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Abstract 

Cognitive decline has been reported as a common consequence of COVID-19, and studies have 

suggested a link between COVID-19 infection and Alzheimer's disease (AD). However, the 

molecular mechanisms underlying this association remain unclear. To shed light on this link, we 

conducted an integrated genomic analysis using a novel Robust Rank Aggregation method to 

identify common transcriptional signatures of the frontal cortex, a critical area for cognitive 

function, between individuals with AD and COVID-19. We then performed various analyses, 

including the KEGG pathway, GO ontology, protein-protein interaction, hub gene, gene-miRNA, 

and gene-transcription factor interaction analyses to identify molecular components of biological 

pathways that are associated with AD in the brain also show similar changes in severe COVID-

19. Our findings revealed the molecular mechanisms underpinning the association between 

COVID-19 infection and AD development and identified several genes, miRNAs, and TFs that 

may be targeted for therapeutic purposes. However, further research is needed to investigate the 

diagnostic and therapeutic applications of these findings. 

 
 
Keywords: Alzheimer’s disease, COVID-19, cAMP signaling pathway, taurine and hypotaurine 
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Introduction 

The coronavirus disease 2019 (COVID-19) first appeared in early December 2019 in Wuhan, 

China, and in January 2020, the World Health Organization (WHO) announced a Public Health 

Emergency of International Concern. As of April 2023, COVID-19 had infected more than 762 

million cases and took over 6.8 million lives worldwide [1]. After over three years, although 

extensive research has been performed to reveal mechanisms underlying COVID-19 

pathogenesis, it remained poorly understood. Moreover, mounting evidence about the adverse 

effects of COVID-19 infection on different human organs raised concerns about the long-term 

sequelae of this disease and its potential role in inducing other diseases [2]. Therefore, recently, 

investigating the association of COVID-19 with other diseases has gained attention among 

researchers leading to increased reports on the role of COVID-19 in neurodegenerative diseases, 

diabetes, and cardiovascular diseases [2, 3]. A recent comparison of frontal cortex transcriptome 

data from COVID-19 patients and the elderly population showed the molecular signature of 

aging in the brain of COVID-19 patients [4], which suggests the potential role of COVID-19 in 

accelerated aging and age-related diseases. In this regard, epidemiological studies also have 

indicated an increased risk of developing Alzheimer’s disease (AD) following infection with 

COVID-19 (HR: 1.69, 95% CI: 1.53–1.72) [5]. In addition, molecular studies have shown the 

presence of main AD pathological hallmarks, including amyloid beta (Aβ) and phosphorylated 

tau protein (p-tau) deposition in the brain of COVID-19 infected patients  [6]. AD is the most 

common form of dementia and a leading cause of death globally [7]. Currently, over 50 million 

people have dementia, and AD contributes to almost 75% of the cases, which is estimated to hit 

150 million in 2050 [8]. Given the recent reports suggesting COVID-19 as the risk factor for 

developing AD, we should expect a higher number of AD cases than the previous estimation. 
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AD is a complex disease with different risk factors, typically characterized by initial memory 

and learning impairment followed by cognitive dysfunction, which remained incurable with only 

two recently approved drugs against Aβ [9, 10]. So far, a limited number of studies have 

investigated potential molecular mechanisms underlying the causative role of COVID-19 

infection in AD development and reported possible causative mechanisms; however, molecular 

changes underpinning this association are still unclear [6, 11].  

High-throughput technologies have proved efficient and reliable tools for 

comprehensively analyzing biological changes at different molecular levels [12]. Transcriptome 

and proteome analyses, among the most popular high-throughput approaches, significantly 

contributed to our understanding of disease and are now essential to biological studies. 

Currently, using high-throughput approaches, biological data are generated at a higher pace than 

interpreted. Therefore, the challenge is to extract new knowledge from existing data. A meta-

analysis is a popular approach to summarize and extract the most reliable data from existing 

results of multiple studies, taking advantage of the increased statistical power of larger combined 

sample sizes [8]. Herein, in this study, we used a novel Robust Rank Aggregation (RRA) method 

[13, 14], which reduces errors or biases between multiple data sets to perform the meta-analysis 

on transcriptome datasets from AD to identify prioritized gene lists and finds commonly 

overlapping differentially expressed genes, (DEGs). We then compared the identified robust 

DEGs with transcriptome data from COVID-19 infected brains to identify common DEGs 

between AD and COVID-19. We further investigated protein-protein interaction and identified 

the hub genes within the constructed network. Subsequently, hub gene-miRNA and hub gene-

transcription factor interaction network analyses have been carried out to find potential 

molecular targets altered commonly in both diseases. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2023. ; https://doi.org/10.1101/2023.06.14.544970doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.14.544970
http://creativecommons.org/licenses/by-nc-nd/4.0/


Our analyses suggested that down-regulation of cyclic adenosine monophosphate 

(cAMP) signaling pathway and taurine metabolisms and up-regulation of neuroinflammatory 

related pathways such as Neutrophil extracellular trap (NET) formation pathway are commonly 

altered in AD and COVID-19 pathogenesis, and may make COVID-19 patients more susceptible 

to cognitive decline and AD. This information will provide a foundation for future animal and 

clinical studies and lead to a better understanding of the molecular mechanisms underpinning the 

association between COVID-19 and AD. Studies using large cohorts of COVID-19 and AD 

patients are needed to assess the potential therapeutic targets related to these pathways and 

determine the diagnostic and therapeutic potential of identified miRNA and TFs. 

