less L5 was present in the field of view selected
- 263 for study so we did not see enough L5 PV interneuron responses to include in the current
- analysis. L2/3 and L4 PV interneuron response parameters are presented in Table 1. Comparisons
- are presented in bar graphs below and will be discussed in detail.

	L2/3 Stin	mulation	L4 Stim	ulation
	L2/3 PV	L4 PV	L2/3 PV	L4 PV
	interneurons	interneurons	interneurons	interneurons
	(N = 322,	(N = 259,	(N = 331,	(N = 160,
	29 slices)	29 slices)	23 slices)	23 slices)
Amplitude (% Δ F/F)	0.567 ± 0.005	0.363 ± 0.004	0.556 ± 0.005	0.422 ± 0.005
Half-width (msec)	5.29 ± 0.067	4.82 ± 0.049	5.45 ± 0.059	4.71 ± 0.050
Raw Latency (msec)	2.79 ± 0.059	3.89 ± 0.053	3.28 ± 0.050	2.38 ± 0.046
Distance-normalized	0.015 ± 0.0002	0.017 ± 0.0002	0.013 ± 0.0002	0.014 ± 0.0002
latency (msec/µm)	0.015 ± 0.0002	0.017 ± 0.0002	0.013 ± 0.0002	0.014 ± 0.0002
Rise-Time (msec)	2.32 ± 0.047	2.17 ± 0.039	2.48 ± 0.044	2.02 ± 0.039
Decay-Time (msec)	2.97 ± 0.051	2.64 ± 0.036	2.97 ± 0.043	2.69 ± 0.037

Table 1. PV interneuron response parameters based on residence layer and stimulation layer.

267 Values are mean \pm SE, N = number of neurons.

14

Figure 3. PV interneuron responses in BC. Gradient contrast (A) and fluorescence (B) images of two different slices of BC. L2/3 through L5 are visible within the fields of view. The tip of the stimulating electrode (black or white star) is visible in L2/3 (left) or L4 (right) in A-C. Dashed lines separate layers. C. SNR heatmaps for the slices shown in A and B. Warmer colors correspond to higher SNR regions more likely to contain responsive PV interneurons (color scales and ranges – lower right).

- 273 larger in L2/3 than in L4 (0.396 ± 0.018 , mean \pm SE, p < 0.001). Rise-times for PV interneurons
- residing in L2/3 (2.39 ± 0.070 msec) were also longer than those in L4 (2.13 ± 0.047 msec, p =
- 275 0.034). L2/3 PV interneuron response half-widths (5.26 ± 0.108 msec) were broader than L4
- 276 response half-widths $(4.82 \pm 0.091 \text{ msec}, p = 0.035)$.

17

286	stimulating electrode (distance-normalized latency). Stimulation layer significantly affected
287	distance-normalized latency ($F(1,51) = 16.478$, p < 0.001). Regardless of PV interneuron layer,
288	distance-normalized latencies of responses to stimulation in L2/3 (0.0162 \pm 0.0005 msec/µm)
289	were significantly longer than those to stimulation in L4 (0.0128 \pm 0.0004 msec/µm, p < 0.001).
290	PV interneurons residing in L2/3 responded to interlaminar L4 stimulation (0.013 \pm 0.0003
291	msec/ μ m) more quickly than intralaminar L2/3 stimulation (0.016 \pm 0.0004 msec/ μ m, t(26.992)
292	= 3.243, p = 0.003). However, L4 PV interneurons responded to interlaminar L2/3 stimulation
293	$(0.017 \pm 0.0005 \text{ msec}/\mu\text{m})$ more slowly than to intralaminar L4 stimulation (0.013 \pm 0.0005
294	msec/ μ m). Thus, stimulation layer impacts latency in a manner which cannot be attributed to
295	differences in distance.
296	
297	Discussion
298	Here we used the genetically-encoded hybrid voltage sensor hVOS to investigate PV
299	interneurons in BC. We observed responses of L2/3 and L4 PV interneuron to stimulation of both
300	these layers. We developed a semi-automatic method of identifying individual responsive PV
301	interneurons that combines geometric considerations with statistical K-means clustering of SNR.
302	This method reliably located responsive cells within the high background fluorescence produced
303	by the extensive arborization of PV interneurons. Using this method, we were able to identify

304 cell bodies of ~20 responsive PV interneurons per slice, and determine response amplitude, half-

