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Abstract 21 
Pseudomonas aeruginosa is an opportunistic pathogen which causes chronic, drug-resistant lung 22 
infections in cystic fibrosis (CF) patients. In this study, we explore the role of genomic 23 
diversification and evolutionary trade-offs in antimicrobial resistance (AMR) diversity within P. 24 
aeruginosa populations sourced from CF lung infections. We analyzed 300 clinical isolates from 25 
four CF patients (75 per patient), and found that genomic diversity is not a consistent indicator of 26 
phenotypic AMR diversity. Remarkably, some genetically less diverse populations showed AMR 27 
diversity comparable to those with significantly more genetic variation. We also observed that 28 
hypermutator strains frequently exhibited increased sensitivity to antimicrobials, contradicting 29 
expectations from their treatment histories. Investigating potential evolutionary trade-offs, we 30 
found no substantial evidence of collateral sensitivity among aminoglycoside, beta-lactam, or 31 
fluoroquinolone antibiotics, nor did we observe trade-offs between AMR and growth in conditions 32 
mimicking CF sputum. Our findings suggest that (i) genomic diversity is not a prerequisite for 33 
phenotypic AMR diversity; (ii) hypermutator populations may develop increased antimicrobial 34 
sensitivity under selection pressure; (iii) collateral sensitivity is not a prominent feature in CF 35 
strains, and (iv) resistance to a single antibiotic does not necessarily lead to significant fitness 36 
costs. These insights challenge prevailing assumptions about AMR evolution in chronic infections, 37 
emphasizing the complexity of bacterial adaptation during infection. 38 
 39 
 40 
 41 
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Importance 42 
Upon infection in the cystic fibrosis (CF) lung, Pseudomonas aeruginosa rapidly acquires genetic 43 
mutations, especially in genes involved in antimicrobial resistance (AMR), often resulting in 44 
diverse, treatment-resistant populations. However, the role of bacterial population diversity within 45 
the context of chronic infection is still poorly understood. In this study, we found that hypermutator 46 
strains of P. aeruginosa in the CF lung undergoing treatment with tobramycin evolved increased 47 
sensitivity to tobramycin relative to non-hypermutators within the same population. This finding 48 
suggests that antimicrobial treatment may only exert weak selection pressure on P. aeruginosa 49 
populations in the CF lung. We further found no evidence for collateral sensitivity in these clinical 50 
populations, suggesting that collateral sensitivity may not be a robust, naturally occurring 51 
phenomenon for this microbe. 52 
 53 
Introduction 54 
Pseudomonas aeruginosa is a dominant bacterial pathogen in chronic infections of the airways 55 
of adults with cystic fibrosis (CF), a genetic disorder that results in thickened mucus, persistent 56 
lung infection, and progressive decline in lung function [1, 2]. P. aeruginosa has multiple intrinsic 57 
and acquired mechanisms of antimicrobial resistance (AMR), with clinical strains sometimes 58 
displaying multi-drug resistance (MDR). While antibiotic treatment can be effective against early-59 
stage, transient P. aeruginosa infections, in the case of chronic infections, antibiotic regimens 60 
ameliorate patient symptoms and prolong life but ultimately fail to eradicate P. aeruginosa from 61 
the CF lung [3]. This is largely due to the microaerophilic environment of the CF lung leading to 62 
slow growth and the viscous mucosal matrix hindering drug penetration [4, 5]. Treatment failure 63 
may additionally result from the high degree of phenotypic and genomic heterogeneity that 64 
naturally evolves in P. aeruginosa populations inhabiting CF airways [6], allowing the population 65 
to exploit various pathways of resistance and for the emergence of rare clones that evade 66 
treatment and re-establish infection afterwards [7, 8]. Most individuals with CF are initially infected 67 
by a single environmental or transmissible epidemic strain of P. aeruginosa, which then diversifies 68 
in the CF lung over the course of many years of infection [9]. Mutations in DNA mismatch repair 69 
(MMR) mechanisms act as a catalyst for this diversification, potentially providing an evolutionary 70 
advantage in an environment that demands rapid adaptation for survival, though potentially at a 71 
fitness cost [10, 11]. 72 
 73 
Maintaining diversity in populations can be advantageous for bet-hedging in a complex infection 74 
environment where there are a multitude of external stressors such as competing microbiota, 75 
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antibiotic exposure, and host immune responses. Heterogeneity in populations may develop as 76 
individual members of the population evolve specialized functions to occupy different ecological 77 
niches [12], however, adaptations to a particular niche may come at an expense to other 78 
energetically costly traits (i.e., fitness costs) [13, 14]. The vast diversity of P. aeruginosa in CF 79 
lung infection suggests that individual isolates within the population could have different 80 
specializations resulting in trade-offs with other traits. Of particular interest to researchers is 81 
collateral sensitivity— increased sensitivity to one antimicrobial as a trade-off with increased 82 
resistance to another— as a potential avenue for targeting drug-resistant populations using 83 
combination therapy or antibiotic cycling. Although collateral sensitivity has been evolved in vitro 84 
[15-19], it remains to be determined whether collateral sensitivity is robust across naturally 85 
occurring clinical populations of P. aeruginosa. 86 
 87 
Despite P. aeruginosa population diversity in the CF lung being widely accepted, this diversity is 88 
often overlooked. Within-host adaptations of P. aeruginosa to the CF lung have previously been 89 
investigated and described, primarily via longitudinal single-isolate sampling [20-30]. Longitudinal 90 
sampling of single or small subsets of isolates from a population only reflects a fraction of the total 91 
evolutionary pathways exhibited within a population and may result in significant underestimation 92 
of the diversity of antimicrobial susceptibility profiles. As population diversity may impact infection 93 
outcomes via heteroresistance [31], microbial social interactions [32, 33], or the ability of a 94 
population to survive evolutionary bottlenecks [3], this warrants a shift in our sampling and 95 
susceptibility testing of chronic microbial infections to reflect our understanding of them as 96 
complex, dynamic populations. A few studies have thoroughly investigated population diversity in 97 
this infection context, in which their analyses were focused on (i) phenotypic diversity [34-38]; (ii) 98 
genetic analyses via pooled population sequencing [39, 40]; or (iii) both extensive sequencing 99 
and phenotyping, but lacking analysis linking the two at the isolate-level [6]. As a result, we still 100 
have an incomplete understanding of how genomic diversification drives AMR heterogeneity 101 
within a population, and what trade-offs are involved in these evolutionary processes. 102 
 103 
Here, we investigated genomic and AMR diversity for chronic P. aeruginosa lung populations in 104 
four unique individuals with CF. We first sought to test whether genomic diversity is a strong 105 
predictor of phenotypic diversity in AMR within a population. With the rapid advances in 106 
sequencing technology, researchers are already investigating methods to replace time-107 
consuming antimicrobial susceptibility testing (AST) with sequencing as a diagnostic tool [41]. As 108 
such, our goal was to determine the viability of predicting AMR phenotypic diversity from genomic 109 
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population diversity in a manner that could easily be translated to the clinic. We further explored 110 
the role that hypermutation plays in driving resistance, specific links between genotype and 111 
phenotype at the isolate-level, and enrichments in mutations and gene content changes relevant 112 
to AMR. Lastly, we searched for evidence that resistance to one antimicrobial may trade-off with 113 
sensitivity to other antimicrobials and fitness in a CF-like environment. 114 
 115 
Methods 116 
Cohort selection and strain isolation. We selected four adult individuals, aged 24-31 years, for 117 
this study from a cohort of CF patients at Emory University in Atlanta who had been chronically 118 
infected with P. aeruginosa for 10-15 years at the time of sampling. From each patient, we 119 
collected and processed a single expectorated sputum sample. We processed sputum by 120 
supplementing each sample with 5 ml synthetic cystic fibrosis medium (SCFM) [42] and 121 
autoclaved glass beads, homogenizing the mixture via vortexing for 2 mins, centrifuging the 122 
homogenized sputum mixture for 4 mins at ~3,300 x g, removing the supernatant, and conducting 123 
a 10x serial dilution of cell pellet re-suspended in phosphate buffered saline to streak on 124 