Materials and Methods 

Dataset selection and processing 

The raw count files of transcriptome datasets from the National Center for Biotechnology 

Information (NCBI) Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/ 

were included in our study if they met the following inclusion criteria: (1) the dataset was 

original; (2) reported gene expression in the same brain region of AD patients or COVID-19 

infected patients; (3) both cases and controls were included. A list of differentially expressed 

genes (DEGs) between AD/COVID-19 cases and healthy controls were analyzed using the 

limma or DESeq2 R packages; Genes were considered up-regulated if fold change > 1.2 and p-

value < 0.05 and down-regulated if fold change <0.83 and p-value < 0.05. 

 

Identfication of robuts DEGs in AD and COVID-19 datsets 
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Herein, we employed the Robust rank aggregation (RRA) method by using the 

“RobustRankAggreg” R package (Version: 1.2.1) [13], to identify robust DEGs from each 

dataset. To do this, the identified lists of down and up-regulated genes from each dataset were 

separately ranked based on their fold changes. These lists were combined into a single file, 

which was then subjected to the Robust RRA method. Unlike the Venn diagram analysis, which 

identifies shared genes, RRA identifies genes that exhibit significant fold changes across 

datasets, even if they are not present in all of them [13, 15]. Robust DEGs with a Bonferroni-

corrected p-value less than 0.05 were considered statistically significant. Then, the list of AD 

robust DEGs was compared with the list of DEGs from COVID-19 patients using the “upset 

plot” to obtain common down- and up-regulated DEGs between AD and COVID-19 datasets. 

 

Network analysis 

Protein-protein interaction (PPI) networks were analyzed using the Cytoscape-String App plugin 

with a confidence score > 0.05, as previously described [8]. Briefly, robust DEGs shared 

between AD and COVID-19 were uploaded into Cytoscape. Next, the Homo sapiens database in 

the StringDB was selected to reveal the protein interaction between differentially expressed 

proteins. Finally, to identify the hub genes within the protein network, CytoHubba; a plugin 

within Cytoscape, was utilized, and hub genes were selected based on the Maximal Clique 

Centrality (MCC) algorithm [16]. 

 

Tissue-specific expression of hub genes 

Genotype-Tissue Expression (GTEx) Project data, including RNA-seq data from 53 human 

tissue samples, was used to analyze the tissue-specific expression of the identified hub genes 
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[17]. GTEx was accessed through the Expression Atlas database. The tissue expression levels 

were measured in transcripts per million (TPM), and Z-score normalization was applied to the 

expression levels for data visualization with a heatmap.  

 

Functional enrichment analysis 

For functional enrichment analysis of common DEGs between AD and COVID-19 we 

utilized ShinyGo, a web-based tool for comprehensive gene set enrichment analysis 

(http://bioinformatics.sdstate.edu/go/, ShinyGO 0.77) [18]. KEGG (Kyoto Encyclopedia of 

Genes and Genomes) pathway, GO Biological process (BP), and GO Molecular function (MF) 

were then used to find the enriched terms from the submitted list of DEGs. Enriched terms with 

an adjusted p-value less than 0.05 were considered statistically significant for down and up-

regulated DEGs. 

 

Gene–miRNA and gene-transcription factors interaction analysis 

The gene–miRNA interaction analysis was carried out in the NetworkAnalyst tool [19], which 

uses collected data of validated miRNA-gene interaction from TarBase (which showed the 

complete list of miRNA for most of all DEGs) [20]. The miRNAs-DEGs network was then 

visualized using Cytoscape. The list of the top 5 miRNA based, on network topology 

measurements, including degree and betweenness centrality, were reported. 

Similarly, for the gene-transcription factor (TF) interaction analysis, we employed the 

NetworkAnalyst tool. Official gene symbols were submitted, and related TFs were explored from 

ChIP-seq data, ChIP Enrichment Analysis (ChEA) (which provided the most comprehensive list 

of TF for all DEGs) [21]. The gene-TF interaction network was also visualized using Cytoscape. 
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Literature search for the validation of the identified miRNAs and TFs via text mining 

To search miRNAs and TFs from our analysis and their relation with AD or COVID-19, based 

on the published literature, the “batch_pubmed_dowload” function from the easyPubMed R 

package [22] was employed. The articles, including our identfied targets were thoroughly 

discussed in the discussion. 