305 width, latency, rise-time, and decay-time of their responses to synaptic excitation. To test our

306 method, we plotted half-width and amplitude versus distance from the electrode tip (Fig 2). The

307

308 cells. The parameters reported in this study represent basic elements of cortical circuitry that may

absence of correlations indicates that our pixel clusters contain single cells rather than multiple

309	be useful in the development of accurate computational models designed to recapitulate the roles
310	of fast-spiking interneurons in BC microcircuit computations (Avermann et al., 2012), and in the
311	generation of synchronous activity (Di Garbo et al., 2004; Pervouchine et al., 2006).
312	Previous hVOS studies of PV interneuron activity in somatosensory cortex determined
313	that spike-like responses similar to action potentials had a peak $\Delta F/F$ of 2.4% (Bayguinov <i>et al.</i> ,
314	2017), while unitary synaptic responses elicited by an action potential in a single excitatory
315	neuron ranged from $0.2 - 0.4\%$ (Canales <i>et al.</i> , 2022). Assuming ~100 mV action potentials, the
316	mean amplitude of 0.494% reported here can be estimated as approximately 21 mV. The
317	responses reported here are 64% larger than unitary excitatory responses and about one fifth the
318	amplitude of spike-like responses. They are clearly too small to be action potentials, and are
319	likely to represent EPSPs elicited by an average of about two excitatory neurons. Consistent with
320	our assessment that these responses are synaptic potentials, our half-widths of ~5.14 msec are 3.6
321	times broader than half-widths of PV interneuron spikes recorded with hVOS (Bayguinov et al.,
322	2017). Our half-widths fall in the range of other studies of subthreshold, synaptic responses of
323	PV interneuron in murine cortex of 4.6 to 22.3 msec (Thomson, 1997; Angulo et al., 1999;
324	Thomson et al., 2002; Beierlein et al., 2003; Holmgren et al., 2003; Ali & Nelson, 2006; West et
325	al., 2006; Ali et al., 2007; Avermann et al., 2012; Zhou & Roper, 2014). Our 2.8 msec half-
326	decay-time corresponds to an exponential decay-time of 4.1 msec, which is within the range (3.5
327	to 12 msec) of previously reported values for EPSPs in murine cortical PV interneurons
328	(Povysheva et al., 2006; Otsuka & Kawaguchi, 2009; Zaitsev & Lewis, 2013; Athilingam et al.,
329	2017). Thus, parameter values reported here fall within the range of previous reports, and reveal
330	how PV interneuron properties vary depending on location and source of excitation.

20

interneuron synaptic responses (Bonsi *et al.*, 2007; Zaitsev *et al.*, 2012), and differences in their
distribution between layers could contribute to the present findings.

344 PV interneuron residence layer also impacted rise-time and half-width. L2/3 PV 345 interneuron responses had longer rise-times and broader half-widths than responses of PV 346 interneurons in L4. Differences in rise-time could reflect dendritic location, presynaptic release 347 kinetics, or AMPA receptor subunit composition. Compared to other types of interneurons and 348 pyramidal cells, PV interneurons in CA1 express higher levels of AMPA receptor subunit GluA1, 349 higher levels of auxiliary proteins regulating AMPA receptors, and especially high levels of 350 GluA4 (Yamasaki et al., 2016). Knockout of GluA4, but not GluA3, decreases rise-time (Yang et 351 al., 2011). AMPA receptors on PV interneurons can have multiple subunit combinations (Kondo 352 et al., 1997). Therefore, differences in rise-time based on PV interneuron residence layer might 353 reflect layer-specific variation in AMPA receptor subunit composition. Longer rise-times for PV 354 interneurons in L2/3 compared to L4 likely contribute to the broader half-widths of L2/3 PV 355 interneurons.

356 In addition to differences in amplitude, rise-time, and half-width, we also observed 357 differences in latency between cortical layers. However, while the former properties depended on 358 the layer in which PV interneurons resided, latency differed depending on the location of the 359 inputs. Accounting for the effect of distance, both L2/3 and L4 PV interneuron responses to L2/3 360 stimulation had significantly longer latencies compared to responses to L4 stimulation. Because 361 stimulation layer impacted latencies regardless of the layer in which the PV interneurons resided, 362 this difference may reflect a property of the excitatory input rather than postsynaptic properties 363 of PV interneurons. The inputs could have a faster conduction time along their axons or more