Pseudomonas isolation agar (PIA) plates. These plates were incubated at 37℃ overnight, then 125 

at room temperature for up to 72 h. From each expectorated sputum sample, we randomly 126 
isolated 75 P. aeruginosa colonies for a total of 300 isolates. These isolates were confirmed to 127 
be P. aeruginosa using 16S rRNA gene amplification before proceeding with whole genome 128 
sequencing. 129 
 130 
Whole genome sequencing. To conduct sequencing, we first grew all 300 isolates overnight in 131 

15 ml conical tubes in lysogeny broth (LB) at 37℃ with shaking at 200 rpm. We extracted DNA 132 

from these cultures using the Promega Wizard Genomic DNA Purification Kit according to the 133 
manufacturer’s instructions. We prepared sequencing libraries using the Nextera XT DNA Library 134 
Preparation Kit and used the Illumina Novaseq platform to obtain 250 bp paired-end reads for a 135 
mean coverage of 70x. 28 samples either failed or did not meet the minimum sequencing 136 
coverage or quality requirements, so we re-sequenced these using the Illumina MiSeq platform 137 
for 250 bp paired-end reads and combined the reads from both sequencing runs to analyze these 138 
28 samples. We randomly selected one isolate from each patient to serve as the reference strain 139 
for the other 74 isolates isolated from that patient. For these reference isolates, we additionally 140 
obtained Oxford Nanopore long read sequences through the Microbial Genome Sequencing 141 
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Center (GridION Flow Cell chemistry type R9.4.1 with Guppy high accuracy base calling v4.2.2) 142 
at 35x coverage. 143 
 144 
Multi-locus sequence typing. Our multi-locus sequence typing was implemented in Bactopia 145 
v1.6.5 [43], which employs the PubMLST.org schema [44]. 146 
 147 
Constructing annotated reference assemblies. We used Unicyler v0.5.0 [45] to create long-148 
read assemblies for the four reference isolates. We then conducted one round of long-read 149 
polishing on these assemblies using Medaka v1.0.3 [46], which produced preliminary consensus 150 
sequences. We conducted quality control on all 300 Illumina reads using the Bactopia v1.6.5 [43] 151 
pipeline. We conducted two further short-read assembly polishing steps on the long-read 152 
assemblies by aligning the quality-adjusted short reads of each of the four reference isolates to 153 
its respective consensus sequence using Polypolish v0.5.0 [47] and Pilon v1.24 [48]. We validated 154 
the final consensus sequences by mapping the Illumina reads of each reference to its respective 155 
assembly using Snippy v4.6.0 [49] and confirming that 0 variants were called. We used (i) Prokka 156 
v1.14.6 [50] and (ii) RATT v1.0.3 [51] to (i) annotate our reference strains using a P. aeruginosa 157 
pan-genome database collated by Bactopia, and to (ii) transfer gene annotations from PAO1 to 158 
their respective positions in each of the reference strains, respectively. 159 
 160 
Variant calling. We used Snippy v4.6.0 (39) to call variants from the other 296 isolates against 161 
their respective reference strain and create a core genome alignment. Using PhyML 162 
v3.3.20211231 (43), we created a maximum likelihood phylogeny. Then, using VCFtools v0.1.16 163 
(44) and Disty McMatrixface v0.1.0 (45), we generated a pairwise SNP matrix for each patient. 164 
For Disty, we only considered alleles in the core genome and chose to ignore ambiguous bases 165 
pairwisely (-s 0). We then employed SnpEff and SnpSift v4.3t (46) to identify the affected genes 166 
and sort the variants by predicted effect. We identified hypermutators in these populations by the 167 
presence of non-synonymous mutations in mutL, mutS, and uvrD [52]. 168 
 169 
Antimicrobial susceptibility testing. To assess antimicrobial susceptibility profiles, we followed 170 
the guidelines and standards provided by the Clinical and Laboratory Standards Institute (CLSI) 171 
Performance Standards for Antimicrobial Susceptibility Testing M100S, 30th edition. We first grew 172 

all isolates overnight in LB in 24-well microtiter plates at 37℃ with shaking at 200 rpm. We diluted 173 

cultures to a Macfarland standard of 0.5 (OD600 ~0.06) and streaked a lawn on 100x15 mm Petri 174 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.06.14.544983doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.14.544983
http://creativecommons.org/licenses/by-nd/4.0/


 

 6 

dishes with 20 ml Mueller-Hinton agar using pre-sterilized cotton swabs. We then stamped 175 
amikacin (AK), meropenem (MEM), piperacilin-tazobactam (TZP), ciprofloxacin (CIP), tobramycin 176 

(TOB), and ceftazidime (CAZ) on each plate and incubated for 17 h at 37℃. We measured the 177 

zone of inhibition (ZOI) at 17 h and classified the values as resistant, intermediate, or susceptible 178 
per the established CLSI interpretive criteria. We used P. aeruginosa strain ATCC 27853 as a 179 
quality control. We tested all isolates in biological triplicates. We ran a Mann-Whitney U test to 180 
compare the means of antimicrobial susceptibilities between hypermutators and normomutators 181 
(non-hypermutators) and a Pearson's correlation coefficient to determine relationships between 182 

susceptibilities to different antimicrobials, both using ⍺ = .05.  183 

 184 
Principal components analysis. We conducted a principal components analysis of the 185 
antimicrobial susceptibility data in R v4.3.0 using a singular value decomposition approach. 186 
 187 
Resistome genotyping. We assessed genotypes relevant to resistance by uploading the de 188 
novo assemblies to the Resistance Gene Identifier (RGI) v6.1.0 web portal, which predicts 189 
resistomes using the Comprehensive Antibiotic Resistance Database (CARD) v3.2.6 [53]. We 190 
excluded loose and nudge hits from this analysis. 191 
 192 
Enrichment analysis. We conducted an enrichment analysis to determine which functional 193 
categories of genes were differentially impacted by mutations than would be expected by random 194 
chance. We used an in-house Python script to retrieve the PseudoCAP functional group of each 195 
gene where a non-synonymous SNP or microindel was identified. We accounted for the varying 196 
lengths of genes in each functional category in our analysis, based off their lengths and 197 
prevalence in the PAO1 genome. We used a chi-squared goodness of fit test to conduct the 198 
enrichment analyses for Patients 1-3 to determine which functional categories were 199 
disproportionately impacted by non-synonymous variants. We used the R package XNomial 200 
v1.0.4 [54] to conduct an exact multinomial goodness of fit test using Monte-Carlo simulations for 201 
Patient 4 because the SNP frequencies of Patient 4 did not meet the assumptions for a chi-202 

squared test. Given the formula for calculating the chi-squared statistic: !2 = ∑ (#−%)2
% , if the 203 