 

Results 

Analysesof  transcriptome data from 680 brain samples reveal data heterogeneity between AD 

datasets and profound transcriptomic changes in AD and COVID-19 cohorts 

Three transcriptome datasets, obtained from the frontal cortex of post-mortem brains of 377 

Alzheimer’s patients and 223 healthy controls (GSE118553, GSE48350, and GSE33000), and a 

dataset for COVID-19 (GSE188847) with 19 cases and 21 controls were included in our study 

(16-18, 4) (Table 1). DEGs in each brain region were extracted using the limma and DESeq2 R 

packages (p-value < 0.05, and log2|FC|�0.263) [23, 24]. The numbers of down- and up-

regulated robust DEGs from each AD dataset were varying from 664 (down-regulated:268 and 

up-regulated: 396, GSE118553) to 1672 (down-regulated:1009 and up-regulated: 663, 

GSE48350) for the AD datasets (Table 1). Interestingly, analyses of the COVID-19 dataset 

revealed 2471 down- and 3134 up-regulated genes (Table 1), indicating COVID-19 infection 

causes profound transcriptomic changes in comparson to the AD patient cohort (Figure 1, 

Supplementary file 1). Furthermore, a comparison of DEGs between the three AD datasets 

showed only 1 down- and 7 up-regulated genes, shared among them (Supplementary file 1, 

Supplementary figure 1). This data indicates variations between existing AD datsets, which 

could be related to subtype heterogeneity across AD patient cohorts [25]. It is also possible that 
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the difference between post-mortem sample collection times might cause variation in the 

transcriptome dataset, as it was shown previously [26]. Among the common genes, Rabphilin 3A 

(RPH3A) is a small G protein acts in the late stages of neurotransmitter exocytosis that found to 

be down-regulated between all three AD datasets. Down regulation of RPH3A showed to be 

associated with dementia severity and increased β-amyloid (Aβ) concentrations [27]. On the 

other side, common up-regulated genes between all three AD datasets are involved in different 

biological pathways mostly in immune response including, Human Leukocyte Antigen - DR 

Alpha (HLA-DRA), Fc Fragment of IgG Receptor IIa (FCGR2A) and Cluster of Differentiation 

74 (CD74). HLA-DRA gene encodes a protein subunit of the major histocompatibility complex 

class II (MHC II) molecule. FCGR2A gene encodes a receptor that binds to the fragment 

crystallizable region (Fc region) of IgG antibodies [28]. The FCGR2A receptor is expressed on 

immune cells such as macrophages, neutrophils, and natural killer (NK) cells; when the receptor 

binds to IgG antibodies, it triggers immune effector functions such as phagocytosis and antibody-

dependent cell-mediated cytotoxicity (ADCC) [29]. CD74 gene encodes a protein that plays a 

role in antigen processing and presentation, and it is also involved in regulating of cell 

proliferation and survival [30] (Supplementary file 1). 
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Table 1. Characteristics of the selected datasets analyzed in this study. 

 

Datasets Country 
Number. 

Cases/CTR
s 

Age (yrs.) 
AD/CTR 

Post-
mortem 
interval 
(hours) 

AD/CTR 

Disease 

Number. 
down/up-
regulated 

genes 

Ref. 

GSE118553 UK 52/27 
82.9 ± 8.7/ 
70.6 ± 15.9 

39.9 ± 21.3/ 
37.1 ± 20.7 

AD 268/396 [31] 

GSE48350 USA 15/39 
85.7 ± 6.3/ 
64.8 ± 9.5 

- AD 1009/663 [32] 

GSE33000 USA 310/157 
80.6 ± 9.0/ 
63.5 ± 9.9 

13.7 ± 7.4/ 
22.4 ± 5.8 AD 351/342 [33] 

GSE188847 USA 17/21 
64.1 ± 10.5/ 
61.6 ± 14.6 <50 COVID-19 2471/3134 [4] 

 

 

 

 

 

Integrated transcriptome analysis revealed robust AD genes in COVID-19 infected brains 

The RRA analysis using the integrated list of down- and up-regulated genes, including 1628 

down- and 1401 up-regulated genes across AD datasets, sorted based on their fold changes 

yielded 44 down- and 42 up-regulated AD robust DEGs (Figure 2 and Supplementary file 1). 

The comparison between the AD robust DEGs and COVID-19 DEGs, showed 23 up and 26 

down-regulated common genes (Figure 2). Neuronal Differentiation 6 (NEUROD6), 

Corticotropin Releasing Hormone (CRH), and Glutamic Acid Decarboxylase 2 (GAD2) are the 

top three deregulated DEGs shared between the COVID-19 dataset and robust AD genes. 

NEUROD6 is a basic helix-loop-helix transcription factor involved in neuronal development and 
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differentiation, and its downregulation has been suggested as a potential biomarker for AD [34]. 

