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Abstract

Tumor heterogeneity is a complex and widely recognized trait that poses significant chal-
lenges in developing effective cancer therapies. In particular, many tumors harbor a variety of
subpopulations with distinct therapeutic response characteristics. Characterizing this hetero-
geneity by determining the subpopulation structure within a tumor enables more precise and
successful treatment strategies. In our prior work, we developed PhenoPop, a computational
framework for unravelling the drug-response subpopulation structure within a tumor from bulk
high-throughput drug screening data. However, the deterministic nature of the underlying mod-
els driving PhenoPop restricts the model fit and the information it can extract from the data.
As an advancement, we propose a stochastic model based on the linear birth-death process to
address this limitation. Our model can formulate a dynamic variance along the horizon of the
experiment so that the model uses more information from the data to provide a more robust
estimation. In addition, the newly proposed model can be readily adapted to situations where
the experimental data exhibits a positive time correlation. We test our model on simulated data
(in silico) and experimental data (in vitro), which supports our argument about its advantages.
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1 Introduction

In recent years the design of personalized anti-cancer therapies has been greatly aided by the use
of high throughput drug screens (HTDS) [21, 9]. In these studies a large panel of drugs is tested
against a patient’s tumor sample to identify the most effective treatment [22, 23, 18, 3]. HTDS output
observed cell viabilities after initial populations of tumor cells are exposed to each drug at a range of
dose concentrations. The relative ease of performing and analyzing such large sets of simultaneous
drug-response assays has been driven by technological advances in culturing patient tumor cells in
vitro, and robotics and computer vision improvements. In principle, this information can be used to
guide the choice of therapy and dosage for cancer patients, facilitating more personalized treatment
strategies.

However, due to the evolutionary process by which they develop, tumors often harbor many
different subpopulations with distinct drug-response characteristics by the time of diagnosis [16].
This tumor heterogeneity can confound results from HTDS since the combined signal from mul-
tiple tumor subpopulations results in a bulk drug sensitivity profile that may not reflect the true
drug response characteristics of any individual cell in the tumor. Small clones of drug-resistant
subpopulations may be difficult to detect in a bulk drug response profile, but these clones may be
clinically significant and drive tumor recurrence after drug-sensitive populations are depleted. As a
result of the complex heterogeneities present in most tumors, care must be taken in the analysis and
design of HTDS to ensure that beneficial treatments result from the HTDS. In recent work we devel-
oped a method, PhenoPop, that leverages HTDS data to probe tumor heterogeneity and population
substructure with respect to drug sensitivity [15]. In particular, for each drug, PhenoPop character-
izes i) the number of phenotypically distinct subpopulations present, ii) the relative abundance of
those subpopulations and iii) each subpopulation’s drug sensitivity. This method was validated on
both experimental and simulated datasets, and applied to clinical samples from multiple myeloma
patients.

In the current work, we develop novel theoretical results and computational strategies that
improve PhenoPop by addressing important theoretical and practical limitations. The original
PhenoPop framework was powered by an underlying deterministic population dynamic model of
tumor cell growth and response to therapy. Here we introduce a more sophisticated version of
PhenoPop that utilizes stochastic linear birth-death processes, which are widely used to model the
dynamics of growing cellular populations [20, 14, 6], as the underlying population dynamic model
powering the method. This new framework addresses several important practical limitations of the
original approach: First, our original framework assumed two fixed levels of observational noise;
here, the use of an underlying stochastic population dynamic model enables an improved model of
observational noise that more accurately captures the characteristics of HTDS data, and reflects the
observed dependence of noise amplitude on population size (see Figure 1). Second, this framework
allows for natural correlations in observation noise that are tailored to fit specific experimental plat-
forms. Rather than assuming that all HTDS observations are independent, we may consider data
generated using live-cell imaging techniques where the same cellular population is studied at multi-
ple time points, resulting in observational noise that is correlated in time. By using these stochastic
processes to model the underlying populations, we obtain an improved variance and correlation
structure that more accurately models the data and enables more accurate estimators with smaller
confidence intervals.

The rest of the paper is organized as follows. In Section 2, we review the existing PhenoPop
method and introduce the new estimation framework based on a stochastic birth-death process
model of the underlying population dynamics. We propose two distinct statistical approaches in
the new framework, aimed at analyzing data from endpoint vs. time series (e.g. live-cell imaging)
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HTDS. In Section 3, we conduct a comprehensive investigation of our newly proposed methods and
compare them with the PhenoPop method on both in silico and in vitro data. Finally, we summarize
the results of the investigation and discuss the advantages of the new framework in Section 4.

2 Data and model formulation

The central problem we address is to infer the presence of subpopulations with different drug
sensitivities using data on the drug response of bulk cellular populations. Here the term ‘bulk cellular
population’ refers to the aggregate of all subpopulations within the tumor. For each given drug,
we assume that the data is in the standard format of total cell counts at a specified collection of
time points T = {t1, . . . , tNT

} and drug concentrations D = {d1, . . . , dND
}. Furthermore, assume

that for each dose-time pair, NR independent experimental replicates are performed. We denote the
observed cell count of replicate r at dose d and time t by xt,d,r, and denote the total dataset by

x = {xt,d,r; t ∈ T , d ∈ D, r ∈ {1, . . . , NR}} .

2.1 PhenoPop for drug response deconvolution in cell populations

In [15], we introduced a statistical framework for identifying the subpopulation structure of a
heterogeneous tumor based on drug screen measurements of the total tumor population. Here, we
briefly review the statistical framework and the resulting HTDS deconvolution method (PhenoPop).
First, define the Hill equation with parameters (b, E,m) as

H(d; b, E,m) = b+
1− b

1 + (d/E)m
,

where b ∈ (0, 1) and E,m > 0. A homogeneous cell population treated continuously with drug dose
d is assumed to grow at exponential rate α+ log(H(d; b, E,m)) per unit time. If the population has
initial size C0, the population size at time t is given by

C0 exp [t (α+ log(H(d; b, E,m)))] .

Note that H(0; b, E,m) = 1 and H(d; b, E,m) → b as d → ∞. Therefore, the population grows at
exponential rate α in the absence of drug (d = 0) and at rate α+ log(b) < α for an arbitrarily large
drug dose (d → ∞). The parameter E represents the dose at which the drug has half the maximum
effect, and m represents the steepness of the dose-response curve d 7→ H(d; b, E,m).