('())"
)  value for a particular PseudoCAP functional category was in the top 30 percentile of all 204 

values (top 8 of 27 total categories) in the analyses of at least three patients, we noted this as an 205 
enrichment.  206 
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 207 
Predicting putative recombination events. We input the core genome alignment from each 208 
patient to Gubbins v3.3.0 [55] to predict potential recombinant regions in each population. 209 
 210 
Analyzing growth curves. To assess growth, we cultured strains for 24 h in 96-well microtiter 211 

plates (Corning) at 37℃ static, in 200μL synthetic cystic fibrosis sputum medium (SCFM) [42], 212 

shaking for 4 s before reading optical density at 600 nm every 20 min. We tested all clinical 213 
isolates in biological triplicates. We used GrowthCurver [56] to analyze the resulting growth curves 214 
and calculate growth rate (r). We then assessed the relationship between growth rate and 215 
susceptibility profiles using a linear mixed model in brms [57]. 216 
 217 
Visualizations. We conducted graphical analyses in R v4.3.0. 218 
 219 
Data availability. The sequences in this study will be made available in the NCBI SRA database 220 
upon publication. 221 
 222 
Results 223 
Description of the four patient cohort selected for this study. The four individuals selected 224 
for this study were aged 24-31 years and had been chronically infected with P. aeruginosa for 10-225 
15 years at the time of sampling. All four individuals had at least one copy of the F508del CFTR 226 
mutation, but none were on CFTR modulator therapy. Patients 1, 2, and 4 were seeking outpatient 227 
treatment for an acute pulmonary exacerbation at the time of sampling, while Patient 3 was in 228 
stable medical condition. These individuals were in the early (%FEV1 > 70) to intermediate 229 
(%FEV1 ≤ 70, ≥ 40) stages of lung disease, with %FEV1 scores ranging from 60.30% to 74.92%. 230 
The antibiotic regimens for each patient at the time of sampling were as follows: Patient 1 was 231 
receiving inhaled tobramycin and oral azithromycin; Patient 2 was receiving inhaled tobramycin 232 
and oral trimethoprim/ sulfamethoxazole; Patient 3 was receiving inhaled tobramycin, oral 233 
azithromycin, and inhaled aztreonam; and Patient 4 was receiving inhaled tobramycin, oral 234 
trimethoprim/ sulfamethoxazole, and oral levofloxacin (Table 1). 235 
 236 
P. aeruginosa populations display significant within-patient diversity in antimicrobial 237 
resistance profiles. In order to assess diversity in AMR, we selected 75 isolates from a single 238 
sputum sample of each of the four individuals for a total of 300 isolates. Using a standard disc 239 
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diffusion assay, we assessed these 300 isolates for their susceptibilities to six antimicrobials 240 
commonly prescribed in CF treatment: amikacin, meropenem, piperacilin-tazobactam, 241 
ciprofloxacin, tobramycin, and ceftazidime (Tables S1-S4). Zone of inhibition values within a 242 
population for a given antibiotic displayed a statistical range (minimum subtracted from the 243 
maximum value of a population) between 6 and 25.3 mm, with an average of 12.75 mm. Standard 244 
deviations of these values ranged from 1.4 to 8.0 mm, with an average standard deviation of 3.0 245 
mm. The majority of isolates presented values well within the range of susceptibility for the tested 246 
antibiotics, despite ineffective clearing of infection in the clinic for these patients chronically 247 
infected with P. aeruginosa (Fig. 1). Only two patients harbored isolates that tested in the range 248 
of clinical resistance to any antimicrobial: amikacin, ciprofloxacin, and tobramycin for Patient 1; 249 
and ciprofloxacin for Patient 3. Three of the four patients harbored isolates that presented 250 
phenotypes spanning across the clinical thresholds for resistant, intermediate, and susceptible 251 
for at least one, if not multiple, antibiotics. Principal components analysis of these values show 252 
that isolate antimicrobial sensitivity phenotypes cluster by patient (Fig. 2). 253 
 254 
The four patients are chronically infected by a single P. aeruginosa strain, populations of 255 
which display a range of genomic diversity levels. In order to quantify the level of within-256 
patient genomic diversity for these populations, we sequenced the 75 isolates from each of the 257 
four individuals of this cohort. We prepared the sequences of all 300 isolates using de novo 258 
assembly and annotation. We assembled the genomes in 20 to 444 contigs (mean = 53 contigs; 259 
Table S5). Genomes in this dataset ranged in size from 5,888,197 to 6,746,489 nucleotides, with 260 
5,209 to 5,970 genes (Table S5). The median genome sizes of isolates sourced from Patients 1-261 
4, respectively, were 6,222,786, 6,331,110, 6,742,689, and 6,308,671 nucleotides, with 5,523, 262 
5,571, 5,964, and 5,567 genes, respectively (Table S5). A phylogenetic tree of the core genome 263 
alignment revealed that the populations infecting Patients 1, 2, and 4 clustered closely with PAO1, 264 
while that of Patient 3 more closely resembled PA14 (Fig. S1). Strain typing of the isolates showed 265 
that there was a single P. aeruginosa strain type in each patient— ST870, ST2999, ST1197, and 266 
ST274 for Patients 1-4, respectively (Table 1). For the rest of the text, we will simply refer to each 267 
population by its respective patient number. 268 
 269 
We assessed the genomic diversity in these populations according to the number of single 270 
nucleotide polymorphisms (SNPs) and microindels (insertions and deletions). We found that 271 
genomic diversity varied significantly between patients. The total number of unique SNPs 272 
discovered across 75 isolates for Patient 1 was 4,592 (maximum number of pairwise SNPs = 611, 273 
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median number of pairwise SNPs = 199, mean = 208); for Patient 2 was 1,972 (max. = 326, 274 
median = 145, mean = 118); for Patient 3 was 1,638 (max. = 150, median = 76, mean = 87); and 275 
for Patient 4 was 31 (max. = 8, median = 1, mean = 3) (Fig. 3; Table 2). Across the population of 276 
Patient 1 we found 498 unique microindels, 307 for Patient 2, 330 for Patient 3, and 14 for Patient 277 
4 (Table 2). 278 
 279 
Genomic diversity may not be a consistent predictor of antimicrobial resistance diversity 280 
in a population. We next determined whether genomic diversity could serve as a predictor of 281 
diversity in AMR phenotypes in our cohort. We hypothesized that genetically diverse populations 282 
would also display more diversity in AMR. We chose to quantify genomic diversity in terms of 283 
SNPs. We quantified AMR diversity using the number of distinct AMR profiles (i.e., distinct zone 284 
of inhibition values) for a given antibiotic within a population. Total SNP count in a population was 285 
a strong indicator of AMR diversity for amikacin (R2 = .90, F(1, 2) = 18.94, p = .049), meropenem 286 
(R2 = .93, F(1, 2) = 25.3, p = .037), and piperacilin-tazobactam (R2 = .95, F(1, 2) = 39.86, p = 287 
.024). However, SNP count was a poor indicator of AMR diversity for ciprofloxacin (R2 = .12, 288 
F(1,2) = .27, p = .65) and ceftazidime (R2 = .71, F(1,2) = 4.78, p = .16), and was inversely related 289 
to AMR diversity for tobramycin (R2 = .97, F(1,2) = 66.61, p = .015) (Fig. S2). We next used the 290 
number of distinct CARD resistance genotype profiles within a population (Fig. 4) as a proxy for 291 
genomic diversity to eliminate bias from SNPs not relevant to AMR and to account for the epistatic 292 
or synergistic effect that combinations of various alleles may have. This yielded similar results to 293 
the previous analysis (Table S6). We then instead used the standard deviation of zone of 294 
inhibition values within a population as a proxy for AMR diversity to see if this would improve the 295 
strength of the association between genomic diversity and phenotypic diversity for these 296 
antimicrobials. We found that the number of distinct CARD profiles within a population was a 297 
better predictor of standard deviation for ciprofloxacin (R2 = .79, F(1,2) = 7.35, p = .11), tobramycin 298 
(R2 = .77, F(1,2) = 6.73, p = .12), and ceftazidime (R2 = .81, F(1,2) = 8.44, p = .10), though these 299 
associations were still not significant (Fig. S3). 300 
 301 
P. aeruginosa diversity is primarily driven by de novo mutations, especially mutations in 302 
DNA mismatch repair. We next wanted to further understand the processes by which P. 303 
aeruginosa diversified in our cohort. We first sought to predict putative recombination events. In 304 
Patients 1-4, 527 (11.5%), 19 (<1%), 86 (5.25%), and 0 SNPs were predicted to be in 31, 3, 17, 305 
and 0 recombinant regions, respectively. These data show that de novo mutation was a much 306 
