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Lars Gabriel 1,2, Tomáš Br̊una 5, Katharina J. Hoff 1,2∗, Matthis Ebel 1,2,
Alexandre Lomsadze 3∗, Mark Borodovsky 3,4,†, and Mario Stanke 1,2,†

1 Institute of Mathematics and Computer Science, University of Greifswald, 17489 Greifswald, Germany
2 Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany
3 Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
4 School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
5 U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
USA
∗ corresponding author
† senior authors

Running title: BRAKER3 Genome Annotation Pipeline

Corresponding Authors Contact Information: Katharina J. Hoff
Institute of Mathematics and Computer Science
University of Greifswald
17489 Greifswald
Germany
katharina.hoff@uni-greifswald.de

Alexandre Lomsadze
Wallace H. Coulter Department of Biomedical Engi-
neering
Georgia Institute of Technology
Atlanta, GA 30332
United States
alexandre.lomsadze@bme.gatech.edu

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.06.10.544449doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.10.544449
http://creativecommons.org/licenses/by/4.0/


Abstract

Gene prediction has remained an active area of bioinformatics research for a long time. Still, gene

prediction in large eukaryotic genomes presents a challenge that must be addressed by new algorithms.

The amount and significance of the evidence available from transcriptomes and proteomes vary across

genomes, between genes and even along a single gene. User-friendly and accurate annotation pipelines

that can cope with such data heterogeneity are needed. The previously developed annotation pipelines

BRAKER1 and BRAKER2 use RNA-Seq or protein data, respectively, but not both. A further signifi-

cant performance improvement was made by the recently released GeneMark-ETP integrating all three

data types.

We present the BRAKER3 pipeline that builds on GeneMark-ETP and AUGUSTUS and further im-

proves accuracy using the TSEBRA combiner. BRAKER3 annotates protein-coding genes in eukaryotic

genomes using both short-read RNA-Seq and a large protein database, along with statistical models

learned iteratively and specifically for the target genome. We benchmarked the new pipeline on genomes

of 11 species under assumed level of relatedness of the target species proteome to available proteomes.

BRAKER3 outperformed BRAKER1 and BRAKER2. The average transcript-level F1-score was in-

creased by ∼20 percentage points on average, while the difference was most pronounced for species with

large and complex genomes. BRAKER3 also outperformed other existing tools, MAKER2, Funannotate

and FINDER. The code of BRAKER3 is available on GitHub and as a ready-to-run Docker container for

execution with Docker or Singularity. Overall, BRAKER3 is an accurate, easy-to-use tool for eukaryotic

genome annotation.

Introduction

New eukaryotic genomes are being sequenced at increasing rates. However, the pace of genome annota-

tion, which establishes links between genomic sequence and biological function, is lagging behind. For

example, in April 2023, 49% of the eukaryotic species with assemblies in GenBank had no annotation in

GenBank. Undertakings such as the Earth BioGenome Project (https://www.earthbiogenome.org),5

which aims to annotate ∼1.5 million eukaryotic species, further require that the annotation pipeline is

highly automated and reliable and ideally no manual work for each species is required when genome

assembly and RNA-Seq are given.

Further, species which have an annotation also require re-annotation as assemblies improve or the

available extrinsic evidence increases substantially [NCBI, 2023]. This demand further increases the10

importance of the availability of fast and accurate genome annotation tools.

Current state-of-the-art annotation pipelines integrate extrinsic and intrinsic evidence. Extrinsic
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evidence is extracted from transcripts and cross-species homologous proteins. RNA-Seq reads offer direct

evidence on introns and, if assembled, on a gene structure. Protein sequences from related genomes can

be used to identify regions of a genome that encode proteins with similar sequences to known proteins.15

Due to the sequence divergence between informant and target gene, this evidence may be less reliable

and less precise than the one from (native) RNA-Seq alignments. The availability of extrinsic evidence is

increasing rapidly. Second-generation sequencing technology has become cheap [Kris A. Wetterstrand,

2021] and RNA-Seq often accompanies genome sequencing. To give an example for protein database

growth, OrthoDB’s latest release (v11) includes more than 50% additional eukaryotic species compared20

to its previous version [Kuznetsov et al., 2023].