21

364	direct axonal paths to their targets. It is also possible that the latency differences reflect
365	differences in the kinetics of neurotransmitter release between axons originating in $L2/3$ and $L4$.
366	The shorter latencies of L2/3 PV interneuron responses to interlaminar L4 excitation
367	compared to the reverse pathway of L4 PV interneuron responses to interlaminar L2/3 excitation
368	will enable feedforward excitation along the canonical route from L4 to L2/3 PV interneurons to
369	occur more quickly than L2/3 to L4 feedback. Inhibition plays a key role in coincidence
370	detection by controlling the temporal integration window (Pouille & Scanziani, 2001), and
371	because PV interneurons fire rapidly, they are particularly well-suited to tightly constraining
372	integration within their synaptic targets. Compared to L4, which processes more basic sensory
373	information such as touch and whisking, L2/3 functions are related to more complex
374	somatosensory processing such as object localization (O'Connor et al., 2010), stimulus-specific
375	adaptation (Yarden et al., 2022), texture discrimination (Allitt et al., 2017), and social touch
376	(Lenschow & Brecht, 2015). The particularly rapid L4 to L2/3 excitation reported here could
377	narrow the integration window set by $L^{2/3}$ PV interneurons on their targets, and therefore may
378	impact these higher-level sensory processes.
379	This work demonstrates the utility of hVOS voltage imaging as a technique to examine
380	cortical circuitry of many cells of a specific type simultaneously across multiple cortical layers.
381	This approach can be used to measure response parameters such as amplitude, half-width,
382	latency, rise-time, and decay-time, which are important for computations. It also provides an

383 opportunity to compare these response parameters across cortical layers. Here we observed

384 layer-based differences in amplitude, rise-time, and latency which hold implications for how BC

385 integrates interlaminar and intralaminar inputs. Future work building on this approach has the

386	potential to address the circuit functions of PV interneurons as well as other specific cell types
387	throughout the brain.
388 389	References
390 391 392	Adesnik H. (2018). Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex. <i>J Physiol-London</i> 596 , 1639-1657.
393 394 395 396	Ali AB, Bannister AP & Thomson AM. (2007). Robust correlations between action potential duration and the properties of synaptic connections in layer 4 interneurones in neocortical slices from juvenile rats and adult rat and cat. <i>J Physiol</i> 580 , 149-169.
397 398 399 400	Ali AB & Nelson C. (2006). Distinct Ca2+ channels mediate transmitter release at excitatory synapses displaying different dynamic properties in rat neocortex. <i>Cereb Cortex</i> 16 , 386-393.
401 402 403	Allitt BJ, Alwis DS & Rajan R. (2017). Laminar-specific encoding of texture elements in rat barrel cortex. <i>J Physiol</i> 595 , 7223-7247.
404 405 406	Angulo MC, Rossier J & Audinat E. (1999). Postsynaptic Glutamate Receptors and Integrative Properties of Fast-Spiking Interneurons in the Rat Neocortex. <i>J Neurophysiol</i> 82.
407 408 409 410	Athilingam JC, Ben-Shalom R, Keeshen CM, Sohal VS & Bender KJ. (2017). Serotonin enhances excitability and gamma frequency temporal integration in mouse prefrontal fast-spiking interneurons. <i>Elife</i> 6 .
411 412 413 414	Avermann M, Tomm C, Mateo C, Gerstner W & Petersen CC. (2012). Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. <i>J Neurophysiol</i> 107, 3116- 3134.
415 416 417 418	Bayguinov PO, Ma YH, Gao Y, Zhao XY & Jackson MB. (2017). Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor. <i>Journal of Neuroscience</i> 37, 9305-9319.
419 420 421	Beierlein M, Gibson JR & Connors BW. (2003). Two Dynamically Distinct Inhibitory Networks in Layer 4 of the Neocortex. <i>J Neurophysiol</i> 90 .
422 423 424	Bonsi P, Sciamanna G, Mitrano DA, Cuomo D, Bernardi G, Platania P, Smith Y & Pisani A. (2007). Functional and ultrastructural analysis of group I mGluR in striatal fast-spiking interneurons. <i>Eur J Neurosci</i> 25, 1319-1331.
425 426 427 428	Bradley J, Luo R, Otis TS & DiGregorio DA. (2009). Submillisecond Optical Reporting of Membrane Potential In Situ Using a Neuronal Tracer Dye. <i>Journal of Neuroscience</i> 29, 9197-9209.