more prominent driver of intra-specific diversity than recombination in our particular cohort. As 307 
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expected, we found that the infections with the highest SNP diversity harbored strains with DNA 308 
MMR mutations. Patients 1 and 2 harbored DNA MMR mutants (hypermutators); however, we 309 
found no hypermutators in Patients 3 or 4 (Fig. 3). The phylogeny of Patient 1 indicates that a 310 
non-synonymous SNP in mutS (Ser31Gly) evolved first in the population, after which a frameshift 311 
deletion in mutS (Ser544fs) piggybacked. In total, mutS mutants comprise 61.3% of this 312 
population. In Patient 2, a non-synonymous SNP in mutL resulting in a pre-mature stop codon 313 
(Glu101*) evolved first, found in 41.3% of the population. Two of these mutL mutants further 314 
independently acquired a single non-synonymous mutation in mutS (Phe445Leu, Ala507Thr) 315 
(Fig. 3). 316 
 317 
In Patient 1, there were two distinct branches of the phylogenetic tree, one with hypermutators 318 
and the other composed of normomutators (38.7%) (Fig. 3). Interestingly, there was a significant 319 
amount of genetic diversity within both the normomutators (mean SNP distance = 156.9 SNPs, 320 
median = 91 SNPs) and hypermutators (mean = 174.6 SNPs, median = 197 SNPs). There was a 321 
distinct small cluster of normomutator isolates that significantly diverged from the others. Of the 322 
hypermutators, these further diverged into those with one DNA MMR mutation (39.1%) and those 323 
with two MMR mutations (60.9%). In Patient 2, there was largely a lack of genetic diversity in the 324 
normomutators (mean = 0.36 SNPs, median = 0 SNPs), with one clone dominating 48% of the 325 
population (Fig. 3). The emergence of hypermutators appears to have been responsible for the 326 
large majority of all the genetic diversity in this population (mean = 211.2 SNPs, median = 224 327 
SNPs). In Patient 3, there were three major lineages, comprising 58.7%, 26.7%, and 14.7% of 328 
the total population (mean = 61.9, 55.5, and 65.4 SNPs; median = 62, 61, and 64 SNPs, 329 
respectively; Fig. 3). In Patient 4, there was one dominant clone encompassing 66.6% of the 330 
population, with a small number of SNPs (mean = 4 SNPs, median = 3 SNPs) differentiating the 331 
other 33.3% of the population (Fig. 3). 332 
 333 
Hypermutation can drive the evolution of increased susceptibility to antimicrobials, even 334 
under apparent selective pressure. As our cohort had two populations with DNA MMR mutants, 335 
we used this opportunity to ascertain how hypermutation drives the evolution of AMR. In Patient 336 
1, AMR genotypes cluster by DNA MMR genotype. Hypermutators were significantly more 337 
resistant to amikacin than normomutators (U = 315.5, p = .00013) (Fig. 5), although this difference 338 
could not be attributed to any hits in the CARD database. Hypermutators were also significantly 339 
more resistant to beta-lactams piperacilin-tazobactam (U = 457.5, p = .023) and ceftazidime (U = 340 
428, p = .0095), although there was no significant difference in the resistance profiles of hyper- 341 
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and normomutators with regards to the beta-lactam meropenem (U = 630, p =.69) (Fig. 5). Some 342 
normomutators in this population acquired a SNP in ampC (461 A > G, Asp154Gly) (Fig. 4), which 343 
was associated with increased sensitivity to piperacilin-tazobactam (U = 320, p = .0014) and 344 
ceftazidime (U = 342.5, p = .0034). Of the isolates with one DNA MMR mutation, some lost ampC 345 
entirely, also associated with increased susceptibility to ceftazidime (U = 106, p = .0019). Of the 346 
isolates with both DNA MMR mutations, some had acquired a SNP in ampC (1066 G > A, 347 
Val356Ile), which appeared to increase their resistance to piperacilin-tazobactam (U = 12, p < 348 
.00001) and ceftazidime (U = 8, p < .00001) (Fig. 4). 349 
 350 
Interestingly, hypermutator isolates in this population displayed zone of inhibition values that were 351 
on average 10 times larger for ciprofloxacin (U = 218, p < .00001) and >13 times larger for 352 
tobramycin (U = 379.5, p = .0018) than normomutators, indicating increased sensitivity of 353 
hypermutators to these antimicrobials (Fig. 5). Isolates with both DNA MMR mutations in this 354 
population additionally presented ZOI values that were 36 times larger than normomutators for 355 
tobramycin (U = 172.5, p < .00001) (Fig. 5). The altered ciprofloxacin phenotype may be explained 356 
in part by SNPs in gyrA (248 T > C, Ile83Thr) or norM (61 G > A, Ala21Thr) (U = 38.5, p < .00001) 357 
(Fig. 4). However, there were isolates in this population whose phenotypes were not ostensibly 358 
explained by either of these genotypes. The increased susceptibility to tobramycin was strongly 359 
linked to the aforementioned SNP in norM (U = 31.5, p < .00001)  (Fig. 4). We observed apparent 360 
evidence of one of these hypermutators reversing this increased susceptibility to tobramycin by 361 
acquisition of the aminoglycoside nucleotidyltransferase ant(2”)-Ia (Fig. 4). There was additionally 362 
a normomutator isolate with an outlier tobramycin susceptibility phenotype. Interestingly, 12 363 
isolates from Patient 1 had improved growth in the presence of tobramycin (determined by visual 364 
observation of denser growth in the region surrounding the antibiotic disc in a disc diffusion 365 
assay), a phenotype which could not be explained by any hits in the database. All of the 366 
normomutator isolates had a truncated mexF (Fig. 4), although this did not appear to impact any 367 
of the tested phenotypes. 368 
 369 
In Patient 2, hypermutators displayed increased sensitivities to meropenem (U = 194, p < .00001), 370 
piperacilin-tazobactam (U = 121.5, p < .00001), and ciprofloxacin (U = 213.5, p < .00001) relative 371 
to normomutators (Fig. 5). This appeared to be caused in part by a SNP in mexB (2257 T > C, 372 
Trp753Arg) shared by all hypermutators in this population. However, there were outliers whose 373 
phenotype could not be explained by this genotype. Hypermutators were also more susceptible 374 
to amikacin (U = 479, p = .029) and more resistant to ceftazidime (U = 417.5, p = .0045) (Fig. 5), 375 
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although these strains harbored no apparent genes or SNPs associated with these phenotypes 376 
in the CARD database. There was no statistically significant difference between the tobramycin 377 
susceptibility profiles of hyper- and normomutators in this population (U = 634.5, p = .61) (Fig. 5). 378 
One hypermutator isolate in Patient 2 had an unusual density of truncated pseudogenes, 10 of 379 
which are involved in resistance mechanisms and 9 of which specifically play roles in resistance-380 
nodulation-cell division efflux— mexY, mexQ, mexN, cpxR, muxB, muxC, mexI, mexB, mexD, 381 
and cprR (Fig. 4). Although RGI denoted these genes as missing due to truncation, this isolate 382 
was equally or more resistant to every antimicrobial tested relative to other DNA MMR mutants in 383 
the population, suggesting that many of these genes were still functional. 384 
 385 
In the two normomutator populations, there was significantly decreased resistome diversity. In 386 
Patient 3, a SNP in ampC (716 T > C, Val239Ala) was associated with increased resistance to 387 
ceftazidime (U = 165.5, p < .00001) and piperacillin-tazobactam (U = 312.5, p = .0045) (Fig. 4). 388 
Some of the isolates with this SNP additionally were missing nalC (Fig. 4) and displayed 389 
increased susceptibility to meropenem (U = 172.5, p = .01778) relative to other isolates. In Patient 390 
4, a truncation in mexY was strongly linked to variations in sensitivities to amikacin (U = 35, p = 391 
.0031), piperacillin-tazobactam (U = 22.5, p = .0012), ciprofloxacin (U = 0, p = .0002), and 392 
tobramycin (U = .5, p = .00022) (Fig. 4). Surprisingly, isolates missing a hit to aph(3’)-IIb were 393 
more resistant to aminoglycosides amikacin (U = 11.5, p = .00014) and tobramycin (U = 55, p = 394 
.00308), and those missing a hit to ampC were more resistant to ceftazidime (U = 62, p = .0048) 395 
(Fig. 4). Seeing as these relationships are unexpected, it is likely that there are other genetic 396 
variations not cataloged in the CARD database, or epistatic interactions, that are influencing these 397 
phenotypes. 398 
 399 
Protein export/ secretion systems and transcriptional regulators are hotspots for de novo 400 
mutations in these populations. To determine whether these populations were enriched for 401 
mutations in genes with roles in resistance, we categorized non-synonymous SNPs and 402 
microindels that occurred within coding regions of genes according to the PseudoCAP functional 403 
categories and conducted an enrichment analysis. We did not find that AMR genes were enriched 404 