For a heterogeneous cell population, each subpopulation is assumed to follow the aforementioned
growth model with subpopulation-specific parameters αi and (bi, Ei,mi). Assume there are S dis-
tinct subpopulations. Then, under drug dose d, the number of cells in population i at time t is given
by

fi(t, d) = fi(0) exp [t (αi + log(H(d; bi, Ei,mi)))] .

To ease notation, the dose-response function H(·; bi, Ei,mi) for population i will be denoted by Hi(·)
in what follows. The initial size of population i is fi(0) = npi, where n is the known initial total
population size and pi is the unknown initial fraction of population i. The total population size at
time t is then given by

f(t, d) =

S∑
i=1

fi(t, d) = n

S∑
i=1

pi exp [t (αi + log(Hi(d)))] .
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A statistical model for the observed data x is obtained by adding independent Gaussian noise to
the deterministic growth model prediction. The variance of the Gaussian noise is given by

σ2
hl(t, d) =

{
σ2
H , t ≥ TL and d ≤ DL

σ2
L, otherwise.

The variance is allowed to depend on time and dose, since at large time points and low doses, a larger
variance is expected due to larger cell counts [15]. Thus, the statistical model for the observation
xt,d,r is given by

xt,d,r = f(t, d) + Z(r)(t, d),

where {Z(r)(t, d); r ∈ {1, . . . , NR}} are independent random variables with the normal distribution
N(0, σ2

hl(t, d)). This model has the parameter set

θPP (S) = {(pi, αi, bi, Ei,mi), σH , σL; i ∈ {1, . . . , S}} . (1)

The initial fractions of the S subpopulations {pi : i ∈ {1, . . . S}} and the parameters {(αi, bi, Ei,mi) :
i ∈ {1, . . . , S}} governing the drug responses of the subpopulations are unknown. In addition, the
variance levels σ2

H and σ2
L are unknown. In practice, the precise values of the thresholds TL and DL

have minimal effect on the performance of PhenoPop. Therefore, TL and DL are treated as known.
The goal of the PhenoPop algorithm is to use the experimental data x to estimate the unknown

parameters θPP (S) and the number of subpopulations S. The parameters θPP (S) are estimated via
maximum likelihood estimation, where the likelihood function is given by

LPP (θPP (S)|x) =
NR∏
r=1

∏
(t,d)∈T ×D

1√
2πσ2

hl(t, d)
exp

[
− (xt,d,r − f(t, d))

2

2σ2
hl(t, d)

]
. (2)

The likelihood function describes the probability of observing the data x as a function of the pa-
rameter vector θPP (S) for a given number S of subpopulations. The number of subpopulations is
then estimated by comparing the negative log likelihood across candidate values of S via the elbow
method or Akaike/Bayesian Information criteria. For further information, we refer to [15].

Limitations. The assumption of the PhenoPop algorithm that the Gaussian observation noise
has two levels of variance is made for methodological simplicity and does not reflect an observed
bifurcation of experimental noise levels. It would be more natural to assume that the noise level
is directly proportional to the cell count, as indicated by the experimental data shown in Figure 1.
In addition, PhenoPop assumes that all observations are statistically independent. However, if cells
are counted using techniques such as live-cell imaging (time-lapse microscopy), then observations of
the same well at different time points will be positively correlated. Both of these limitations can be
addressed by modeling the cellular populations with stochastic processes, as we will now show.

2.2 Linear birth-death process

A natural extension of PhenoPop [15] is to use a stochatic linear birth-death process to model
the cell population dynamics. In the model, a cell in subpopulation i (type-i cell) divides into two
cells at rate βi ≥ 0 and dies at rate νi ≥ 0. This means that during a short time interval of length
∆t > 0, a type-i cell divides with probability βi∆t and dies with probability νi∆t. The death rate
of type-i cells is assumed dose-dependent according to

νi(d) = νi − log(Hi(d)) = νi − log

(
bi +

1− bi
1 + (d/Ei)ni

)
.
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The net birth rate λi(d)
.
= βi − νi(d) of type-i cells is then given by

λi(d) = (βi − νi) + log(Hi(d)).

Using the substitution αi = βi − νi, we see that the drug affects the net birth rate of the stochastic
model the same way it affects the growth rate αi of the deterministic population model of PhenoPop.
Note however that here, the drug is assumed to act via a cytotoxic mechanism, that is, higher doses
lead to higher death rates. Our framework can easily account for cytostatic effects, where higher
doses lead to lower cell division rates, but we focus on cytotoxic therapies for simplicity.

Let Xi(t, d) denote the number of cells in subpopulation i at time t under drug dose d. The
mean and variance of the subpopulation size at time t is given by

E[Xi(t, d)]
.
= npiµi(t, d) = npie

λi(d)t (3)

Var[Xi(t, d)]
.
= npiσ

2
i (t, d) = npi

βi + νi(d)

λi(d)

(
e2λi(d)t − eλi(d)t

)
. (4)

Next, denote the total population size at time t under drug dose d by

X(t, d) =

S∑
i=1

Xi(t, d),

with mean and variance

E[X(t, d)]
.
= µ(t, d) =

S∑
i=1

npiµi(t, d)

Var[X(t, d)]
.
= nσ2(t, d) = n

S∑
i=1

piσ
2
i (t, d).

Note that the mean size of the total population under the stochastic model equals the total population
size under the deterministic model of PhenoPop, again with the substitution αi = βi − νi. However,
the stochastic model introduces variability in the population dynamics at each time point arising
from the stochastic nature of cell division and cell death. To account for experimental measurement
error, we add independent Gaussian noise to each observation of the stochastic model. As a result,
the new statistical model for each observation is

xt,d,r = X(r)(t, d) + Zt,d,r, (5)

where X(r)(t, d) are independent copies of X(t, d) for r = 1, . . . , NR, and {Zt,d,r; d ∈ D, t ∈ T , r ∈
{1, . . . , NR}} are i.i.d. random variables with the normal distribution N(0, c2), independent of the
X(r)(t, d)’s. The model parameter set is now

θBD(S) = {(pi, βi, νi, bi, Ei,mi) , c; i ∈ {1, . . . , S}} . (6)

In comparison with PhenoPop, on the one hand, the growth rate parameter αi for each subpopulation
has been replaced by the birth and death rates βi and νi. On the other hand, there is only one
parameter c for the observation noise as opposed to four parameters {σH , σL, TL, DL} for PhenoPop.