CHR is a gene involved in neuroendocrine responses to stress, and its level is decreased in AD 

patients [35]. GAD2 encodes an enzyme that catalyzes the production of gamma-aminobutyric 

acid from L-glutamic acid [36]. Downregulation of GAD2 and high levels of L-glutamic acid 

have been reported in AD patients leading to neuronal death, a phenomenon generally termed 

excitotoxicity [37]. While top three shared up-regulated DEGs, including Cluster of 

Differentiation 74 (CD74), C-X-C chemokine receptor type 4 (CXCR-4), also known as CD184, 

and complement component 5a receptor 1 (C5AR1) or known as CD88, are mainly involved in 

immune response [38]. Additionally, one DEG, Tachykinin Precursor 1 (TAC1), involved in 

cell-cell signaling and inflammatory response [39], was up-regulated in AD but down-regulated 

in COVID-19. 

 

PPI network analysis of robust DEGs identified common hub genes associated with both 

diseases. 

To understand interactions between common DEGs between AD and COVID-19 and find the 

hub genes within their network, we performed PPI interaction and hub gene analysis. Our 

analyses revealed Brain-Derived Neurotrophic Factor (BDNF), Somatostatin (SST), Glutamic 

Acid Decarboxylase 1/2 (GAD1/2), CRH, Vasoactive Intestinal Peptide (VIP), Glial Fibrillary 

Acidic Protein (GFAP), Adenylate Cyclase Activating Polypeptide 1 (ADCYAP1), CXCR-4 and 

NEUROD6, as the hub genes within the PPI network of common DEGs between AD and 

COVID-19 (Figure 3). In addition, our tissue-specific expression analysis further validated that 

these hub genes are mainly expressed in the brain, except CXCR4, a transmembrane protein of 
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CXC chemokine receptor that showed higher expression in the blood and spleen cells (Figure 4, 

Supplementary file 1). 

 

 

Functional enrichment analysis revealed key pathways shared between COVID-19 and AD 

We performed functional enrichment analysis to identify the common pathways altered in both 

AD and COVID-19. The cAMP signaling pathway was the most significant down-regulated in 

both diseases (Enrichment FDR= 2.24E-07) (Figure 5). The other significantly down-regulated 

enriched pathways included taurine and hypotaurine metabolism and GABAergic synapse 

pathway (Figure 5, Supplementary file 1). On the other hand, commonly up-regulated genes 

enriched in pathways involved in inflammatory responses and cell death, such as Neutrophil 

extracellular traps (NETs), that are structures that are formed as a defense mechanism by 

neutrophils to trap and neutralize invading pathogens. However, these structures can also 

contribute to the development of various pathophysiological conditions, including sterile 

inflammation and autoimmunity [40]. (Figure 5, Supplementary file 1). Intriguingly, pathway 

analysis of identified hub genes within the PPI network (Figure 3) also returned cAMP signaling 

pathway as the most commonly altered pathway (Figure 6), indicating a key role of this pathway 

in linking the COVID-19 and AD. The cAMP signaling pathway plays a role in a wide range of 

biological processes including metabolism, gene expression, ion transport, cell growth and 

differentiation, and neurotransmitter release [41]. In addition, it plays a role in the regulation of 

cyclic AMP response element-binding protein (CREB), a transcription factor that plays a critical 

role in learning and memory, as well as in neuronal development and plasticity [42]. 
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Gene–miRNA and gene-TF interaction analysis revealed regulatory networks of miRNAs and 

TFs interacting with common hub genes 

We also performed a gene-miRNA interaction analysis to identify miRNAs interacting with 

identified hub genes. This analysis yielded a list of 100 known and unknown miRNAs regarding 

their association with AD and COVID-19 (Figure 7). Among them, has-mir-16-5p, has-mir-27a-

3p, has-mir-130a-3p, has-mir-107, and has-mir-182-5p are identified as the top five interacting 

miRNAs based on their degree and betweenness within the network. Moreover, as one of the 

identified hub genes, BDNF was characterized by the highest number of interacting miRNAs 

with 35 connections. However, our analyses yielded no interacting miRNA for NEUROD6 and 

CRH (Figure 7). 

Then, to comprehensively understand the gene regulatory network of common hub genes 

of COVID-19 and AD, we also performed gene-TF interaction analysis. Our analysis identified 

104 known and unknown TFs related to their association with AD and COVID-19 (Figure 8). 

The top five TFs (based on network degree) include; Suppressor of Zeste 12 Protein Homolog 

(SUZ12), Switch-Independent 3 Family Transcription Repressor B (SIN3B), RE1-Silencing 

Transcription Factor (REST), Signal Transducer and Activator of Transcription 3 (STAT3) and 

B-Cell-Specific Moloney Murine Leukemia Virus Integration Site 1 (BMI1) (Figure 8). 