for such variants in this cohort (Fig. S4). However, we found that protein secretion and export 405 
apparatuses and transcriptional regulators were enriched for such mutations (Fig. S4). 406 
Additionally, two of the four genes impacted by non-synonymous mutations in all four populations 407 
in this study were related to protein secretion, fha1 and pscP (Table S7). We found that 408 
phage/transposon/plasmid genes were less likely to be impacted by such mutations (Fig. S4). 409 
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Non-coding RNAs were also less likely to be impacted by mutations than other functional 410 
categories (Fig. S4; see Table S8 for all supporting statistical values), which is unsurprising given 411 
that small non-coding RNAs are known to hold important regulatory functions in bacteria [58]. 57 412 
genes were impacted by non-synonymous mutations in at least 3 of 4 patients, which included 413 
genes with previously described functions in alginate biosynthesis, primary metabolism, antibiotic 414 
resistance and efflux, iron uptake, biofilm formation, stress response, amino acid biosynthesis, 415 
type IV pili, lipopolysaccharide, quorum sensing, and virulence (Table S9). A full list of all SNPs 416 
discovered in this dataset can be found in Tables S10-S13. 417 
 418 
Populations display poor evidence for evolutionary trade-offs to explain heterogeneity in 419 
resistance profiles. We next wanted to ascertain if there was any evidence of evolutionary trade-420 
offs involving AMR in these populations. Collateral sensitivity is sensitive to genetic background 421 
[17, 19, 59, 60] and must be proven robust across a wide range of genetic backgrounds in order 422 
to be broadly applicable as a therapeutic strategy [61]. Therefore, we searched for evidence of 423 
collateral sensitivity within our populations, and additionally for evidence of trade-offs between 424 
AMR and fitness (i.e., growth rate) in a CF sputum-like medium, SCFM [42]. Using the Pearson’s 425 
correlation coefficient, we found no evidence of collateral sensitivity across any of the six 426 
antimicrobials tested for any patient (Fig. 6). A principal components analysis conducted for each 427 
patient further confirmed this, and showed that cross-resistance and cross-sensitivity patterns 428 
differed between patients (Fig. S5). We analyzed growth curves for all 300 isolates (Tables S14-429 
S17) and using a linear mixed model, determined that there was not a significant relationship 430 
between resistance and fitness for any of the tested antimicrobials (Fig. S6; Table S18 for 431 
supporting code and statistical values). 432 
 433 
Discussion 434 
The goal of this project was to better understand how genomic diversification in P. aeruginosa CF 435 
lung populations drives the evolution of AMR. For this study, we selected four distinct patients 436 
with varying levels of P. aeruginosa genomic population diversity, ranging from a few dozen to 437 
multiple thousands of SNPs within a given population. We found that (i) genomic diversity was 438 
not consistently a reliable predictor of AMR diversity for this cohort; (ii) hypermutators in one 439 
population evolved increased sensitivity to tobramycin, even when undergoing treatment by 440 
tobramycin; and that (iii) there was no evidence for collateral sensitivity or trade-offs between 441 
AMR and fitness in these populations. 442 
 443 
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Previous studies have reported both on genomic and phenotypic diversity of P. aeruginosa in CF 444 
airways [6, 34-40]; however, the clinical implications of genomic diversity within these populations 445 
on resistance diversity have not been fully assessed. Our results suggest that genomic diversity 446 
may not be a reliable predictor of phenotypic diversity for all antibiotics. However, there are a 447 
number of limitations to this finding: (i) our sample size for this analysis was small; (ii) we cannot 448 
account for diverse genotypes that result in converging phenotypes; and (iii) there are likely many 449 
genetic variants that act on AMR that have not been catalogued in CARD. Nonetheless, we 450 
highlight that Patient 4 displayed a number of distinct AMR profiles that was, in the case of 451 
ciprofloxacin, comparable to that of Patient 1, which had 148x more SNPs and 4x as many distinct 452 
CARD genotype profiles within the population. In the case of tobramycin, Patient 4 displayed more 453 
distinct AMR profiles and higher zone of inhibition standard deviation values compared to Patients 454 
2 and 3, which both had 2x as many distinct CARD genotype profiles and over 53x more 455 
population SNPs compared to Patient 4. Ultimately, because of our limited ability at present to 456 
predict the phenotypic impact of novel genetic variants or the epistatic interactions of alleles in 457 
silico, it may prove challenging to ascertain the phenotypic heterogeneity of an infection in a 458 
parsimonious manner that could be translated to the clinic [41]. In addition to improved in silico 459 
capabilities, greater understanding of the social interactions that impact how co-infecting microbes 460 
with varying resistance levels collectively respond to antibiotic treatment and development of 461 
reliable methodology for assessing population-level resistance are also necessary. Considering 462 
the impact of polymicrobial interactions has certainly been shown to add an additional layer of 463 
complexity in predicting the antimicrobial sensitivity profiles of diverse infections [32, 62], although 464 
there is still uncertainty in the degree to which various species of pathogens spatially co-exist and 465 
interact in the CF lung. Improved understanding of how these social dynamics influence AMR 466 
may be instrumental in future approaches for tackling chronic infections. 467 
 468 
Our data further highlight that even our ability to assess resistance at the isolate-level is 469 
inadequate. Though the majority of the isolates selected for this study demonstrated sensitivity to 470 
nearly every antibiotic in vitro, these testing results likely underestimate resistance levels in situ, 471 
given that these populations have persisted within the lung for over a decade and that only one 472 
population displayed clinical resistance to tobramycin, despite all four individuals in this cohort 473 
undergoing treatment with inhaled tobramycin. These findings are in accordance with the wide 474 
array of literature that has already called into question the utility of antimicrobial susceptibility 475 
testing in the clinic, which falls short in reproducing the hypoxic CF microenvironment and the 476 
biofilm mode of growth displayed by P. aeruginosa in this biological context, and ultimately fails 477 
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in predicting patient outcomes [5, 63, 64]. Still, we found it particularly unusual that two of our 478 
populations did not display clinical resistance to any of the antimicrobials tested in vitro, as prior 479 
studies on AMR diversity of P. aeruginosa in CF lungs have generally demonstrated high 480 
prevalence of in vitro resistance within populations [34-38].  481 
 482 
Two limitations of our study are that we were unable to obtain full treatment histories for these 483 
patients, and that the pre-selected panel of antimicrobials tested did not include all those that the 484 
four patients were undergoing treatment with at the time of sampling (i.e., aztreonam, 485 
azithromycin, trimethoprim-sulfamethoxazole, and levofloxacin). Disc diffusion data on these 486 
antimicrobials in addition to treatment histories of these patients could potentially illuminate the 487 
reasons for treatment failure and explain the presence of strains resistant to amikacin and 488 
ciprofloxacin. However, (i) the mechanisms of resistance for levofloxacin and aztreonam closely 489 
overlap with those of the other aminoglycoside and beta-lactam antibiotics tested; (ii) 490 
trimethoprim-sulfamethoxazole is not prescribed as a treatment for P. aeruginosa; and (iii) 491 
azithromycin does not display conventional antimicrobial activity against P. aeruginosa, but rather, 492 
inhibits quorum sensing (therefore, rendering traditional disc diffusion testing of this drug non-493 
viable). Therefore, we believe that our results still broadly provide coverage of the spectrum of 494 
relevant antimicrobial sensitivities displayed by these populations. We were additionally 495 
concerned to discover strains with increased growth in the presence of tobramycin, as inhaled 496 
tobramycin is one of the most commonly prescribed drugs for CF patients with P. aeruginosa 497 
infection. It may be that tobramycin is being catabolized by these strains to aid in growth, although 498 
further investigation is needed to test this hypothesis. 499 
 500 