Under the new statistical model, the likelihood function is

LBD (θBD(S)|x) =
NR∏
r=1

∏
d∈D

P
(
X(r)(t, d) + Zt,d,r ∈ (xt,d,r, xt,d,r +∆xt,d,r), t ∈ T |θBD(S)

)
(7)
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where we assume that observations at different doses and from distinct replicates are independent,
and (xt,d,r, xt,d,r+∆xt,d,r) represents an infinitesimally small interval around xt,d,r. We now discuss
two different forms this likelihood function can take, depending on whether the data collected at
different time points are correlated or not.

2.2.1 End-point experiments

For many common cell counting techniques, e.g. CellTiter-Glo [13], the experiment must be
stopped to perform the viability assay. In this case, observations at different time points are actually
observations of different cell populations exposed to drugs for different amounts of time, and can
therefore be treated as independent. Thus, the likelihood function can be written as

LEP (θBD(S)|x) =
NR∏
r=1

∏
d∈D

∏
t∈T

P
(
X(r)(t, d) + Zt,d,r ∈ (xt,d,r, xt,d,r +∆xt,d,r)|θBD(S)

)
.

We note that the distribution of X(r)(t, d) + Zt,d,r can be computed exactly. However, for faster
computation, one can approximate the distribution by a Gaussian distribution. To that end, consider
the centered and normalized process

Wn(t, d) =
1√
n

S∑
i=1

(
Xi(t, d)− npie

λi(d)t
)
. (8)

A straightforward application of the central limit theorem gives the following result.

Proposition 1 For t > 0 and d ≥ 0, Wn(t, d) ⇒ N(0, σ2(t, d)), as n → ∞.

Note that ‘⇒’ means converge in distribution. The proof of this result will not be provided since
it is a consequence of the more general Proposition 2.

Based on Proposition 1, we obtain the likelihood function

LEP (θBD(S)|x) =
NR∏
r=1

∏
(t,d)∈T ×D

1√
2π(nσ2(t, d) + c2)

exp

[
− (xt,d,r − µ(t, d))

2

2 (nσ2(t, d) + c2)

]
. (9)

The right-hand side of (9) depends on the model parameters θBD(S) via the mean and variance
functions µ(t, d) and σ2(t, d). As in [15], one can maximize this expression over the parameter
set θBD(S) to obtain maximum likelihood estimates of the model parameters. The optimization
problem for the new likelihood LEP is more difficult to solve than the corresponding problem for the
PhenoPop likelihood LPP in (2), since the variance of the data now depends on the dose-response
parameters for the subpopulations. However, the numerical optimization software we employ is able
to deal with this more complex dependence on the model parameters, see Appendix 5.1.

2.2.2 Live-cell imaging techniques

Live-cell imaging techniques enable the experimenter to obtain cell counts for the same population
across multiple different time points. For such datasets, observations of the same sample at different
time points will be positively correlated. In this case, we must compute the joint distribution

P
(
X(r)(t, d) + Zt,d,r ∈ (xt,d,r, xt,d,r +∆xt,d,r), t ∈ T |θBD(S)

)
(10)
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for each d ∈ D. To ease notation, we will temporarily suppress dependence on the dose.
We first note that

(
X(r)(t)

)
t≥0

is not a Markov process, since the total cell count at each time

point does not include information on the sizes of the individual subpopulations. Computing (10)
exactly requires summing over the possible sizes of the subpopulations at each time point, which
is computationally intensive. It is possible to speed up the computation using tools from hidden
Markov models, which reduces the computational complexity to Ω(mint∈T x2

t ). However, this is
still computationally infeasible since mint∈T xt ≈ 5000, resulting in a 1 second computation time to
evaluate a single likelihood. The computational details are provided in Appendix 5.5.

A more efficient approach is to use a Gaussian approximation. For the centered and normalized
process Wn(t) from (8), define the vector of observations across time points

Wn = {Wn(t); t ∈ T }.

By assuming that the set T , number of subpopulations S and initial proportion pi of each subtype
i are independent of the initial total cell count n, we derive the following approximation for Wn:

Proposition 2 As n → ∞,

Wn ⇒ Y = {Y (t); t ∈ T } ∼ N(0,Σ),

where the (i, j) element of the covariance matrix Σ is given by

Σi,j =

min(i,j)∑
ℓ=1

S∑
k=1

pke
(λkti−λktℓ)e(λktj−λktℓ)eλktℓ−1σ2

k(tℓ − tℓ−1).

The proof of this proposition is given in Appendix 5.3. In Appendix 5.4, we relax the assumption
that the initial proportion pi is independent of the initial total cell count, and a similar result still
follows. In future work, we plan to relax the assumption that T is independent of n.

We now reintroduce dose dependence. For each d ∈ D, define the NT × 1 vector

µ(d) = {µ(t, d); t ∈ T }

and the NT × NT identity matrix I. Based on Proposition 2, the following approximation is used
to compute the likelihood in expression (7):

x·,d,r = (xt,d,r; t ∈ T ) ≈ µ(d) +N(0, nΣ(d)) +N(0, c2I).

The likelihood function is thus given by

LLC (θBD(S)|x) =
NR∏
r=1

∏
d∈D

exp
[
− 1

2 (x·,d,r − µ(d))
⊤ (

nΣ(d) + c2I
)−1

(x·,d,r − µ(d))
]

(det (2π (nΣ(d) + c2I)))
1/2

. (11)

Note that the computational complexity of evaluating the above likelihood is independent of mint∈T xt,
alleviating the computational burden associated with an exact evaluation of the likelihood.

The difference between the likelihood function LEP for endpoint data and LLC for live-cell imag-
ing data lies in the structure of the covariance matrix for the observation vector x·,d,r. For LEP ,
observations made at different time points are assumed independent, meaning that the covariance
matrix is diagonal. For live-cell imaging data, the covariance matrix is not diagonal. Accurately
accounting for time correlations in the likelihood (11) can improve the accuracy of parameter esti-
mates, as we will discuss in Section 3. However, it does come at a cost, since it is obviously more
computationally expensive to calculate the inverses and determinants present in LLC . As a result,
the optimization of LLC can be more difficult than the optimization of LEP .
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2.2.3 Accuracy of Gaussian approximation

Proposition 2 states that the centered and normalized process Wn is approximately Gaussian
N(0,Σ(d)). However, in the derivation of the likelihood function (11), the distribution of the total cell
number X(d) = {X(t, d); t ∈ T } is approximated with a Gaussian distribution N(µ(d), nΣ(d)+c2I),
whose mean and variance increases linearly with n. To verify that the error in this approximation
is reasonable for large n, we will now compare the distributions of X(d) and N(µ(d), nΣ(d) + c2I)
using a well-known measure of the distance between two distributions.