 

Data mining approach for validating association of identified miRNA and TF targets in AD 

Data validation using a literature mining approach was performed as a complementary analysis 

to our bioinformatic study to validate and interpret our results more comprehensively and 

accurately. Data validation was performed for the top five identified miRNAs and TFs. The 

results of this analysis further identified published reports on the role of some of these targets in 

AD and/or COVID-19 and suggested that these identified miRNAs and TFs might be utilized as 
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pharmacological targets. In addition, our analysis also revealed no published reports for some of 

our identified targets. The number of published papers on the top 5 miRNAs and TFs in each 

disease has been shown in Table 2 (Details are provided in Supplementary file 1). It is 

important to note that in this study, we used the names of identified miRNAs or TFs along with 

disease names to retrieve relevant publications on their association with COVID-19 and AD. 

However, it is possible that some of the identified publications may not be directly related to our 

study. For example, our analysis identified one related paper for has-mir-182-5p, but it focused 

on multiple miRNA changes in prion-infected animals and discussed the role of some of these 

miRNAs in AD [43]. While the involvement of has-mir-182-5p in multiple pathological 

conditions such as cancer, Chronic heart failure and ischemia/reperfusion (I/R) kidney injury has 

been widely investigated [44-46], its specific role in AD and COVID-19 remains to be 

investigated. However, other miRNAs provided interesting evidence in line with our results, 

such as mir-27a-3p. Micro-27a is located on human chromosome 19 and is processed to form 

miR-27a-3p [47]. miR-27a-3p is implicated in various cancer types and has recently been found 

to be decreased in the serum and cerebrospinal fluid (CSF) of Alzheimer's disease (AD) patients 

[48]. A negative association has been observed between the level of miR-27a-3p and the degree 

of brain amyloid-β (Aβ) deposition, indicating its involvement in the progression of AD [48]. 

This miRNA has recently been found to specifically interact with one of the six regions on the 

viral RNA that are primarily bound by specific miRNAs, and its level has been found to be 

increased in hospitalized COVID-19 patients as well [49, 50]. Likewise, the top identified TFs, 

such as STAT3, showed the highest number of published evidence for both diseases. In contrast, 

we found no information regarding the role of SIN3B in either disease. STAT3 is a TF with 

multiple key roles in development, and its increased phosphorylation has been found in the brain 
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of both AD animal models and patients [51]. While there is currently no evidence regarding the 

role of SIN3B in COVID-19 or AD, its expression has been shown to be required for cellular 

senescence, and its down-regulation is associated with tumor progression [52]. 

 

 

Table 2. Number of published studies on the role of identified miRNAs and TFs in AD and 

COVID-19 

 

 
Target name 

Number of identified studies 

 AD COVID-19 

miRNA 

Has-mir-16-5p 19 8 

Has-mir-27a-3p 11 6 

Has-mir-103a-3p 2 0 

Has-mir-107 49 1 

Has-mir-182-5p 1 0 

TF 

SUZ12 3 0 

SIN3B 0 0 

REST 38 1 

STAT3 247 157 

BMI1 10 0 

 

 

Discussion 

In this study, we comprehensively analyzed transcriptome datasets of 680 brain samples, using a 

novel integrated genomic approach RRA method to identify robust genes altered in AD and 

COVID-19 infected brains. Our analysis showed that downregulation of cAMP signaling, 
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Taurine and hypotaurine metabolism and GABAergic synapse pathways, and upregulation of 

inflammatory pathways such as neutrophil extracellular trap formation pathways are common 

signatures of both disease conditions. The cAMP signaling pathway is crucial for many 

biological processes. Its deregulation has been associated with aging and age-related diseases, 

and increases in cAMP levels have been shown to reverse some of the adverse effects of aging 

[53]. It has also been shown to play a key role in long-term memory formation [54]. Decreased 

level of cAMP has been reported in AD animal models, and pharmacological interventions that 

increase cAMP levels have been shown to be beneficial for neuronal protection, learning, and 

memory improvement in animal AD models [55, 56]. Also, the elevation of intracellular cAMP 

proved protective against COVID-19 Immunoglobulin G-induced procoagulant platelets and was 

suggested as a potential therapeutic target [57]. Intriguingly, taurine deficiency has been 

suggested as a critical driver of aging, and using taurine supplements increased health and life 

span  [58]. In addition, the level of taurine has been reported to be decreased in the blood and 

CSF of AD patients and was associated with cognitive scores [59]. Similarly, the serum level of 

taurine in COVID-19-infected patients is decreased [60]. Neuroprotective effects of taurine have 

also been reported in animal models of AD and Parkinson's disease (PD), reducing the Aβ 

aggregation and inhibiting neuroinflammation and microgliosis [59]. Intriguingly, adding taurine 

to drinking water significantly improved cognitive impairment and memory in mouse models of 

AD [61]. In contrast, there are also reports indicating increased plasma levels of taurine in both 