Combining single-isolate whole genome sequencing and phenotypic characterization approaches 501 
further allowed us to understand how the evolution of genotypes and combination of alleles impact 502 
AMR within a population. Although we were able to identify a number of candidate genotypes 503 
responsible for these phenotypic variations, there were a number of unexplained phenotypic 504 
outliers, highlighting the presence of novel genetic signatures of AMR or allelic interactions 505 
influencing AMR phenotype. Previous reports have primarily focused on the role that 506 
hypermutation plays in evolving increased AMR in clinical P. aeruginosa populations [65-71]. We 507 
found ample evidence that hypermutation can also lead to increased susceptibility, such as the 508 
hypermutator isolates in Patient 1 that were significantly more sensitive to tobramycin, despite 509 
this patient undergoing treatment with inhaled tobramycin. This may be a function of antimicrobial 510 
treatment regimens exerting uneven selection pressure on the population. Or, it may be that the 511 
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evolution of genetic resistance for these populations is inconsequential because antimicrobials 512 
are failing to penetrate phenotypic barriers, such as biofilms, and other mechanisms of antibiotic 513 
tolerance, including persister cells with reduced metabolic activity in the microaerophilic lung [72-514 
78]. Although antimicrobial treatment leads to increased resistance in vitro [79-85], the 515 
development of resistance or sensitivity in vivo may, in some ways, be a result of stochastic 516 
processes or other evolutionary drivers if antibiotic treatment regimens are only exerting weak 517 
selective pressure. 518 
 519 
It is often assumed that the evolution of AMR involves a fitness cost, although this has 520 
predominantly been tested in lab-evolved strains [15, 85-88]. We found no evidence for collateral 521 
sensitivity or trade-offs between resistance and fitness in a CF-like medium for these clinical 522 
populations. However, in interpreting these results, we must consider that in vitro susceptibility 523 
and growth testing does not accurately recapitulate the infectious microenvironment of an in vivo 524 
lung [64]. Therefore, trade-offs between these measures may be present in the lung but not 525 
detectable under laboratory conditions. Collateral sensitivity, although shown in evolutionary 526 
experiments [15-19], has yet to be demonstrated as widely prevalent in naturally occurring clinical 527 
strains. Further work is needed to show that collateral sensitivity is a viable approach for future 528 
therapeutic consideration. A recent report found evidence for trade-offs between fitness and multi-529 
drug resistance in clinical P. aeruginosa populations [89]. Taken together with our results, we 530 
hypothesize that resistance to a single antibiotic may not exert sufficient fitness cost to act as a 531 
driving force for trade-offs with growth rate, while resistance to multiple antibiotics perhaps does. 532 
Furthermore, this study found stronger evidence for trade-offs in mixed strain infections, whereas 533 
all of the individuals in our cohort were infected with a single strain of P. aeruginosa. Moreover, 534 
as the majority of our strains were technically clinically sensitive to the tested antimicrobials, we 535 
may not have had the power to detect trade-offs if they are only elicited at high resistance levels. 536 
If resistance does indeed trade-off with fitness, this suggests that slow-growing strains may prove 537 
to be the most resistant to treatment. The implication of this for the clinic is concerning, as the 538 
slowest growing strains may be more likely to remain undetected during routine susceptibility 539 
testing in the clinic, where quick results are favored in order to expedite treatment.  540 
 541 
Conducting deep sampling of clinical P. aeruginosa populations has allowed us to illuminate 542 
population structure, evolution, and population diversity in CF in a manner that single-isolate 543 
sampling or population-level sequencing cannot. These methods suffer in their ability to identify 544 
rare variants, accurately resolve population structure, and in the case of pooled deep-sequencing, 545 
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link genotype to phenotype for individual isolates. A 2016 study claimed that single-isolate 546 
sampling of longitudinal isolates was sufficient to capture the evolutionary pathways of P. 547 
aeruginosa in CF lung infection; however, the authors conducted metagenome sequencing at a 548 
low depth of 10-31x and only sought to determine if SNPs within individual isolates could be re-549 
discovered in the metagenomes, not whether the individual isolates captured the full diversity of 550 
the metagenome [90]. However, we believe there is still incredible value in conducting longitudinal 551 
analyses. Building upon previous work [91], we propose that conducting deeper sampling of 552 
populations over long time scales will help illuminate the full evolutionary dynamics of P. 553 
aeruginosa populations in the CF lung and lead to insights that will assist in tackling chronic 554 
infections. 555 
 556 
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Figure legends 573 
Figure 1. Violin plot of the antimicrobial susceptibility profiles of all four populations against 574 
amikacin, meropenem, piperacillin-tazobactam, ciprofloxacin, tobramycin, and ceftazidime as 575 
measured by zone of inhibition in a standard disc diffusion assay shows phenotypic diversity 576 
across all populations. Data points are clustered and colored by respective patient, with each 577 
individual violin plot representing 75 isolates from a single patient. Black horizontal bars indicate 578 
the cut-off values for susceptibility (top bar) and resistance (bottom bar) for each antibiotic as 579 
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determined by the Clinical and Laboratory Standards Institute (CLSI). Clinical thresholds for 580 
resistance to amikacin, meropenem, piperacillin-tazobactam, ciprofloxacin, tobramycin, and 581 
ceftazidime are 14, 15, 14, 18, 12, and 14 mm, respectively. Clinical thresholds for sensitivity to 582 
these antimicrobials are 17, 19, 21, 25, 15, and 18 mm, respectively.  583 
 584 
Figure 2. Principal components analysis plot of antimicrobial sensitivities shows that isolates 585 
cluster by patient. 50.5% of the variance in antimicrobial sensitivities is demonstrated by 586 
dimension 1, and 32.9% of the variance is demonstrated by dimension 2. Vectors demonstrate to 587 
what degree each variable (i.e., antimicrobial) influences the principal components. 588 
 589 
Figure 3. Genomic diversity as measured by core genome SNPs varies greatly from one 590 
population to another. Populations are presented in order of decreasing genomic diversity: Patient 591 
1 (A), Patient 2 (B), Patient 3 (C), and Patient 4 (D). Each matrix represents the pairwise 592 
comparison of SNPs across all 75 isolates within a population against each other, and each 593 
population is composed of a single strain type. Isolates with one DNA mismatch repair mutation 594 
are highlighted in yellow on phylogenies. Isolates with two DNA mismatch repair mutations are 595 
highlighted in red. 596 
 597 
Figure 4. Visualized resistomes of Patients 1 (A), 2 (B), 3 (C), and 4 (D) as predicted by the 598 
Comprehensive Antibiotic Resistance Database Resistance Gene Identifier (CARD RGI) 599 
demonstrate decreasing levels of resistome diversity. Yellow indicates a perfect hit to the 600 
database, teal indicates a strict hit, and purple indicates no hit (or loose hit in some cases). X-axis 601 
of the histogram indicates the number of unique resistome profiles in the population, and y-axis 602 
indicates the number of isolates in the population that share a unique resistome profile. An 603 
asterisk (*) indicates a gene with resistance conferred by a mutation (i.e. CARD RGI protein 604 
variant model). 605 
 606 
Figure 5. Comparative antimicrobial susceptibility profiles of hypermutators and normomutators 607 
in Patient 1 (A) and Patient 2 (B) as measured by zone of inhibition in a standard disc diffusion 608 
assay highlight increased sensitivities and resistance levels by hypermutators. (A) In Patient 1, 609 
hypermutators were significantly more resistant to amikacin (U = 315.5, p = .00013), piperacilin-610 
tazobactam (U = 457.5, p = .023), and ceftazidime (U = 428, p = .0095) than normomutators, 611 
although there was no significant difference in the resistance profiles of hyper- and 612 
normomutators in regards to meropenem (U = 630, p =.69). Hypermutator isolates in Patient 1 613 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.06.14.544983doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.14.544983
http://creativecommons.org/licenses/by-nd/4.0/