The energy distance, introduced in [24], is a measure of the distance between probability distri-
butions, which has previously been shown to be related to Cramer’s distance [5, 24]. The energy
distance has been utilized in several statistical tests [2] and is easily computed for multivariate
distributions. For probability distributions F and G on Rd, we define their energy distance as

D(F,G) =
√
2E[∥X − Y ∥]− E[∥X −X ′∥]− E[∥Y − Y ′∥], (12)

where all random variables are independent, X and X ′, and Y and Y ′, are distributed according to
F and G respectively, and ∥ · ∥ denotes the Euclidean norm.

Since it is unrealistic to compute the equation (12) directly, we approximate the true energy dis-
tance by computing the empirical energy distance. For two sets of i.i.d. realization {X1, · · · , Xk}, Xi ∼
F, {Y1, · · · , Ym}, Yi ∼ G, one can obtain the empirical energy distance by

DE(F,G) =

√√√√ 2

km

k∑
i=1

m∑
j=1

∥Xi − Yj∥ −
1

k2

k∑
i=1

k∑
j=1

∥Xi −Xj∥ −
1

m2

m∑
i=1

m∑
j=1

∥Yi − Yj∥. (13)

Denote the distribution of X(d) by FBD and the normal distribution N(µ(d), nΣ(d) + c2I) by
FN . Let {Xi}ki=1 be k i.i.d. samples from the distribution FBD, and let {Yi}mi=1 be m i.i.d samples
from FN . We can then compute DE(FBD, FN ) using (13). In Figure 2, we plot DE(FBD, FN ) with
varying initial cell counts. The plot shows a monotonic decrease in the empirical energy distance
as a function of the initial cell count, which indicates that the distribution of X(d) is reasonably
approximated by a Gaussian distribution for large values of the initial cell count.

3 Numerical results

In this section, we use our new statistical methods to analyze both simulated (in silico) and
experimental (in vitro) live cell imaging data. We apply both the simpler end-point estimation
procedure (“end-points method”), based on the likelihood LEP in (9), and the more complex live cell
imaging procedure (“live cell image method”), based on the likelihood LLC in (11). The performance
of the new methods is compared with the existing PhenoPop algorithm. In all analyses it is assumed
that the observation at time t = 0 represents the known starting population size, i.e. x0,d,r = n.

3.1 Application to simulated data

We first apply our estimation methods to simulated (in silico) data. In Appendix 5.1, we provide
details of the data generation and the parameter estimation for these in silico experiments.

3.1.1 Examples with 2 subpopulations

For illustrative purposes, we begin with a case study involving an artificial tumor with two
subpopulations. Data is generated using a parameter vector θBD(2) selected uniformly at random
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from the ranges in Table 1. We assume that one tumor subpopulation is drug-sensitive and the
other is drug-resistant. These subpopulations are indicated by the subscripts s and r, respectively.

ps pr βs,r νs,r bs,r Es Er ms,r c
Range [0.3, 0.5] 1− ps [0, 1] [β − 0.1, β] [0.8, 0.9] [0.05, 0.1] [0.75, 2.5] [1.5, 5] [0, 10]

Table 1: Range for parameter generation of experiments with 2 subpopulations

As in [15], we focus on inferring the initial proportion ps of sensitive cells, as well as the GR50 dose
for each subpopulation. TheGR50 is the dose at which the drug has half the maximal effect on the cell
death rate, as is further explained in Appendix 5.1. Informally, the GR50 dose for each subpopulation
is a measure of the subpopulation’s sensitivity to the drug. To assess the uncertainty in the parameter
estimation, we compute maximum likelihood estimates for 100 bootstrapped datasets, as described
in Appendix 5.1. The results of the case study are shown in Figure 3, where we see that both the
live cell image method and the end-points method are able to recover the initial proportion ps of
the sensitive population and the GR50 dose for each subpopulation accurately.

We next evaluate the performance of the estimation methods across 30 simulated datasets, where
each parameter vector θiBD(2) for i = 1, . . . , 30 is sampled from the ranges in Table 1. We furthermore
compare the performance of the two new methods with the performance of PhenoPop. The error in
the estimation of each parameter {ps, GRs, GRr} is measured by considering the absolute log ratio
between the point estimate x̂ and the true value x for the parameter,

Er(x̂;x) =
∣∣∣log (x

x̂

)∣∣∣ . (14)

This metric is chosen to address the logarithmic scale associated with the GR50 dose.
In Figure 4, a box plot of the estimation errors for the three methods across the 30 datasets

is presented. Note that all three parameters {ps, GRs, GRr} are estimated accurately using all
three methods. In addition, the error in estimating the sensitive GR50 is larger than the error in
estimating the resistant GR50 for all three methods. One possible reason is that the initial proportion
of sensitive cells is ps ∈ [0.3, 0.5], so the experimental data contains less information on the sensitive
subpopulation. Later experimental results will lend further support to this hypothesis.

We next compare the estimation precision of the three methods. Specifically, we will compare the
widths of the 95% confidence intervals for the three parameters between the three different methods.
Since GR50 values vary significantly across the 30 generated datasets, we normalize the CI width for
each method by dividing it by the sum of the CI widths of all three methods for the same dataset.

In Figure 5, the normalized CIs for {ps, GRs, GRr} are compared between the three methods
across the 30 datasets. First, note that for the initial proportion ps, the live cell image method has
significantly narrower CIs than the other two methods. Additionally, there is a small but statistically
significant difference between the CI widths for the end-points method and the PhenoPop method.
For the sensitive GR50 index, the live cell image method again has significantly narrower confidence
intervals than the other two methods, and the end-points method has significantly narrower confi-
dence intervals than the PhenoPop method. The results are similar for the resistant GR50 index.
It is worth mentioning that for at least 28 out of the 30 datasets, the true parameters were located
within the confidence intervals for all three methods.