Despite the importance of extrinsic evidence, it may cover only some parts of a gene, leaving other

parts without evidence. Traditional ab initio gene prediction methods rely on computational predictions

by statistical models using genome sequence data alone, for example AUGUSTUS [Stanke et al., 2006]

and GeneMark-ES [Lomsadze et al., 2005]. However, the ab initio models are prone to errors when used25

alone. Therefore, more precise gene predictions are made when predictions based on statistical models

are corrected by extrinsic evidence [Stanke et al., 2008, Lomsadze et al., 2014, Br̊una et al., 2020].

Earlier developed BRAKER1 [Hoff et al., 2016] and BRAKER2 [Br̊una et al., 2021] combined Gene-

Mark and AUGUSTUS to utilize, respectively, a single source of extrinsic evidence, either RNA-Seq short

reads or homologous proteins. The use of both extrinsic evidence sources together has a clear potential30

for more accurate gene structure prediction. Therefore, we developed a combiner tool TSEBRA [Gabriel

et al., 2021]. It selects transcripts from BRAKER1 and BRAKER2 annotations, considering thereby

the joint extrinsic evidence and, therefore, generates a prediction based on both RNA-Seq and protein

evidence, thus improving the F1-scores.

A more integrated approach is the GeneMark-ETP pipeline [Br̊una et al., 2023b], which integrates35

both sources of extrinsic evidence in a new workflow that outperforms all previously mentioned methods,

particularly in species with large and complex genomes. Critical to its improvement is a novel approach

to generate a highly specific training set from genes predicted in assembled transcripts and supported

by protein evidence. The method also benefited from the GC-content-specific model training, and

estimating species-specific repeat penalties.40

These many advancements and the steady increase in popularity of the previous BRAKER tools

motivated us to develop a new version of the BRAKER pipeline that can utilize both transcript and

protein homology extrinsic evidence by incorporating GeneMark-ETP, AUGUSTUS, and TSEBRA into

a novel workflow.

Similar tools that use RNA-Seq and protein data are MAKER2 [Holt and Yandell, 2011], FINDER45

[Banerjee et al., 2021] and Funannotate (GitHub, Palmer [2017]). MAKER2 aligns assembled RNA-

Seq data and proteins to the genome and can run and integrate SNAP [Korf, 2004], GeneMark and
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AUGUSTUS predictions. Although MAKER2 can provide training sets for SNAP and AUGUSTUS,

it does not train the ab initio models automatically. Also, the self-training of GeneMark.hmm models

[Lomsadze et al., 2005] has to be done outside of MAKER2. FINDER follows an approach similar50

to BRAKER3. It uses RNA-Seq assemblies with predicted open reading frames, in conjunction with

BRAKER1 and homologous protein predictions. The Funannotate pipeline, which was not described in

an article, was initially designed as a pipeline for analyzing fungal genomes; however, it has since been

further developed to support the annotation of larger genomes as well [Palmer, 2017].

In computational experiments with genomes of 11 species we have accessed and compared perfor-55

mances of BRAKER1, BRAKER2, TSEBRA, GeneMark-ETP and BRAKER3. Also, we have conducted

several experiments to access and compare performances of BRAKER3 with FINDER, Funannotate and

MAKER2. We have demonstrated that BRAKER3 consistently outperformed the other gene finding

tools.

Methods60

BRAKER3

BRAKER3 is the latest genome annotation pipeline that continues the BRAKER family. It requires

three types of inputs: the genome sequence to annotate, a list of short-read RNA-Seq datasets and

a protein database file. The protein database is a FASTA file with proteins from the broad clade of

the target genome in question, e.g., a subset from the partitioning of OrthoDB that we provide (see65

Suppl. Methods). To specify the RNA-Seq input there are three options: as BAM-files of aligned reads,

as raw reads in FASTQ-files, or as SRA (Leinonen et al. [2010]) library IDs.

BRAKER3 runs the GeneMark-ETP pipeline which performs the steps that are outlined next and

described in detail in Br̊una et al. [2023b]. First, transcript sequences are assembled with StringTie2

[Kovaka et al., 2019] from the short RNA-Seq reads aligned to the genome by HISAT2 [Kim et al., 2019].70

The assembled transcripts are then analyzed by GeneMarkS-T [Tang et al., 2015] to predict the protein-

coding genes. The predicted proteins are searched against the protein database, and GeneMark-ETP

uses the resulting similarity scores to identify high confidence gene structures. Then, the parameters

of GeneMark.hmm are trained on the high confidence genes, and it predicts genes in the intermedi-

ate fragments, the genome sequences situated between the high confidence genes. Genes predicted by75

GeneMark.hmm in the intermediate fragments are used as seeds to find homologous proteins in the

database. These homologs are then mapped back to the genome with ProtHint [Br̊una et al., 2021] to

generate hints on the gene structure that are integrated into another round of the exon-intron structure

prediction. GeneMark-ETP runs iterations of training, hint generation and gene prediction. It outputs

the high confidence genes, further genes predicted by GeneMark.hmm in intermediate fragments and80
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the hints from the proteins and RNA-Seq.