2	2
4	3

429	
430	Brecht M. (2007). Barrel cortex and whisker-mediated behaviors. Curr Opin Neurobiol 17, 408-
431	416.
432	
433	Canales A. Scheuer KS. Zhao X & Jackson MB. (2022). Unitary synaptic responses of
434	parvalbumin interneurons evoked by excitatory neurons in the mouse barrel cortex. <i>Cereb</i>
435	Cortex
436	
437	Chanda B Blunck R Faria I.C. Schweizer FF Mody I & Bezanilla F (2005) A hybrid approach
/38	to measuring electrical activity in genetically specified neurons. Nat Neurosci 8, 1610-
430 /30	1676
439	1020.
440	Change DV (2006) Uniterrangeneous anoticil nettering of lange terms not entiotics in him occurrent
441	Chang PY. (2006). Heterogeneous spatial patterns of long-term potentiation in hippocampal
442	slices. In <i>Biophysics</i> , pp. 144. University of wisconsin-Madison, Madison, wi.
443	
444	Das A, Zhu B, Xie Y, Zeng L, Pham AI, Neumann JC, Safrina O, Benavides DR, MacGregor
445	GR, Schutte SS, Hunt RF & O'Dowd DK. (2021). Interneuron Dysfunction in a New
446	Mouse Model of SCNIA GEFS. eNeuro 8.
447	
448	Di Garbo A, Panarese A & Chillemi S. (2004). Phase locking states between fast-spiking
449	interneurons coupled by electrical and chemical synapses. <i>Neurocomputing</i> 58-60 , 159-
450	164.
451	
452	Feldmeyer D. (2012). Excitatory neuronal connectivity in the barrel cortex. <i>Front Neuroanat</i> 6 ,
453	24.
454	
455	Feldmeyer D, Qi G, Emmenegger V & Staiger JF. (2018). Inhibitory interneurons and their
456	circuit motifs in the many layers of the barrel cortex. <i>Neuroscience</i> 368 , 132-151.
457	
458	Ferguson BR & Gao WJ. (2018). PV Interneurons: Critical Regulators of E/I Balance for
459	Prefrontal Cortex-Dependent Behavior and Psychiatric Disorders. Front Neural Circuits
460	12, 37.
461	
462	Frandolig JE, Matney CJ, Lee K, Kim J, Chevee M, Kim SJ, Bickert AA & Brown SP. (2019).
463	The Synaptic Organization of Layer 6 Circuits Reveals Inhibition as a Major Output of a
464	Neocortical Sublamina. Cell Rep 28, 3131-3143 e3135.
465	
466	Fukuda T & Kosaka T. (2003). Ultrastructural study of gap junctions between dendrites of
467	parvalbumin-containing gabaergic neurons in various neocortical areas of the adult rat.
468	Neuroscience 120, 5-20.
469	
470	Gonzalez-Burgos G, Cho RY & Lewis DA. (2015). Alterations in cortical network oscillations
471	and parvalbumin neurons in schizophrenia. Biol Psychiatry 77, 1031-1040.
472	