COVID-19 and AD patients  [62, 63].  Increased transportation of taurine across the blood-brain 

barrier (BBB) has been reported during oxidative stress conditions, and NEUROD6 has been 

shown to be a key regulator of taurine transport through BBB [62].  
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On the other hand, the upregulation of inflammatory pathways, such as the neutrophil 

extracellular trap formation pathway, has been reported to be involved in AD [64]. The role of 

microglia, as the brain's resident population of immune cells in neuroinflammation and AD has 

been widely investigated. However, it has been recently suggested that infiltrating blood-derived 

neutrophils into the central nervous system (CNS) can also contribute to AD pathogenesis and 

cognitive impairment [65]. In addition, neutrophils enter the CNS before the onset of cognitive 

impairment and are found to be highly abundant when memory loss is first observed. Blocking 

this process might have therapeutic potential to restore cognitive function [65]. Neutrophils are 

potent sources of reactive oxygen species (ROS), and their activation and associated oxidative 

stress have been shown to be associated with AD pathology in humans, and neutrophil-related 

inflammatory factors have been suggested as the potential biomarkers to predict memory and 

executive function decline in patients with mild AD [66]. In both human and animal models of 

AD, neutrophils are found to be co-localized with senile plaques and stained for NET markers 

(27). In addition, neutrophil adhesion in brain capillaries decreased cortical blood flow, leading 

to memory impairment in the mouse AD model  [67]. Furthermore, neutrophils play a key role in 

pathogen clearance through phagocytosis, NETs, and generating ROS [68]. SARS-CoV-2 

infected human and animal models showed an increased number of neutrophils and proteins 

associated with neutrophil degranulation [69, 70], and neutrophil degranulation has been 

identified as one of the main enriched pathways in proteomics analysis of COVID-19 patients 

[71]. Altogether, the functional enrichment analysis results showed that the downregulation of 

biological functions related to anti-inflammatory responses and, accordingly, upregulation of 

inflammatory responses may, in part, contribute to post-COVID-19 cognitive impairment and 

possibly AD development. 
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The result of hub gene analysis also showed some of the well-known genes involved in 

signal transduction, memory, and cognition, such as BDNF, a key neuroplasticity regulator. Its 

downregulation has been reported as one of the primary mediators of AD, multiple sclerosis 

(MS), and PD pathogenesis [72]. Interestingly BDNF also protects neurons against hypoxia and 

inflammation-induced pathogenesis, the key pathological events in COVID-19  [73, 74]. Recent 

studies reported lower serum levels of BDNF in COVID-19 infected patients and indicated a 

direct association between BDNF and cognitive decline in COVID-19 patients [75]. SST, 

another identified hub gene, is a multi-functional neuropeptide in a subpopulation of GABAergic 

interneurons [76]. SST's expression level is shown to decrease with age and contributes to the 

formation of Aβ plaque deposition [76, 77]. While no data is available about Somatostatin in 

COVID-19 patients, its analogs are suggested as potential drugs for treating respiratory failure in 

diseases like COVID-19 [78]. Most of the identified hub genes are retrieved from down-

regulated genes; however, there are two hub genes from up-regulated genes, including GFAP 

and CXCR4. GFAP, an astrocytic cytoskeletal protein, was up-regulated in AD patients and 

cognitively normal older adults at risk of AD and correlated with amyloid-PET positivity and 

worse outcomes in global cognition [79, 80]. Increased plasma level of GFAP is also suggested 

as a potential prognostic marker in COVID-19, associated with mortality risk [81]. CXCR4 is 

another up-regulated hub gene in AD and COVID-19 patients [82, 83]. CXCR4 is a G 

protein�coupled receptor that binds to CXCL12 and triggers downstream signaling pathways 

associated with inflammatory pathways [82]. CXCR4 is involved in neuronal guidance and 

apoptosis via astroglial signaling and microglial activation [84]. Aβ plaques have an attraction 

effect on microglia, leading to the activation of an inflammatory cascade. This cascade involves 

the stimulation of CXCR4-dependent signaling by CXCL12 in both microglia and astrocytes, 
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resulting in the release of pro-inflammatory cytokines, including tumor necrosis factor α (TNF-

�) [85]. 

Next, we analyzed the miRNA-gene interaction network to identify miRNAs interacting 

with hub genes. During the last decade, exploring the involvement of miRNAs in various human 

diseases has gained much attention, mainly due to their crucial function in gene regulation, 

through mediating mRNA degradation and regulating transcription and translation via both 

canonical and canonical and non-canonical mechanisms [86]. Our analysis returned 100 

miRNAs; among them, has-mir-16-5p was the most significant (Degree: 5; Betweenness: 

1132.11) node, interacting with hub genes. Others include; miRNA has-mir-27a-3p, has-mir-

130a-3p, has-mir-107, and has-mir-182-5p. Hitherto, results about the role of mir-16-5p in AD 

are inconsistent. While some indicated that upregulation of this mir-16-5p by Aβ deposition can 

lead to neuronal cell apoptosis through targeting BCL-2 [87], others suggested a protective role 

of this miRNA against Aβ-induced injury by targeting BACE1 [88]. The expression level of hsa-

miR-16-5p was shown to be lower in COVID-19 patients than in healthy controls [50]. This 

miRNA can target the many identified DEGs in macrophages (n = 15) and T cells (n = 10) in 