At the next step, AUGUSTUS is trained on the set of high confidence genes and predicts a second

genome wide gene set with the support of the hints. At the final step, an updated TSEBRA (described

next) combines the predictions made by AUGUSTUS and GeneMark-ETP while integrating the high

confidence genes directly into the result to ensure their inclusion. The workflow is illustrated in Figure 1.85

TSEBRA

The Transcript SElector for BRAker (TSEBRA) was improved and its original use in the BRAKER

suite was extended. As described earlier, TSEBRA combines gene sets by evaluating and comparing

candidate transcript isoforms using four transcript scores, which measured the agreement of transcript

structures with extrinsic evidence. The extrinsic evidence is here utilized in the form of positions of90

supported exon borders, particularly intron position intervals. We have now introduced normalization

of these transcript scores with respect to all input gene sets to TSEBRA, so the support with evidence

is measured relative to the available evidence for the target genome. Normalization of a transcript score

s for the i-th transcript of the input gene sets is defined as: sinorm := (si − µs)/σs, where µs and σs are

the average and standard deviation of one of four transcript score measures s, calculated from scores of95

all transcripts in the input gene sets that TSEBRA is requested to combine. TSEBRA heavily relies on

intron position information, which can make it challenging to evaluate single-exon transcripts. Therefore,

the original TSEBRA tended to overestimate single-exon transcripts in some cases. To address this, we

added a new option to TSEBRA that allows filtering out those single-exon genes that are predicted

without any support by start- or stop-codon hints. When run by BRAKER3 on genomic sequences100

longer than 300Mbp, TSEBRA removes such single-exon genes that are predicted purely ab initio.

We also added TSEBRA to the workflow of BRAKER1 and BRAKER2, where it is now used to

combine AUGUSTUS predictions with transcripts from GeneMark-ET/EP that are highly supported

by extrinsic evidence.

Test data105

To benchmark BRAKER3 we selected 11 species: Arabidopsis thaliana, Bombus terrestris, Caenorhab-

ditis elegans, Danio rerio, Drosophila melanogaster, Gallus gallus, Medicago truncatula, Mus musculus,

Parasteatoda tepidariorum, Populus trichocarpa and Solanum lycopersicum. For each species, we

retrieved: genome assemblies, 5 or 6 randomly selected short-read RNA-Seq libraries from NCBI’s Se-

quence Read Archive (detailed list in Supplemental Table S14), a protein database, and a reference110

genome annotation (detailed list in Supplemental Table S1). Before running the experiments, we soft-

masked repeats in the genomic sequences using RepeatModeler2 [Flynn et al., 2020].

For each target species, we prepared three differently sized protein databases, here termed species
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Figure 1: Schematic view of the BRAKER3 pipeline. Required inputs are genomic sequences, short-read
RNA-Seq data, and a protein database. The RNA-Seq data can be provided in three different forms:
IDs of libraries available at the Sequence Read Archive [Leinonen et al., 2010], unaligned reads or aligned
reads. If library IDs are given, BRAKER3 downloads the raw RNA-Seq reads using the SRA Toolkit
[SRA Toolkit Development Team, 2020] and aligns them to the genome using HISAT2 [Kim et al., 2019].
It is also possible to use a combination of these formats when using more than one library.

excluded, order excluded and close relatives included. The first two types of databases contain pro-

teins from OrthoDB of species from the same broad taxonomic clade as the target, e.g. Arthropoda for115

Drosophila melanogaster. For this, OrthoDB was partitioned into the subsets of proteins for Arthropoda,

Metazoa, Vertebrata or Viridiplantae. In the species excluded set of protein databases, we excluded for

each target species all proteins from OrthoDB of that very species. In the order excluded databases,

we removed for each target species all proteins of the same order as the target species. With these

two large databases we test settings in which most of the possibly useful available proteins are used120

as informants. For the close relatives included set of databases, we selected for each species a small

number of 4-12 closely related species and included their complete proteomes (Supp. Table 2). These

databases are much smaller than the corresponding species excluded and order excluded databases, by a

factor between 17 and 132. The close relatives included databases were used to compare the BRAKER3

performance with performances of the other genome annotation tools that could not handle or were not125

designed to use larger databases: Funannotate failed to run on most of the large OrthoDB-based protein

databases and MAKER2 was designed to be used with a smaller protein database, too.
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It should be noted that the species for the close relatives included database were manually selected

and the procedure would not scale well when very large numbers of species are annotated.