In summary, the end-points and live cell image methods provide a significant improvement in
estimator precision over the PhenoPop method for all three parameters, and furthermore, the live
cell image method has the best precision out of all three methods.
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3.1.2 Illustrative example with 3 subpopulations

In this section, we examine a case study involving an artificial tumor with 3 subpopulations.
The subpopulations are assumed sensitive, moderate, and resistant with respect to the drug, and
they are denoted using the subscripts s,m, and r, respectively. Data is generated using a parameter
vector θBD(3) selected uniformly at random from the ranges in Table 2. Those parameters not listed
in Table 2 are selected as in Table 1.

ps, pm pr Es Em Er

Range [0.167, 0.333] 1− ps − pm [0.0313, 0.0625] [0.25, 0.375] [1.25, 2.5]

Table 2: modified range of parameters

Figure 6 shows estimation results for the initial proportions ps, pm, pr and the GR50 doses of the
three subpopulations. Note that the end-points and live cell image methods provide more accurate
estimates of the initial proportion for each subpopulation than PhenoPop. Furthermore, when
estimating the GR50 for each subpopulation, the inter-quartile range (IQR) of 100 bootstrapped
estimates covers the true GR50 value for all three methods. However, the estimation for the GR50 of
the moderate subpopulation with Em = 0.3558 is less precise than for the other two subpopulations,
i.e., the IQR is wider. This is likely due to confounding between the moderate subpopulation and
the other two subpopulations.

It is worth noting that for the 3 subpopulation example, the number of datapoints is the same
as for the 2 subpopulation examples, since only total cell counts are observed at each time point.
Furthermore, when computing maximum likelihood estimates for 3 subpopulations, we solved each
optimization problem the same number of times as for 2 subpopulations. Overall, our conclusion
is that all three methods can provide reasonable estimates of the true initial proportion and the
GR50 of each subpopulation for 3 subpopulations. However, achieving equivalent levels of accuracy
and precision as for 2 subpopulations may require a greater computational effort or the collection of
more data, given that the 3 subpopulation model is more complex and has more parameters.

3.1.3 Performance in challenging conditions

In the previous work [15], three conditions under which the performance of PhenoPop deterio-
rates were identified: the case of a large observation noise, a small initial fraction of resistant cells,
and similar drug-sensitivity of both subpopulations. We now investigate the performance of the end-
points and live cell image methods in these conditions and compare to the performance of PhenoPop.

Large observation noise:

We first consider the case of large observation noise. Note that in the PhenoPop method, the only
source of variability in the statistical model is the additive Gaussian noise. In the end-points and
live cell image methods, however, there is an underlying stochastic process governing the population
dynamics with an added Gaussian noise term. Thus, whereas PhenoPop deals with high levels of
noise by adjusting the variance of the Gaussian term, the two new methods may also try to adjust
the subpopulation growth and dose response parameters. This can complicate estimation with the
two new methods compared to PhenoPop from data with high levels of noise.

We begin by considering a case study where the noise level is set to c = 500, and other parameters
are chosen uniformly at random according to Table 1. The results are shown in Figure 7. For each
method, the initial proportion ps is estimated with good accuracy, and the IQR of 100 bootstrap
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estimates for GRs covers the true value. However, compared with the estimation in Figure 3, the
estimation precision of the end-points method and live cell image method has degraded. In addition,
observe that the IQRs of the three methods have about the same width, which implies the precision
advantage observed in Section 3.1.1 disappears under a very large observation noise.

We next evaluate estimation performance across 30 simulated datasets for each noise value c ∈
C = {100, 200, 300, 400, 500}. Figure 8 shows the mean absolute log ratio across the 30 datasets
for each parameter {ps, GRs, GRr}, each noise level and each estimation method. As expected, the
estimation error increases for all three methods as a function of the observation noise. In fact, all
three methods show a similar response to increasing levels of noise.

We next compare the widths of 95% confidence intervals for the three parameters under noise
levels c = 100 and c = 500, using 30 datasets for each noise level. The results are shown in Figures 9
and 10. For c = 100 (Figure 9), the precision advantage of the live cell image method over the other
two methods is less pronounced than in Figure 5, where c ∈ [0, 10], especially for the resistant GR50.
For c = 500 (Figure 10), the advantage disappears for the sensitive GR50. Importantly, however,
Figure 9 shows that the precision advantage of the live cell method is statistically significant for all
three parameters {ps, GRs, GRr} for an observation noise as large as 10% of the initial cell count. It
should be noted that the standard deviation of observation noise reported from common automated
and semi-automated cell counting techniques ranges from 1− 15% [4, 19].

Small resistant subpopulation:

For the datasets investigated in Section 3.1.1, the initial proportion ps of sensitive cells was
constrained to be in [0.3, 0.5]. We now consider the setting of a small resistant subpopulation. We
begin with a case study in Figure 11, where ps is assigned to 0.99, and other parameters are sampled
according to Table 1. For both the sensitive and resistant subpopulations, the IQR for the GR50 dose
under PhenoPop does not cover the true value, whereas the IQR for the live cell image method does.
The IQR for the end-points method covers the true resistant GR50, but only barely covers the true
sensitive GR50. In addition, the end-points and live cell image methods have significantly narrower
IQRs than PhenoPop. Finally, note that the estimate of the initial proportion of resistant cells is
much more accurate for the end-points and live cell image methods. Thus, while PhenoPop provides
a reasonable estimate of the sensitive GR50, which is the dominant subpopulation in this scenario,
inferring the population composition and the GR50 for the minority resistant subpopulation requires
the use of the more powerful end-points and live cell image methods.

In Figure 12, we show the mean absolute log ratio for each parameter {ps, GRs, GRr} across
100 datasets for each ps ∈ {0.85, 0.9, 0.95, 0.99}. Note that both the end-points and live cell image
methods have significantly smaller errors than PhenoPop, and that the difference becomes more
pronounced as ps increases. Also note that the error in estimating the sensitive GR50 is smaller
than for the resistant GR50, opposite to the results of Figure 4, where ps ∈ [0.3, 0.5]. This further
reinforces the hypothesis stated in Section 3.1.1 that the initial proportion of a subpopulation im-
pacts the precision of estimating the GR50 for that subpopulation.