COVID-19 infected patients [89]. hsa-mir-16-5p was found to affect T cells' cell cycle, survival, 

and differentiation and modulate inflammatory signaling and cytokines, including IL-1β, IL-6 

and TNF-α, and NF-κB mTOR-related pathways and genes [90]. In addition, a recent study of 

the in silico analysis suggested a regulatory role of has-mir-16-5p and has-mir-27a-3p in the 

Angiotensin-Converting Enzyme 2 (ACE2) network [90]. The ACE2 receptor, found in several 

human organs, is the entry point for SARS-CoV-2 and SARS-CoV into host cells [91]. A lower 

level of mir-27a-3p has been reported in AD patients' cerebrospinal fluid CSF, accompanied by 

high tau levels and low levels of β-amyloid [92]. It has been reported that miR-27a-3p can down-
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regulate Glycogen Synthase Kinase 3 Beta (GSK3β) and activate the Wnt/β-catenin signaling 

pathway, which ultimately helps in maintaining the integrity of the blood-brain barrier [93]. 

Although, in our analysis, we have only performed data mining for the top five identified 

miRNAs, there is also evidence of the association of several other enriched miRNAs with AD 

and COVID-19. For example, down-regulation of mir-124-3p, one of the mir-targeting identified 

hub genes, has been reported in AD patients [94]. Interestingly, mir-124-3p showed to decrease 

abnormal hyperphosphorylation of tau protein and subsequent cell apoptosis through regulating 

Caveolin-1, phosphoinositide 3-kinase (PI3K), phospho-Akt (Akt-Ser473)/Akt, phospho-GSK-

3β (GSK-3β-Ser9)/GSK-3β pathway [95]. Conversely, upregulation of mir-7-5p has been shown 

in AD patients, contributing to AKT and GSK3β dephosphorylation and insulin resistance in 

neuronal cells, accelerating the progression of Aβ plaque and neurofibrillary tangles (NFTs) 

formation via multiple mechanisms [96, 97]. Expression levels of both mir-124-3p and mir-7-5p 

showed to decrease in COVID-19 patients compared to healthy controls  [98]. Intriguingly, mir-

7-5p and mir-24-3p were found to directly inhibit S protein expression and SARS-CoV-2 

replication [99]. 

In addition, there are evidences on some of the identified TFs such as REST, and SUZ12. 

Consistent with the literature, our analyses revealed that while the expression of REST 

decreased, SUZ12 expression is increased in AD brains in comparison to the control [100, 101]. 

REST has been shown to protect against AD via downregulating genes that promote cell death 

and AD pathology and trigger stress response gene expression. In addition, REST also protects 

neurons against amyloid-β induced toxicity and oxidative stress, and its deficiency leads to age-

related neurodegeneration [100]. The protective role of glial REST against neurodegenerative 

diseases also has been linked to inhibitory effects on innate immunity and inflammation [100]. 
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STAT3 is another top-identified TF involved in various physiological processes, 

including immune reactions [102]. Increased phosphorylation of STAT3 and its abnormal 

activation has been reported in both the hippocampus of AD mouse models and post-mortem AD 

brain, which is critical for the secretion of cytokines involved in neuroinflammation, and 

correlated with the presence of reactive astrocytes in animal models of AD  [103]. Additionally, 

STAT3 could serve as a transcriptional regulator for BACE1, the principal enzyme involved in 

the production of amyloid β (Aβ), and STAT3 inhibition was shown to reduce the level of 

BACE1 and neuroinflammation  [51]. The STAT-3 inhibition as a downstream element in the 

IL-6/JAK/STAT-3 axis is also suggested as a therapeutic strategy to mitigate COVID-19 severity 

[104]. STAT-3 may play multiple roles during COVID-19 infection, such as instigating pro-

inflammatory reactions, initiating the cytokine storm, disrupting the immune response balance, 

impairing anti-viral immune responses, and intensifying lymphopenia [104, 105]. 

Overall, our data conclude that our gene regulatory network analysis identified known 

and unknown genetic components of biological pathways associated with COVID-19 infection 

and AD development and might be targeted for therapeutic purposes to reduce the risk or delay 

the development of COVID-19-related neurological pathologies. 

In conclusion, our study has unveiled significant insights into the molecular mechanisms 

linking COVID-19 infection and AD development. Through comprehensive transcriptomic 

analysis, we have identified shared transcriptional signatures in the frontal cortex of individuals 

affected by AD and COVID-19, thereby illuminating the common pathways and biological 

processes involved. Notably, we have observed downregulation of the cAMP signaling pathway 

and perturbations in taurine metabolisms, alongside upregulation of neuroinflammatory 
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pathways such as NET formation. These findings suggest that the convergence of these 

molecular components may render COVID-19 patients more vulnerable to cognitive decline and 

AD. Moreover, our study has pinpointed several promising therapeutic targets for COVID-19 

and AD, encompassing genes, miRNAs, and TFs. Restoration of cAMP levels and 

supplementation of taurine hold potential as neuroprotective interventions. 