Experiments130

We evaluated the performance of BRAKER3 and compared it with seven other methods: the pre-

vious versions BRAKER1 and BRAKER2 using only one type of extrinsic evidence (as included in

the BRAKER v3.0.2 suite), TSEBRA (v1.1.0), combining the results of BRAKER1 and BRAKER2,

MAKER2 (3.01.04), FINDER (v1.1.0), Funannotate (v1.8.14), and GeneMark-ETP. As BRAKER3,

BRAKER2, FINDER and GeneMark-ETP can use a large protein database and since doing so saves135

a manual step we compared these four tools along with BRAKER1 and TSEBRA in two sets of ex-

periments, where the large order excluded and species excluded databases were used. In another set

of experiments, we compared BRAKER3 with MAKER2 and Funannotate on the smaller and target-

specific close relatives included databases using the same RNA-Seq data as in the other experiments.

When running Funannotate, we tried two recommended flags for generating gene sets, a specific140

handling of repetitive regions and an additional gene model update step. This resulted in four variant

sets of gene predictions per genome. Here, we report the numbers of the variant of Funannotate that

performed best (both flags were set, Supplemental Table S10).

MAKER2 was executed according to recommendations provided by the developers of MAKER2,

integrating GeneMark, AUGUSTUS and SNAP predictions. The details are provided in the Supplemen-145

tary Material. MAKER2 does not provide automatic training procedures. A recommended approach is

the manual execution of training runs of all the ab initio programs outside of MAKER2. To provide the

best possible models, we trained SNAP and AUGUSTUS on the respective reference annotation which

all programs were evaluated on, unless models for SNAP or AUGUSTUS for the species were included

in the standard distribution of these tools. Models for GeneMark were also chosen to match the best150

possible training routine (see Supplementary Material). This approach allowed for the automatic ex-

ecution of MAKER2. However, the quality of the trained parameters of the gene finders we used for

MAKER2 can be considered rather as upper limits of what can be expected on new genomes.

We compared the predicted genome annotations with the reference annotations to assess the per-

formance of BRAKER3 on exon, gene and transcript levels. As metrics, we used the sensitivity155

(Sn=TP/(TP+FN)) - the percentage of correctly found instances from the reference annotation, the

specificity (Sp=TP/(TP+FP)) - the percentage of correct instances in the predicted annotation, and

the F1-score - the harmonic mean of Sn and Sp. Note that our definition of specificity follows the custom

in the gene finding domain, agrees with the common definition of precision and is different from the use

of the word in other domains. When evaluating on exon level or transcript level, each transcript / exon160

was individually assessed. However, when evaluating on gene level, a predicted gene was counted as true
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positive if at least one of its predicted alternative transcripts matched a reference transcript.

Results

Assessment of performance of BRAKER3

For each species, computational experiments were done by running five gene prediction tools, BRAKER1,165

BRAKER2, TSEBRA, GeneMark-ETP and BRAKER3. These tools were run on each genome with

extrinsic information in the form of species specific set of RNA-Seq libraries and two types of species

specific protein databases, the order excluded and the species excluded (see Test data section). The

quality of the annotation depends generally on the evolutionary relationship of the species whose genome

a user may want to annotate (the target) to those species that have well-established genome annotations.170

To give a range of performance estimates, we performed experiments with the particularly favorable

case of the species excluded database and with the rather conservative assumption of the order excluded

database. We show the averaged accuracy measures (Sn and Sp) at exon, gene and transcript level of

BRAKER3 and four other gene finding tools on the 11 genomes, with species-specific order excluded

databases (Figure 2). The pipelines in order of increased performance are BRAKER1, BRAKER2,175

TSEBRA combining BRAKER1 and BRAKER2, GeneMark-ETP and BRAKER3. Detailed information

for each genome is given in Supplemental Tables S3 and S4. A species-by-pipeline heatmap of F1-scores

at gene level is shown in Supplemental Figure S1.