 

 19 

displayed zone of inhibition (ZOI) values that were on average 10 times larger for ciprofloxacin (U 614 
= 218, p < .00001) and >13 times larger for tobramycin (U = 379.5, p = .0018) than normomutators, 615 
and isolates with both DNA MMR mutations in this population additionally presented ZOI values 616 
that were 36 times larger than normomutators for tobramycin (U = 172.5, p < .00001), indicating 617 
increased sensitivity displayed by hypermutators. (B) In Patient 2, hypermutators displayed 618 
increased susceptibility to  amikacin (U = 479, p = .029), meropenem (U = 194, p < .00001), 619 
piperacilin-tazobactam (U = 121.5, p < .00001), and ciprofloxacin (U = 213.5, p < .00001) relative 620 
to normomutators. Hypermutators in Patient 2 were more resistant to ceftazidime (U = 417.5, p = 621 
.0045). There was no statistically significant difference between the tobramycin susceptibility 622 
profiles of hyper- and normomutators in this population (U = 634.5, p = .61). (*) indicates p ≤ .05, 623 
(**) indicates p ≤ .01, (***) indicates p ≤ .001, and (****) indicates p < .0001 in a Mann-Whitney U 624 
test. Clinical thresholds for resistance to amikacin, meropenem, piperacillin-tazobactam, 625 
ciprofloxacin, tobramycin, and ceftazidime as determined by the CLSI are 14, 15, 14, 18, 12, and 626 
14 mm, respectively. Clinical thresholds for sensitivity to these antimicrobials are 17, 19, 21, 25, 627 
15, and 18 mm, respectively.  628 
 629 
Figure 6. Lack of statistically significant negative correlations between any two antimicrobial 630 
susceptibility profiles in a Pearson’s correlation provides no evidence for collateral sensitivity 631 

trade-offs. Pearson’s correlation coefficient (upper right quadrant), scatterplots (lower left 632 

quadrant), and density plots (diagonal) for pairwise comparisons of susceptibility profiles across 633 
all six tested antimicrobials: amikacin (AK), meropenem (MEM), piperacillin-tazobactam (TZP), 634 
ciprofloxacin (CIP), tobramycin (TOB), and ceftazidime (CAZ). 635 
 636 
Table 1. Metadata on the four patients in our cohort: sex, cystic fibrosis transmembrane 637 
conductance regulator (CFTR) mutation status, length of P. aeruginosa infection, clinical status, 638 
forced expiratory volume (% FEV1), modulator therapy, antibiotic treatment at time of sampling, 639 
and dominant infection strain type. 640 
 641 
Table 2. Genetic variations in each population: single nucleotide polymorphisms (SNPs), multiple 642 
nucleotide polymorphisms (MNPs), and insertions and deletions (indels). 643 
 644 
Supplemental figure legends 645 
Supplemental Figure 1. Phylogeny of Patients 1-4 with PAO1 and PA14. Patients 1, 2, and 4 646 
cluster with PAO1, while Patient 3 clusters with PA14. 647 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.06.14.544983doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.14.544983
http://creativecommons.org/licenses/by-nd/4.0/


 