Modulating inflammatory responses and targeting specific hub genes, miRNAs, and TFs 

also present prospects for mitigating cognitive impairment in individuals experiencing post-

COVID-19 complications and AD progression. Nevertheless, it is crucial to note that the 

therapeutic targets identified in our study necessitate rigorous experimental validation to 

ascertain their clinical efficacy and safety. Therefore, further investigation employing animal 

models and large-scale clinical cohorts is imperative to validate and expand our findings.  
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Abbreviations 
 
COVID-19: Coronavirus disease 2019 

AD: Alzheimer’s disease 

WHO: World Health Organization 

P-tau: Phosphorylated tau protein (p-tau) 

RRA: Robust Rank Aggregation 

MF: Molecular function 

BP: Biological process 

DEG: Differentially expressed gene 

cAMP: Cyclic adenosine monophosphate 

MCC: Maximal Clique Centrality 

GTEx: Genotype-Tissue Expression 

TPM: Transcripts per million 

CSF: Cerebrospinal fluid 

CNS: Central nervous system 

ROS: Reactive oxygen species 

PPI: Protein-protein interaction 

TF: Transcription factor 

BDNF: Brain-derived neurotrophic factor 

SST: Somatostatin 

GAD1/2: Glutamic acid decarboxylase 1/2  

CRH: Corticotropin Releasing Hormone 

VIP: Vasoactive Intestinal Peptide 

GFAP: Glial fibrillary acidic protein 

ADCYAP1: Adenylate Cyclase Activating Polypeptide 1 

CXCR-4: C-X-C chemokine receptor type 4 

NEUROD6: Neuronal Differentiation 6 

NFT: Neurofibrillary tangles 

NET: Neutrophil extracellular trap  
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Figures and Figure Legends 

Figure 1: 

 

Figure 1. Differentially expressed genes from each datasets. Volcano plots demonstrate the

thresholds for differentially expressed genes in GSE33000 (A), GSE 48350 (B), GSE118553,

and GSE188847. Each data point represents a single gene. The x-axis represents the log2 fold

change in expression (AD or COVID-19 vs. Control), and the −log (p-value) is plotted on the y-

axis. Blue and red points indicate significantly (p-value < 0.05) down- and up-regulated genes

with fold change lower than 0.83 and over 1.2. AD, Alzheimer’s disease; CTRL, Control; FC,

Fold change. 

he 

3, 

ld 

-

es 

C, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2023. ; https://doi.org/10.1101/2023.06.14.544970doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.14.544970
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: 

 

 

Figure 2. Number of commonly altered genes between AD and COVID-19. Upset plot 

indicating the overlap of COVID-19 DEGs with either increased or decreased expression in 

robust AD DEGs. 
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Figure 3: 

 
 

Figure 3. Protein-protein interaction network of those shared DEGs between robust AD
and COVID-19 genes. Top-ranked hub genes are shown in rhombi shape and highlighted based
on their score from the Maximal Clique Centrality (MCC) algorithm in the cytoHubba plugin of
Cytoscape. 
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Figure 4. The tissue-specific expression of hub genes. The heatmap show the expression levels

of the hub genes in different human tissues based on the GTEx database. Expression levels are

normalized using the Z-score normalization method. 
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Figure 5: 

 

 

 

 

Figure 5. Molecular commonalities of AD and COVID-19 based on the gene expression

signatures. Top 5 most significantly down- (A) and up- (B) regulated KEGG pathways,

biological processes, and molecular functions enriched among the shared DEGs between robust

AD and COVID-19 DEGs. The complete list of enriched terms is provided in Supplementary

file 1. 
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Figure 6: 

 

 

 

 

Figure 6. KEGG pathways enriched by identified hub genes. The left panel showing the

identified hub genes, connected with their corresponding KEGG pathway. The cAMP signaling

pathway is the main altered pathway including, 5 of 10 identified hub genes; however, other

pathways are enriched almost by two or three genes. GAD1/GAD2 showed to be involved in

most of the identified pathways. The right panel shows the gene ratio for each enriched pathway.

Dot size and color indicate gene count and log10 p-values for each enriched pathway. 
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Figure 7: 

 

 

Figure 7. The gene–miRNA interactions network. The gene–miRNA interactions network is

generated by using the TarBase database. The green rhombi show the hub genes, and the

rectangles show the miRNA interacting with hub genes. The top five miRNAs based on their

degrees are highlighted. The complete list of miRNAs interacting with hub genes can be found in

Supplementary file 1. 
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Figure 8: 

 

 

 

Figure 8. Gene-TF interaction network. The network was generated based on the ChEA

database. The green rhombi show the hub genes, and the blue hexagons show the TFs interacting

with hub genes, The top five identified TFs based on their degree are highlighted. 
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Supplementary Figure 1: 

 

 

 

Supplementary Figure 1: Comparison of the three transcriptome datasets of AD. (A)

Commonly down- and (B) up-regulated genes are shown by the Venn diagram. 
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