Figure 2: Average specificity and sensitivity of gene predictions made by BRAKER1, BRAKER2, TSE-
BRA, GeneMark-ETP, and BRAKER3 for the genomes of 11 different species (listed in Supplemental
Table S1). Inputs were the genomic sequences, short-read RNA-Seq libraries and protein databases
(order excluded).

Notably, there was a significant improvement of BRAKER3 in comparison with BRAKER1 and

BRAKER2 in species with GC-heterogeneous or large genomes (Figure 3). The highest performance180

increase was achieved in Gallus gallus, where the BRAKER3 F1-score on gene / transcript level was

improved by 55/48 points compared to the combined prediction of BRAKER1 and BRAKER2 generated
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by TSEBRA (Supplemental Table STable 3).

Here, BRAKER3 greatly benefited from the high accuracy of GeneMark-ETP and managed to exceed

the sensitivity and specificity on gene and transcript levels even further. GeneMark-ETP enabled the185

generation of a highly specific set of high confidence genes to train the AUGUSTUS model. As a

result, this AUGUSTUS prediction using extrinsic evidence of BRAKER3 had a higher sensitivity than

GeneMark-ETP on gene, transcript and exon level at the cost of lower specificities. AUGUSTUS’

average gene and transcript level F1-scores of 59.6 and 51.3, respectively, exceeded the F1-scores of

the AUGUSTUS predictions in BRAKER1 and BRAKER2, and are slightly lower thanthe F1-scores of190

GeneMark-ETP, see Supplemental Table S9. By integrating TSEBRA into BRAKER3 and combining

sets of gene predictions made by GeneMark-ETP and AUGUSTUS, the final BRAKER3 predictions

achieved higher sensitivity and specificity than either GeneMark-ETP and AUGUSTUS at both the

gene and transcript level. Further, the BRAKER3 annotation has higher specificity on exon level than

the annotation of GeneMark-ETP and the AUGUSTUS annotation that BRAKER3 produces for all the195

11 species (Supplemental Tables S3 and S9). TSEBRA tends to eliminate false transcripts from either

input annotation, one such example is shown in Supplemental Figure S2.

BRAKER3 is more likely to make an error when predicting an unspliced coding region, i.e. a gene

that has a single coding sequence (CDS) feature, than when predicting a CDS of a multi-CDS gene

(Supplemental Figure S3). It is even the case that for 9 out of 11 species the transcript-level F1-score for200

predicting spliced transcripts is larger than the respective score for unspliced transcripts (Supplemental

Figure S4). This may surprise as the potential for predicting differences in two gene structures is

larger for multi-exon genes and with any difference the predicted transcript is counted as false. These

findings agree with previous research indicating that gene finders generally show decreased performance

on unspliced transcripts [Scalzitti et al., 2020]. This reduced performance could be attributed to the205

inherent design of the models or a lack of representation of single-exon genes in the training datasets. In

spliced genes, BRAKER3 has more difficulties to predict the initial CDS that contains the start codon

than the terminal CDS that contains the stop codon. The highest exon level F1 score of about 88%

is achieved for internal CDS (Supplemental Figure S3). BRAKER3 predicts acceptor and donor splice

sites equally well with an F1-score of > 87% averaged over all species. The averaged F1-score for stop210

and start codons are 76% and 70%, respectively (Supplemental Figure S5).

In all species, transcripts are much more likely to be correctly identified by BRAKER3 if they

are supported by more RNA-Seq reads. Figure 4 shows the transcript level sensitivity for three ter-

ciles of expression levels, measured using the RNA-Seq libraries that were used for prediction as well.

When averaging over all species, only 23% of low-expression transcripts are correctly identified, 55% of215

medium-expression transcripts, and 76% of highly expressed transcripts. Note that there are multiple

explanations or factors that may contribute to this observation. BRAKER3 and reference annotations

9
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Figure 3: Gene level specificity and sensitivity of gene predictions made by BRAKER1, BRAKER2,
TSEBRA, GeneMark-ETP, and BRAKER3 for the genomes of 11 different species: well annotated and
compact genomes (first and second row), well-annotated and large genomes (third row), other genomes
(fourth row). The fourth column shows the average for each group. Inputs were the genomic sequences,
short-read RNA-Seq libraries, and protein databases (order excluded).

may be more accurate for transcripts that have more RNA-Seq support, directly as a consequence of

this evidence. However, highly expressed genes may also be better represented by statistical models of

gene finding, e.g. because preferred codons may make translation more efficient [Hershberg and Petrov,220

2008].