Similar subpopulation sensitivity:

For the datasets investigated in Section 3.1.1, the GR50’s for the two subpopulations were as-
sumed to be significantly different. We now consider the case where the two GR50’s are simi-
lar. Figure 13 shows the results of a case study where Es ∈ [0.05, 0.1], Er = 0.15, and other
parameters are selected according to Table 1. Note that all three methods successfully recover
the parameters {ps, GRs, GRr}, where the IQRs for the live cell image method are significantly
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narrower than for PhenoPop. For brevity, we omit the plots that depict the statistical com-
parison of confidence interval widths. In Figure 14, we perform estimation across 80 datasets
for each Er ∈ {0.15, 0.3, 0.45, 0.85, 2.0}, with other parameters sampled from Table 1, including
Es ∈ [0.05, 0.1]. As expected, the accuracy in estimating the parameters {ps, GRs, GRr} improves
as the sensitive GR50 and resistant GR50 become more different. We note however that the live cell
image method has the lowest mean error when estimating the parameters, with all three methods
showing similar degradation as the two subpopulations become more phenotypically similar.

3.2 Application to in vitro data

We conclude by evaluating the performance of our two new methods on in vitro experimental
data. The data consists of different mixtures of imatinib sensitive and resistant Ba/F3 cells. In the
experiments, cells were exposed to 11 different concentrations of imatinib and they were observed
at 14 different time points. For each drug concentration, 14 independent replicates were performed
starting with roughly 1000 cells. Cell counts were obtained using a live-cell imaging technique. Four
datasets were produced with different starting ratios between sensitive and resistant cells: 1 : 1,
1 : 2, 2 : 1 and 4 : 1. These datasets are denoted BF11, BF12, BF21 and BF41, respectively. See
[15] for further details on the experimental methods for generating the data.

In [15], we showed that the PhenoPop method can accurately identify the initial proportion of
sensitive cells and both subpopulations’ GR50 indices from the datasets. Here, we apply the two
new estimation methods to the datasets and compare how well the models fit the data. Model
fits are assessed using the Akaike Information Criterion (AIC), which for a statistical model with
parameters θ and likelihood function L(θ|x) is given by

AIC = −2 log(L(θ∗|x)) + 2|θ∗|.

Here, θ∗ is the maximum likelihood esitmate and |v| is the cardinality of the vector v. When
comparing the three methods, the one with the lowest AIC is preferred.

DATA PP(AIC) EP(AIC) LC(AIC)
BF11 28502 26300 25294
BF12 30485 26816 27311
BF21 27928 24064 24182
BF41 28912 24066 24574

Table 3: AIC scores of three methods: PhenoPop method(PP), end-points method(EP), and live
cell image method(LC) for the four experimental datasets BF11, BF12, BF21 and BF41.

Results are shown in Table 3. The AIC values of the end-points method (EP) and live cell image
method (LC) are clearly lower than for the PhenoPop method (PP), indicating that the two new
methods are superior for fitting the experimental datasets. As discussed in Section 2, the newly
proposed methods have more sophisticated variance structures, which is likely the reason why they
are able to provide a better fit to the datasets. Finally, we note that the end-points method has
superior AIC scores to the live cell image method for three out of four of the experimental conditions.
Therefore, it is not clear which of these two methods is more appropriate for fitting these datasets.
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4 Discussion

In this work, we have proposed two methods for analyzing data from heterogeneous cell mix-
tures. In particular, we are interested in the setting where a mixture of at least two distinct cell
subpopulations is exposed to a given drug at various concentrations. We then use the dose response
curve of the composite population to learn about the two subpopulations. In particular, we are
interested in estimates of the different subpopulations’ initial prevalence and also their distinct dose
response curves. The challenge of this problem is that we do not observe direct information about the
subpopulations, but instead only information about the dose response of the composite population.

This work is an extension of our prior work in [15]. The novelty of the current work is that
we introduce a more realistic variance structure to our statistical model. We create a new variance
structure by building our model using linear birth-death processes. In particular, we model each
subpopulation as a linear birth-death process with a unique birth rate and a unique dose-dependent
death rate. The dose dependence of the death rate is captured using a 3-parameter Hill function.
Our observed process is then a sum of independent birth-death processes. Our goal is then to
estimate the initial proportion of the subpopulations, as well as their birth rates and the parameters
governing the dose response in their death rates.

Counting cells in in vitro experiments can generally be conducted in one of two fashions. In
the first approach, cell numbers can only be estimated at the end of the experiment because the
mechanism for estimating cell numbers requires killing the cells. In the second approach, cells are
counted via live imaging techniques and the cells can be counted at multiple time points. When
dealing with multiple time point data from cells collected via the first approach we can assume
that observations at different time points are independent because they are the result of different
experiments. However, when dealing with data from the second approach we can no longer make
that assumption because the cell counts at different time points are from the same population and
there is a positive correlation between those measurements. As a result of this differing structure we
develop two methods, one that assumes independent observations at each time point, and one that
assumes all the time points for a given dose are correlated. Evaluating the likelihood function under
the second approach is not trivial at first glance since it requires evaluating the likelihood function
of a sample path of a non-Markovian process (the total cell count). We are able to get around this
difficulty by using a central limit theorem argument to approximate the exact likelihood function
with a Gaussian likelihood.

In this work we compared three different methods: PhenoPop method from [15], end-points
method (assumes measurements are independent in time), and live cell image method (assumes
time correlations). We first performed this comparison using simulated data. We generated our
data by simulating linear birth-death processes and then adding independent Gaussian noise terms
to the simulations. We mainly focused on a mixture of two supbopulations, and we were interested
in estimating three features of the mixed population: initial proportion of sensitive cells, GR50 of
the sensitive cells, and GR50 of the resistant cells. Our first test for the simulated data was to look
at confidence interval widths as a measure of estimator precision. In this study, we found that the
live cell image method had significantly narrower confidence intervals than the other methods for
estimating all three features. We next investigated the performance of our three methods in the
setting of small resistant subpopulations, where less than 15% of initial cells are resistant. We found
that in this small resistant fraction setting the live cell image method provides a significant improve-
ment in accuracy over the original PhenoPop method. Furthermore, this improvement increases as
the initial fraction of resistant cells goes to zero. We also compared the performance of the methods
for simulations with increased levels of additive noise and subpopulations with similar dose response
curves. In the scenario of subpopulations with similar dose response curves, we found that the live
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cell image method has the lowest mean error among the three methods. For increasing additive
noise, all three methods perform similarly in terms of estimation accuracy. However, the live cell
image method maintains its precision advantage over the other two methods for an observation noise
of 10% of the initial cell count, while the advantage disappears for a 50% noise level.