 20 

 648 
Supplemental Figure 2. Linear regression analysis demonstrates that total SNP count in a 649 
population was a strong indicator of AMR diversity for amikacin (R2 = .90, F(1, 2) = 18.94, p = 650 
.049), meropenem (R2 = .93, F(1, 2) = 25.3, p = .037), and piperacilin-tazobactam (R2 = .95, F(1, 651 
2) = 39.86, p = .024), but a poor indicator of AMR diversity for ciprofloxacin (R2 = .12, F(1,2) = 652 
.27, p = .65) and ceftazidime (R2 = .71, F(1,2) = 4.78, p = .16), and was inversely related to AMR 653 
diversity for tobramycin (R2 = .97, F(1,2) = 66.61, p = .015) 654 
 655 
Supplemental Figure 3. Linear regression analysis shows that the number of distinct CARD 656 
profiles within a population is an improved predictor of population standard deviation for 657 
ciprofloxacin (R2 = .79, F(1,2) = 7.35, p = .11), tobramycin (R2 = .77, F(1,2) = 6.73, p = .12), and 658 
ceftazidime (R2 = .81, F(1,2) = 8.44, p = .10) over total population SNP count. 659 
 660 
Supplemental Figure 4. Enrichment analysis of the frequency of functional categories in which 661 
non-synonymous SNPs and microindels are found in each of the four populations relative to the 662 
proportions of these functional categories in the PAO1 genome shows that protein secretion/ 663 
export apparatuses and transcriptional regulators are enriched for such variants, while phage/ 664 
transposon/ plasmid and non-coding RNA are less likely to be impacted by such variants. Donut 665 
plot of the relative frequencies of genes categorized within each of the 27 different PseudoCAP 666 
functional categories in the PAO1 genome (A). Donut plots of the relative frequencies of non-667 
synonymous SNPs and indels located in each of the 27 different PseudoCAP functional 668 
categories in Patient 1 (B), 2 (C), 3 (D), and 4 (E). Protein secretion/ export apparatuses and 669 
transcriptional regulators are denoted with green asterisks on donut plots where applicable, while 670 
phage/ transposon/ plasmid and non-coding RNA are denoted with red asterisks. 671 
 672 
Supplemental Figure 5. Principal components analysis vectors display no evidence of collateral 673 
sensitivity across any of the six antimicrobials tested for any patient, and further demonstrate that 674 
cross-resistance and cross-sensitivity patterns differ across patients. 675 
 676 
Supplemental Figure 6. Scatterplots of zone of inhibition (ZOI) versus growth rate (r) in SCFM 677 
for all six tested antibiotics: amikacin (AK), meropenem (MEM), piperacillin-tazobactam (TZP), 678 
ciprofloxacin (CIP), tobramycin (TOB), and ceftazidime (CAZ). Results of linear mixed model 679 
(Table S18), with growth rate in SCFM as a fixed effect and patient as a random effect, 680 
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demonstrate that there is no significant effect of growth rate on resistance, and therefore, no 681 
evidence for trade-offs between growth rate and resistance in these four populations. 682 
 683 
Supplemental Table 1. Antimicrobial susceptibility testing measurements for Patient 1 as 684 
measured by zone of inhibition (ZOI) in a standard disc diffusion assay for amikacin (AK), 685 
meropenem (MEM), piperacilin-tazobactam (TZP), ciprofloxacin (CIP), tobramycin (TOB), and 686 
ceftazidime (CAZ). Data in the left columns represent raw measurements of zone of inhibition 687 
radii (mm units). Data in the right columns represent calculated zone of inhibition values as 688 
diameters (mm units). 689 
 690 
Supplemental Table 2. Antimicrobial susceptibility testing measurements for Patient 2 as 691 
measured by zone of inhibition (ZOI) in a standard disc diffusion assay for amikacin (AK), 692 
meropenem (MEM), piperacilin-tazobactam (TZP), ciprofloxacin (CIP), tobramycin (TOB), and 693 
ceftazidime (CAZ). Data in the left columns represent raw measurements of zone of inhibition 694 
radii (mm units). Data in the right columns represent calculated zone of inhibition values as 695 
diameters (mm units). 696 
 697 
Supplemental Table 3. Antimicrobial susceptibility testing measurements for Patient 3 as 698 
measured by zone of inhibition (ZOI) in a standard disc diffusion assay for amikacin (AK), 699 
meropenem (MEM), piperacilin-tazobactam (TZP), ciprofloxacin (CIP), tobramycin (TOB), and 700 
ceftazidime (CAZ). Data in the left columns represent raw measurements of zone of inhibition 701 
radii (mm units). Data in the right columns represent calculated zone of inhibition values as 702 
diameters (mm units). 703 
 704 
Supplemental Table 4. Antimicrobial susceptibility testing measurements for Patient 4 as 705 
measured by zone of inhibition (ZOI) in a standard disc diffusion assay for amikacin (AK), 706 
meropenem (MEM), piperacilin-tazobactam (TZP), ciprofloxacin (CIP), tobramycin (TOB), and 707 
ceftazidime (CAZ). Data in the left columns represent raw measurements of zone of inhibition 708 
radii (mm units). Data in the right columns represent calculated zone of inhibition values as 709 
diameters (mm units). 710 
 711 
Supplemental Table 5. Genome size, average sequencing coverage, and number of contigs of 712 
each assembly. 713 
 714 
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Supplemental Table 6. Supporting statistical values of the linear regression analysis of distinct 715 
CARD resistance genotype profiles within a population as a proxy for genomic diversity as 716 
measured by total SNPs in each population. 717 
 718 
Supplemental Table 7. Genes that were impacted by non-synonymous mutations in at least one 719 
isolate in all four populations. 720 
 721 
Supplemental Table 8. Full details of the chi-squared goodness of fit and Monte Carlo simulation 722 
exact multinomial tests, with all associated chi-squared and p-values. 723 
 724 
Supplemental Table 9. Genes that were impacted by non-synonymous mutations in at least one 725 
isolate in three out of four populations. 726 
 727 
Supplemental Table 10. All annotated genetic variants discovered in Patient 1. 728 
 729 
Supplemental Table 11. All annotated genetic variants discovered in Patient 2. 730 
 731 
Supplemental Table 12. All annotated genetic variants discovered in Patient 3. 732 
 733 
Supplemental Table 13. All annotated genetic variants discovered in Patient 4. 734 
 735 
Supplemental Table 14. Raw OD600 reads for growth in SCFM used to create growth curves and 736 
analyze growth rate (r) for Patient 1. Time is given in hours, and all isolates were tested in 737 
biological triplicates. 738 
 739 
Supplemental Table 15. Raw OD600 reads for growth in SCFM used to create growth curves and 740 
analyze growth rate (r) for Patient 2. Time is given in hours, and all isolates were tested in 741 
biological triplicates. 742 
 743 
Supplemental Table 16. Raw OD600 reads for growth in SCFM used to create growth curves and 744 
analyze growth rate (r) for Patient 3. Time is given in hours, and all isolates were tested in 745 
biological triplicates. 746 
 747 
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Supplemental Table 17. Raw OD600 reads for growth in SCFM used to create growth curves and 748 
analyze growth rate (r) for Patient 4. Time is given in hours, and all isolates were tested in 749 
biological triplicates. 750 
 751 
Supplemental Table 18. Supporting brms R code and statistical values for the linear mixed model 752 
run to assess the relationship between growth rate (r) and antimicrobial resistance. Results of the 753 
model, with growth rate in SCFM as a fixed effect and patient as a random effect, show that the 754 
95% confidence interval of the fixed effect of growth rate spans 0 for all six antimicrobials. 755 
Therefore, the null hypothesis that the fixed effect of growth on antimicrobial susceptibility is 0 756 
cannot be rejected, providing no evidence for trade-offs or any significant relationship between 757 
resistance and growth rate across all four populations. 758 
 759 

 760 
  761 
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Table 1. Metadata on the four patients in our cohort: sex, cystic fibrosis transmembrane conductance regulator (CFTR) mutation 
status, length of P. aeruginosa infection, clinical status, forced expiratory volume (% FEV1), modulator therapy, antibiotic treatment, 
and dominant infection strain type. 
 

  Patient 1 Patient 2 Patient 3 Patient 4 

Patient Sex F F F M 

CFTR Mutation F508del/R1162X F508del/F508del F508del/L467P F508del/ 621+1G->T 

Length of Pa 
infection 15 years, 2 months 12 years, 5 months 10 years, 4 months 13 years 

Clinical status APE Outpatient APE Outpatient Stable APE Outpatient 

FEV1 (%) 67.96% 74.92% 67.83% 60.30% 

Modulator Therapy None None None None 

Antibiotic Treatment 
Inhaled tobramycin, oral 

azithromycin 

Inhaled tobramycin, oral 
Trimethoprim / 

Sulfamethoxazole 

Inhaled tobramycin, inhaled 
aztreonam, oral 

azithromycin 

Inhaled tobramycin, oral 
Trimethoprim / 

Sulfamethoxazole, oral 
levofloxacin 

Dominant ST 870 2999 1197 274 
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Table 2. Genetic variations in each population: single nucleotide polymorphisms (SNPs), multiple nucleotide polymorphisms (MNPs), 
and insertions and deletions (indels). 
 

  Patient 1 Patient 2 Patient 3 Patient 4 

Total # unique SNPs/ MNPs 4592 1972 1638 31 

# SNPs/ MNPs separating most divergent isolates 611 326 150 8 

Non-synonymous SNPs/ MNPs 2803 1294 1024 24 

Synonymous SNPs/ MNPs 1248 484 425 5 

SNPs in non-coding regions 541 194 189 2 

Total # indels 498 307 330 14 

Indels in non-coding regions 204 99 115 2 
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