When we used the species excluded protein database, which may include very closely related species,

the performance measures of the methods using the protein data increased overall (Supplemental Table

5). On average, the BRAKER3 transcript level sensitivity was improved by approximately 3 percentage
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Figure 4: Low, medium and highly expressed transcripts are in the first, second and third tercile of
expression levels, respectively.

points and the specificity was improved slightly (less than 1 percentage point). However, the relative225

ranking of the methods and the comparison of BRAKER3 with other methods remain unchanged.

BRAKER3 had the highest sensitivities and specificitiesfor each species at the transcript and gene

level, but often had a somewhat lower exon-level F1-score than GeneMark-ETP (Supplemental Table

S4). In each species, BRAKER3 was more specific in predicting exons than GeneMark-ETP, which

in turn predicted exons more sensitively than BRAKER3 (Supplemental Table S3). Thus, there was230

a trade-off in exon sensitivity and specificity between the two methods, with an average difference of

approximately 8 percentage points in both measures (Supplemental Table S3). We presume that the

occasional false-positive exons of GeneMark-ETP hurt the stricter transcript and gene performance

measures more than those exons occasionally missed by BRAKER3 do.

The set of transcripts found by BRAKER3 and GeneMark-ETP, respectively, have large overlaps235

(Supplemental Figure S6). Transcripts uniquely predicted by BRAKER3 and not by GeneMark-ETP

uncover more of the remaining reference annotation transcripts than vice versa. This pattern is consistent

across all 11 species and applies to both spliced and unspliced transcripts. TSEBRA selects most of the

single-exon genes predicted by GeneMark-ETP to be in the final set of BRAKER3 genes (Supplemental

Figure S6). However, it adds single-exon genes predicted by AUGUSTUS, which increases the percentage240

of single-exon genes correctly identified by 5.5 percent points on average. In the particular case of

C. elegans, even about half of the single-exon genes predicted correctly by BRAKER3 are predicted by

AUGUSTUS alone (Supplemental Figure S6).

Supplemental Figure S7 breaks down the sensitivity with which transcripts are correctly identified

by expression level and quantifies how AUGUSTUS and GeneMark-ETP complement each other when245

run in BRAKER3. The BRAKER3 transcript sensitivity benefits the most from the integration of

AUGUSTUS for medium-expressed transcripts. In this expression tercile, on average 8.2% of the tran-
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scripts are identified by BRAKER3 (and AUGUSTUS) but not by GeneMark-ETP. Remarkably, of the

medium-expressed mouse transcripts BRAKER3 correctly identifies about 16% more than GeneMark-

ETP. A possible explanation of this observation is that highly expressed transcripts can be identified250

well by GeneMark-ETP, e.g. by searching them in assembled transcripts, and both GeneMark-ETP and

AUGUSTUS still have trouble correctly predicting low expressed transcripts (Supplemental Figure S7).

Comparison of BRAKER3 to MAKER2, Funannoate and FINDER

BRAKER3 was compared with MAKER2 and Funannotate on eight of the 11 genomes used in the

previously described tests. The relatively large genomes ofMus musculus and Parasteatoda tepidariorum255

(errors in the Funannotate runs) and Danio rerio (error in the MAKER2 run) were excluded because

Funannotate or MAKER2 failed to finish even for the smaller close relatives included protein sets.

Figure 5 and Supplemental Table S7 show the comparison of BRAKER3 to MAKER2 and Funan-

notate. All tools, including BRAKER3, are given as input the smaller close relatives included protein

databases and the same RNA-Seq data as in all experiments. BRAKER3 consistently outperforms260

Funannotate and MAKER2 on exon, gene and transcript level (Figure 5). On average, BRAKER3’s

F1-scores were higher than the ones of Funannotate by 10.2 points at the exon level, 25.9 points at

the gene level and 21.6 points at the transcript level. In turn, Funannotate exceeded MAKER2 by

2.2, 3.8 and 4.4 points with regards to the F1 measure on exon, gene and transcript level, respectively.

BRAKER3 shows better performance than Funannotate and MAKER2 for all species and individual265

metrics, except at the exon level for Caenorhabditis elegans, where BRAKER3 had a sensitivity 3.3

percentage points lower than the one of Funannotate (Supplemental Table S7).