We finally compared the three methods using in vitro data. In particular, we used data from
our previous work [15] that considered different seeding mixtures of imatinib sensitive and resistant
tumor cells. We then used all three methods to fit this data and used AIC as a model selection tool.
We found that live cell image and end-points methods had significantly better scores than PhenoPop
for all four initial mixtures studied. Interestingly the end-points method had lower AIC scores for
three out of the four mixtures studied even though this data was generated using live-cell imaging
techniques.

In our statistical model, there are several important features of cell biology that we have left
out. For example, one type of cell may transition to another type of cell via a phenotypic switching
mechanism (see e.g., [10, 11]). We believe that our current methods should be able to handle this
type of switching with little modification since the underlying stochastic model will be very similar,
i.e., a multi-type branching process. Another way the cell types can interact is via competition for
scarce resources as the populations approach their carrying capacity. These types of interactions will
require new statistical models since the underlying stochastic processes will no longer be linear birth-
death processes. Another interesting direction of future work is to quantify the limits of when we can
identify distinct subpopulations. For example, if the resistant subpopulation is present at fraction
ϵ, what observation set would allow us to identify the presence of this subpopulation? Finally our
stochastic model assumes that the time between cell divisions is exponential, but this is of course a
great simplifcation. At the cost of a more complex model it would be possible to incorporate states
for the different stages of the cell cycle. We leave this open as a question for future investigation.

5 Appendix

5.1 Details of the numerical experiments

We define some of the basic algorithms and formulas used in the numerical results.

Generation of simulated data

To simulate data, the parameter set θBD(S) (as defined in (6)) is selected uniformly at random
from a subset of the parameter space given in Table 1. Note that one can obtain the generating
parameter set θPP (S) (defined in (1))from θBD(S) directly by setting αi = βi−νi for each subpopula-
tion. Based on the parameter set θBD(S), we simulated data is generated according to the statistical
model specified in equation (5). Note that data is collected from the simulation continuously during
the course of the experiment to replicate the live-cell imaging experiments.

Maximum likelihood estimation (MLE)

The maximum likelihood estimation was conducted by minimizing the negative log-likelihood,
subject to constraints that were placed on the range of each parameter. The optimization process
to find the minimum point was based on the MATLAB Optimization Toolbox [17] function fmincon
with sequential quadratic programming (sqp) solver. Due to the non-convexity of the negative
log-likelihood function, we performed the optimization starting from 100 uniformly sampled initial
points within a feasible region. The feasible region sets limitations on the parameters based on prior
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knowledge about them. For simulation studies, the feasible region is given by Table 4, and for the
in vitro data the feasible region is specified by Table 5. Among all the resulting local optima, the
parameter set with the lowest negative log-likelihood as the estimated result.

Bootstrapping

In the simulated experiments, bootstrapping is used to quantify the uncertainty in the MLE
estimator. In particular, 20 independent replicates of data measured at 11 concentration values D
and 13 time points T are generated from the parameters θBD(S) at the beginning of the experiment.
Then bootstrapping is employed to randomly re-sample 13 replicates from those 20 replicates with
replacement 100 times. With 13 randomly sampled replicates it is possible to create an MLE for the
parameter set θBD. Since there are now 100 MLE’s for θBD it is possible to construct confidence
intervals as well by using the empirical quantiles of the estimators.

GR50

Our goal is to estimate the number of subpopulations, initial mixture proportion pi, and the
drug sensitivity of each cellular subpopulation. The GR50, introduced in [12], is a summary metric
of drug-sensitivity. It is defined as the concentration at which a drug’s effect on cell growth is half
the observed effect. Note that at the maximum concentration level, the drug may not reach its
theoretical maximum effect.

In the context of the model, the GR50 can be defined as below. Denote the maximum dosage
applied as dm, and define the half-maximum effect for subpopulation i as ri = (νi(dm) + νi(0))/2.
The explicit formula for the GR50 is then for subpopulation i:

GR50 = Ei

(
1− eνi−ri

eνi−ri − bi

)1/mi

When S = 2, we will denote the higher GR50 as either the resistant GR50 or GRr, and the lower
GR50 as either the sensitive GR50 or GRs. In this setting, parameters for the sensitive subpopulation
and the resistant subpopulation, respectively, are denoted by subscripts s and r, e.g. Es and Er.

Initial conditions.

The initial number of cells is set as n = 1000, and the initial size of each subpopulation is set by
rounding npi to the nearest integer for subpopulation i. The following drug concentration levels are
used

D = [0, 0.0313, 0.0625, 0.1250, 0.2500, 0.3750, 0.5, 1.25, 2.5, 3.75, 5]

and we collect the cell count data at the time points:

T = [0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36].

For these specific concentration levels and time points, we have chosen the threshold values of
TL = 21 and DL = 1 in the PhenoPop model.

Optimization feasible region

When performing numerical optimization the parameters are restricted to a physically realistic
region. Unless otherwise noted, the optimization was performed using 100 uniformly sampled initial
points from Table 4.
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ps pr βs,r νs,r bs,r Es,r ms,r σL, σH c
Range [0, 0.5] 1− ps [0, 1] [β − 0.1, β] [0.27, 1] [0, 10] [0, 10] [0, 2500] [0, 10]

Table 4: Feasible interval for each parameter.

5.2 Estimation on in vitro experimental data

When solving the maximum likelihood optimization problems for the in vitro data of Section 3.2,
the optimization feasible region was chosen to be the same as the feasible region used in paper [15]
for the Ba/F3 data, i.e.,

p β ν b E m σL, σH c
Range [0, 1] [0, 1] [β − 0.06, β] [0.878, 1] [0, 50] [0.001, 20] [0, 2500] [0, 100].

Table 5: Optimization Feasible region

We solved each optimization problem 500 times starting from randomly chosen initial points.