473 474 475	Guo C, Wang C, He T, Yu B, Li M, Zhao C, Yuan Y & Chen H. (2020). The effect of mGlu2/3 receptors on synaptic activities to different types of GABAergic interneurons in the anterior cingulate cortex. <i>Neuropharmacology</i> 175 , 108180.
476 477 478	Holmgren C, Harkany T, Svennenfors B & Zilberter Y. (2003). Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. <i>J Physiol</i> 551 , 139-153.
479 480 481 482	Hu H, Gan J & Jonas P. (2014). Interneurons. Fast-spiking, parvalbumin(+) GABAergic interneurons: from cellular design to microcircuit function. <i>Science</i> 345 , 1255263.
483 484 485 486	Inan M, Blazquez-Llorca L, Merchan-Perez A, Anderson SA, DeFelipe J & Yuste R. (2013). Dense and overlapping innervation of pyramidal neurons by chandelier cells. <i>J Neurosci</i> 33, 1907-1914.
487 488 489 490	Judak L, Chiovini B, Juhasz G, Palfi D, Mezriczky Z, Szadai Z, Katona G, Szmola B, Ocsai K, Martinecz B, Mihaly A, Denes A, Kerekes B, Szepesi A, Szalay G, Ulbert I, Mucsi Z, Roska B & Rozsa B. (2022). Sharp-wave ripple doublets induce complex dendritic spikes in parvalbumin interneurons in vivo. <i>Nat Commun</i> 13, 6715.
491 492 493 494 405	 Kayarian FB, Jannati A, Rotenberg A & Santarnecchi E. (2020). Targeting Gamma-Related Pathophysiology in Autism Spectrum Disorder Using Transcranial Electrical Stimulation: Opportunities and Challenges. <i>Autism Res</i> 13, 1051-1071.
495 496 497	Keller D, Ero C & Markram H. (2018). Cell Densities in the Mouse Brain: A Systematic Review. <i>Front Neuroanat</i> 12 , 83.
498 499 500 501 502	Koelbl C, Helmstaedter M, Lubke J & Feldmeyer D. (2015). A barrel-related interneuron in layer 4 of rat somatosensory cortex with a high intrabarrel connectivity. <i>Cereb Cortex</i> 25 , 713-725.
502 503 504	Kondo M, Sumino R & Okado H. (1997). Combinations of AMPA Receptor Subunit Expression in Individual
505 506 507	Cortical Neurons Correlate with Expression of Specific Calcium- Binding Proteins. <i>J Neurosci</i> 17.
508 509 510	 Kooijmans RN, Sierhuis W, Self MW & Roelfsema PR. (2020). A Quantitative Comparison of Inhibitory Interneuron Size and Distribution between Mouse and Macaque V1, Using Calcium-Binding Proteins. <i>Cereb Cortex Commun</i> 1, tgaa068.
512 513	Lauber E, Filice F & Schwaller B. (2018). Parvalbumin neurons as a hub in autism spectrum disorders. <i>J Neurosci Res</i> 96 , 360-361.
514 515 516 517	Lenschow C & Brecht M. (2015). Barrel cortex membrane potential dynamics in social touch. <i>Neuron</i> 85 , 718-725.

518 519	Li P & Huntsman MM. (2014). Two functional inhibitory circuits are comprised of a heterogeneous population of fast-spiking cortical interneurons. <i>Neuroscience</i> 265 , 60-71.
520 521 522 523	Muller JF, Mascagni F & McDonald AJ. (2005). Coupled networks of parvalbumin- immunoreactive interneurons in the rat basolateral amygdala. <i>J Neurosci</i> 25 , 7366-7376.
525 524 525 526	Nahar L, Delacroix BM & Nam HW. (2021). The Role of Parvalbumin Interneurons in Neurotransmitter Balance and Neurological Disease. <i>Front Psychiatry</i> 12 , 679960.
520 527 528 529	Naka A & Adesnik H. (2016). Inhibitory Circuits in Cortical Layer 5. <i>Front Neural Circuits</i> 10, 35.
529 530 531 532	O'Connor DH, Peron SP, Huber D & Svoboda K. (2010). Neural activity in barrel cortex underlying vibrissa-based object localization in mice. <i>Neuron</i> 67 , 1048-1061.
532 533 534 535	Otsuka T & Kawaguchi Y. (2009). Cortical inhibitory cell types differentially form intralaminar and interlaminar subnetworks with excitatory neurons. <i>J Neurosci</i> 29 , 10533-10540.
536 537 538 539	Packer AM & Yuste R. (2011). Dense, unspecific connectivity of neocortical parvalbumin- positive interneurons: a canonical microcircuit for inhibition? <i>J Neurosci</i> 31 , 13260- 13271.
539 540 541	Pala A & Petersen CC. (2018). State-dependent cell-type-specific membrane potential dynamics and unitary synaptic inputs in awake mice. <i>Elife</i> 7 .
542 543 544 545 546	Pervouchine DD, Netoff TI, Rotstein HF, White JA, Cunningham MO, Whittington MA & Kopell NJ. (2006). Low-Dimensional Maps Encoding Dynamics in Entorhinal Cortex and Hippocampus. <i>Neural Comput</i> 18 .
547 548 549	Pouille F & Scanziani M. (2001). Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. <i>Science</i> 293 , 1159-1163.
550 551 552 553	Povysheva NV, Gonzalez-Burgos G, Zaitsev AV, Kroner S, Barrionuevo G, Lewis DA & Krimer LS. (2006). Properties of excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat prefrontal cortex. <i>Cereb Cortex</i> 16 , 541-552.
555 554 555 556	Povysheva NV, Zaitsev AV, Rotaru DC, Gonzalez-Burgos G, Lewis DA & Krimer LS. (2008). Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. <i>J</i> <i>Neurophysiol</i> 100 , 2348-2360.
558 559 560 561	Scheuer KS, Judge J, Zhao X & Jackson MB. (2023). Velocity of Conduction Between Columns and Layers in Barrel Cortex Reported by Parvalbumin Interneurons. <i>bioRxiv</i> , 2022.2007.2027.501767.