Figure 5: Average specificity and sensitivity of gene predictions made by MAKER2, Funannotate, and
BRAKER3 for a subset of 8 species (excluding the mouse, spider and fish genome). Inputs were the
genomic sequences, short-read RNA-Seq libraries, and protein databases (close relatives included). The
accuracy of MAKER2 reported here can be regarded as an upper limit of what can be expected when
annotating a previously unannotated genome (see Experiments section).

We compared the results of BRAKER3 on the protein informant databases close relatives included

and species excluded. Both series of databases may contain proteins from close relatives of the target,
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but the database close relatives included is much smaller. When run with the species excluded database270

(Supplemental Tables S5 and S6) BRAKER3 has on average an F1-score that is higher by 0.40, 0.23

and 0.34 on the exon, gene and transcript level, respectively, than when BRAKER3 is run with the close

relatives included database (Supplemental Tables 7). Thus, when BRAKER3 uses the larger protein

database it delivers slightly better results. Perhaps more importantly, using the broader database has a

practical advantage in that it does not require the (manual) step to compile a database of closely related275

proteomes.

The FINDER annotation pipeline was run on the order excluded databases with the same input data

as BRAKER3, but the execution only completed for 7 of 11 species. However, its best performance,

a ∼15 gene F1-score and a ∼11 transcript F1-score for Drosophila melanogaster, was much below the

respective values of the other methods (Supplemental Tables S8). Possible reasons for the observation280

that the performance of FINDER was below the figures published by Banerjee et al. [2021] are that

these authors did not exclude any proteins from their UniProt informant database (Sagnik Banerjee,

personal communication) and that Banerjee et al. used many more RNA-Seq libraries.

Runtime

We ran all methods except MAKER2 on an HPC node with Intel(R) Xeon(R) CPU E5-2650 v4 @285

2.20GHz using 48 threads. The pipelines in order of runtime when using the order excluded databases

were BRAKER1, GeneMark-ETP, BRAKER2, BRAKER3. The BRAKER3 runtime ranges from 5h

37min in Arabidopsis thaliana to 64h 16min in Mus musculus. The time for aligning the RNA-Seq reads

is not included in these figures. However, parameter training is an integral part of the pipeline and

its duration is included. Despite having the longest run-time of all methods, BRAKER3 can annotate290

even large genomes in a reasonable time. The order excluded protein databases are roughly 1-2 orders

of magnitude larger than the close relatives included protein databases (see Supplemental Table S1).

Nevertheless, BRAKER3 required only 23% more time on these large protein databases (averaged over

8 species, compare Supplemental Tables S11 and S13). Figure 6 shows the runtime as a function of

genome size and protein database choice. A linear regression of 19 BRAKER3 whole-genome runtimes295

yielded the estimate

runtime [h] = 1.8 + 2.1 · genome size [100MB]+ 3.1 · big protein db used.

Here, big protein db used is 1 if the OrthoDB partition is used (order excluded) and 0 if the small

close relatives included protein database is used. Consequently, using the large protein database adds

an estimated 3.1 hours to the runtime. It should be noted that many factors influence runtime and the

linear regression ansatz can only give a rough estimate. Supplemental Figure S8 shows a comparison of300

predicted to actual runtimes.
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We also compared the runtimes of BRAKER3, Funannotate and MAKER2 on the smaller close rela-

tives included protein databases. Funannotate required on average roughly the same time as BRAKER3

(see Supp. Table 13). As we ran MAKER2 on faster hardware (see Supplemental Material) we made

a runtime comparison experiment with BRAKER3 on the same hardware for Drosophila melanogaster.305

When given the relatively small protein database as input (116,493 proteins) MAKER2 took 2.1 hours

and BRAKER3 took 3.5 hours. When given a large protein database as input (2,588,444 proteins),

MAKER2 took 16 hours and BRAKER3 took 2.5 hours. The run-time of BRAKER3 is much less de-

pendent on the protein database size (here its decrease was due to a variable-duration hyperparameter

optimization step during training). When comparing these runtimes, one has to consider that the figures310

for MAKER2 do not include the considerable times for training gene finders and neither for transcrip-

tome assembly. In contrast, BRAKER3 performs these steps as part of the pipeline. Some further

examples of runtimes of MAKER2 are shown in Supplemental Table S12.
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Figure 6: The execution time of BRAKER3. The time required for aligning the RNA-Seq to the genome
and thus producing the .bam input files is not included.

Virtualization

One problem with modern genome annotation pipelines is their dependence on an increasing number315

of tools, which can make their installation and maintenance difficult. Therefore, we provide a Docker

container for BRAKER, making it easy to install and use.
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Discussion

We present BRAKER3, a novel genome annotation pipeline for eukaryotic genomes that integrates

evidence from transcript reads, homologous proteins and the genome itself. We report significantly320

improved performance for 11 test species. BRAKER3 outperforms its predecessors BRAKER1 and

BRAKER2 by a large margin, as well as publicly available pipelines, such as MAKER2, FINDER

and Funannotate. The most substantial improvements are observed in species with large and complex

genomes. Additionally, BRAKER3 adds a Docker container that also easily executes with Singularity

[Kurtzer et al., 2017] to the BRAKER suite, which makes it more user-friendly and easier to install.325

BRAKER3’s final and integrative step, TSEBRA, selects transcripts from sets of transcripts from

multiple sources. One source is gene prediction in transcripts assembled from RNA-Seq, and two other

sources are the two HMM models that predict genes in the genome using different approaches to evi-

dence integration and, in the case of AUGUSTUS, produce alternative transcript variants. BRAKER3

combines these sets of transcripts and can be seen as an ensemble learning approach that improves each330

of its inputs. In fact, the combined BRAKER3 transcripts have a higher F1-score than either of the

combined GeneMark-ETP and AUGUSTUS transcript sets.

BRAKER3’s performance drops for transcripts which are weakly represented in the RNA-Seq data.

Notably, BRAKER3 cannot be used without RNA-Seq evidence. When only protein evidence is available,

we recommend to use BRAKER2 for small and medium sized genomes and GALBA [Br̊una et al., 2023a]335

for large vertebrate genomes.

Data Access

BRAKER3 is available on GitHub (https://github.com/Gaius-Augustus/BRAKER) and as a Docker

container (https://hub.docker.com/r/teambraker/braker3). BRAKER3 and AUGUSTUS are dis-

tributed under the Artistic License. GeneMark-ETP and its part GeneMark.hmm, are distributed under340

the Creative Commons license.

All data was previously publicly available. Genome versions, repeat masking and annotation process-

ing are documented at https://github.com/gatech-genemark/EukSpecies-BRAKER2 and at https:

//github.com/gatech-genemark/GeneMark-ETP-exp.
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Lars Gabriel, Katharina J Hoff, Tomáš Br̊una, Mark Borodovsky, and Mario Stanke. TSEBRA: tran-

script selector for BRAKER. BMC Bioinformatics, 22(1):1–12, 2021.

Ruth Hershberg and Dmitri A Petrov. Selection on codon bias. Annual review of genetics, 42:287–299,375

2008.

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.06.10.544449doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.10.544449
http://creativecommons.org/licenses/by/4.0/


Katharina J Hoff, Simone Lange, Alexandre Lomsadze, Mark Borodovsky, and Mario Stanke.

BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS.

Bioinformatics, 32(5):767–769, 2016.

Carson Holt and Mark Yandell. MAKER2: an annotation pipeline and genome-database management380

tool for second-generation genome projects. BMC Bioinformatics, 12(1):1–14, 2011.

W James Kent, Charles W Sugnet, Terrence S Furey, Krishna M Roskin, Tom H Pringle, Alan M Zahler,

and David Haussler. The human genome browser at UCSC. Genome research, 12(6):996–1006, 2002.

Daehwan Kim, Joseph M Paggi, Chanhee Park, Christopher Bennett, and Steven L Salzberg. Graph-

based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology,385

37(8):907–915, 2019.

Ian Korf. Gene finding in novel genomes. BMC Bioinformatics, 5(1):1–9, 2004.

Sam Kovaka, Aleksey V Zimin, Geo M Pertea, Roham Razaghi, Steven L Salzberg, and Mihaela Pertea.

Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biology, 20

(1):1–13, 2019.390

Kris A. Wetterstrand. The cost of sequencing a human genome. https://genome.gov/

sequencingcosts, 2021. Accessed 26 February 2023.

Gregory M Kurtzer, Vanessa Sochat, and Michael W Bauer. Singularity: Scientific containers for mobility

of compute. PloS one, 12(5):e0177459, 2017.
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