562 563 564 565	Selby L, Zhang C & Sun QQ. (2007). Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein. <i>Neurosci Lett</i> 412, 227- 232.
566 567 568	Staiger JF & Petersen CCH. (2021). Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. <i>Physiol Rev</i> 101, 353-415.
569 570 571	Stedehouder J, Brizee D, Slotman JA, Pascual-Garcia M, Leyrer ML, Bouwen BL, Dirven CM, Gao Z, Berson DM, Houtsmuller AB & Kushner SA. (2019). Local axonal morphology guides the topography of interneuron myelination in mouse and human neocortex. <i>Elife</i> 8.
572 573 574 575	Tallon-Baudry C, Bertrand O, Peronnet F & Pernier J. (1998). Induced Gamma-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans. <i>J Neurosci</i> 18.
576 577 578	Thomson AM. (1997). Activity-dependent properties of synaptic transmission at two classes of connections made by rat enocotical pyramidal axons in vitro. <i>J Physiol</i> 502 .
579 580 581 582 583	Thomson AM, West DC, Wang Y & Bannister AP. (2002). Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2-5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. <i>Cereb Cortex</i> 12 , 936-953.
584 585 586	Tremblay R, Lee S & Rudy B. (2016). GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits. <i>Neuron</i> 91 , 260-292.
587 588 589	Wang D, Zhang Z, Chanda B & Jackson MB. (2010). Improved probes for hybrid voltage sensor imaging. <i>Biophys J</i> 99, 2355-2365.
590 591 592 593	Wang Y, Gupta A, Toledo-Rodriguez M, Wu CZ & Markram H. (2002). Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. <i>Cereb Cortex</i> 12, 395-410.
594 595 596 597	West DC, Mercer A, Kirchhecker S, Morris OT & Thomson AM. (2006). Layer 6 cortico- thalamic pyramidal cells preferentially innervate interneurons and generate facilitating EPSPs. <i>Cereb Cortex</i> 16, 200-211.
598 599 600	Woolsey TA & Van der Loos H. (1970). The structural organization of layer IV in the somatosensory region (S1) of mouse cerebral cortex. <i>Brain Res</i> 17.
601 602 603	Xu X & Callaway EM. (2009). Laminar specificity of functional input to distinct types of inhibitory cortical neurons. <i>J Neurosci</i> 29 , 70-85.
604 605 606 607	Yamasaki M, Fukaya M, Yamazaki M, Azechi H, Natsume R, Abe M, Sakimura K & Watanabe M. (2016). TARP gamma-2 and gamma-8 Differentially Control AMPAR Density Across Schaffer Collateral/Commissural Synapses in the Hippocampal CA1 Area. <i>J Neurosci</i> 36 , 4296-4312.

608	
609	Yang YM, Aitoubah J, Lauer AM, Nuriya M, Takamiya K, Jia Z, May BJ, Huganir RL & Wang
610	LY. (2011). GluA4 is indispensable for driving fast neurotransmission across a high-
611	fidelity central synapse. J Physiol 589, 4209-4227.
612	
613	Yarden TS, Mizrahi A & Nelken I. (2022). Context-Dependent Inhibitory Control of Stimulus-
614	Specific Adaptation. J Neurosci 42, 4629-4651.
615	
616	Zaitsev AV, Kim KK & Magazanik LG. (2012). The role of calcium-permeable AMPA receptors
617	in disynaptic feedforward inhibition in the rat prefrontal cortex. Biochemistry (Moscow)
618	Supplement Series A: Membrane and Cell Biology 6, 198-205.
619	
620	Zaitsev AV & Lewis DA. (2013). Functional properties and short-term dynamics of
621	unidirectional and reciprocal synaptic connections between layer 2/3 pyramidal cells and
622	fast-spiking interneurons in juvenile rat prefrontal cortex. Eur J Neurosci 38, 2988-2998.
623	
624	Zhou FW & Roper SN. (2014). Reduced chemical and electrical connections of fast-spiking
625	interneurons in experimental cortical dysplasia. J Neurophysiol 112, 1277-1290.
626	
627	