5.3 Proof of proposition 2

Given a set of time points T = {t1, · · · , tk}, we first show for any tj , 1 ≤ j ≤ k that:

Wn(tj) ⇒ Y (tj) =

j∑
ℓ=1

S∑
g=1

√
pge

λg(tj−tℓ)eλgtℓ−1/2Vg(tℓ − tℓ−1) as n → ∞

Where Vg(t) is a random variable that has normal distribution N(0, σ2
g(t)) and the σ2

g(t) here is
the variance of subpopulation g linear birth-death process defined in equation (4). Following an
argument from Either and Kurtz [7], we have the decomposition

Wn(tj) =
1√
n

S∑
g=1

j∑
ℓ=1

eλg(tj−tℓ)Xg(tℓ)− eλg(tj−tℓ−1)Xg(tℓ−1)

=

j∑
ℓ=1

S∑
g=1

1√
n
eλg(tj−tℓ)

[
Xg(tℓ)− eλg(tℓ−tℓ−1)Xg(tℓ−1)

]

=

j∑
ℓ=1

S∑
g=1

eλg(tj−tℓ)
(pgn

n

)1/2
(
Xg(tℓ−1)

pgn

)1/2

Xg(tℓ−1)
−1/2

Xg(tℓ−1)∑
m=1

[
Bg(tℓ − tℓ−1)− eλg(tℓ−tℓ−1)

]

By assuming the initial proportion pg for sub-type g is independent of n and using the Law of large
numbers, as n → ∞, we have(

Xg(tℓ−1)

pgn

)
→ E[Bg(tℓ−1)] = eλgtℓ−1 a.s.

By assuming that the maximum number of time point NT and the length of time interval ti − tj for
any i ≥ j are both bounded and not depend on n, the Law of large numbers also assures that for
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any ℓ ∈ {1, · · · , NT } the Xg(tℓ−1) will diverge to infinity when n → ∞. Therefore, we may apply
the Central Limit Theorem to the following term:

Xg(tℓ−1)
−1/2

Xg(tℓ−1)∑
m=1

[
Bg(tℓ − tℓ−1)− eλg(tℓ−tℓ−1)

]
⇒ Vg(tℓ − tℓ−1) ∼ N(0, σ2

g(tℓ − tℓ−1)).

Thus, we conclude that

Wn(tj) ⇒
j∑

ℓ=1

S∑
g=1

√
pge

λg(tj−tℓ)eλgtℓ−1/2Vg(tℓ − tℓ−1) as n → ∞

Next we show that the random vector W converges to the random vector Y, which has the multi-
variate normal distribution. We can obtain the distribution for Y from the independence between
Vi(tℓ − tℓ−1) and Vj(tm − tm−1) for all i, j ∈ {1, · · · , Ng}, ℓ,m ∈ {1, · · · , k}:

Y = [Y (t1), · · · , Y (tk)] ∼ N(0,Σ)

where

Σi,j =

min(i,j)∑
ℓ=1

S∑
g=1

pge
λg(ti−tℓ)eλg(tj−tℓ)eλgtℓ−1σ2

k(tℓ − tℓ−1)

Then we use the Cramer Wold device, given a constant vector a ∈ Rk < ∞, we have

⟨a,W⟩ =
k∑

j=1

aj

j∑
ℓ=1

S∑
g=1

√
pge

λg(tj−tℓ)

(
Xg(tℓ−1)

pgn

)1/2

Xg(tℓ−1)
−1/2

Xg(tℓ−1)∑
m=1

[
Bm(tℓ − tℓ−1)− eλg(tℓ−tℓ−1)

]

⇒
k∑

j=1

aj

j∑
ℓ=1

S∑
g=1

√
pge

λg(tj−tℓ)eλgtℓ−1/2Vi(tℓ − tℓ−1)

=

k∑
j=1

ajY (tj) = ⟨a,Y⟩

Thus, we show that W ⇒ Y.

5.4 Proof of proposition 2 if initial proportions can go to 0 with n

In proving Proposition 2, we made the assumption that the initial proportions pi for i = 1, · · · , S
are not dependent on the initial cell count n. In this sub-section, we aim to relax this assumption
and demonstrate a similar result. Note we will assume that all other inputs are still independent of
n, i.e., S and T .

In particular, we will allow pi to depend on n, and allow for lim supn pin < ∞. We denote two
sets of subpopulations F and I, where

F = {i ∈ {1, · · · , S}; lim sup
n→∞

pin < ∞}

I = {i ∈ {1, · · · , S}; lim
n→∞

pin = ∞}

Due to
∑S

i=1 pi = 1, and S being fixed with n, we know that the set I must not be an empty set.
Then following a similar pattern as the proof of the Proposition 2, we derive:
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Wn(tj) =

j∑
ℓ=1

S∑
g=1

eλg(tj−tℓ)
(pgn

n

)1/2
(
Xg(tℓ−1)

pgn

)1/2

Xg(tℓ−1)
−1/2

Xg(tℓ−1)∑
m=1

[
Bg(tℓ − tℓ−1)− eλg(tℓ−tℓ−1)

]

=

j∑
ℓ=1

∑
g∈I

eλg(tj−tℓ)
(pgn

n

)1/2
(
Xg(tℓ−1)

pgn

)1/2

Xg(tℓ−1)
−1/2

Xg(tℓ−1)∑
m=1

[
Bg(tℓ − tℓ−1)− eλg(tℓ−tℓ−1)

]

+

j∑
ℓ=1

∑
g∈F

eλg(tj−tℓ)
(pgn

n

)1/2
(
Xg(tℓ−1)

pgn

)1/2

Xg(tℓ−1)
−1/2

Xg(tℓ−1)∑
m=1

[
Bg(tℓ − tℓ−1)− eλg(tℓ−tℓ−1)

]

Next, we may consider these two double sums separately. For g ∈ I, because the pgn diverges to
infinity as n → ∞, the first double sum will converge to the same limit we established in Proposition
2. For g ∈ F , pgn will stay bounded. Therefore, in the second double sum, we will have

pgn
n converge

to 0 as n → ∞, which makes the second double sum vanish. In conclusion, we have

Wn(tj) ⇒
j∑

ℓ=1

∑
g∈I

√
pge

λg(tj−tℓ)eλgtℓ−1/2Vg(tℓ − tℓ−1) as n → ∞.

Note that this convergence result will lead to the same realization in practice, i.e., we will define the
covariance by summing over all subtypes. This is because in practice we only have n < ∞ and we
cannot actually assume subpopulations have zero contribution to the covariance.

5.5 Exact path likelihood computation

Here we show how to calculate the exact likelihood of a sample path observation of the total
cell count of multiple heterogeneous birth-death processes. While we do not use this approach for
likelihood evaluation in the current manuscript we report it here to show that it is not feasible.

We first consider the following joint probability of a homogeneous linear birth-death process:

P(X(t1) = x1, · · · , X(tk) = xk|X(t0) = n, θBD(2)) =

Nt∏
k=1

P(X(tk) = xk|X(tk−1) = xk−1, θBD(2)).

For ease of notation define the transition probability pi,j(tk − tk−1) = P(X(tk) = j|X(tk−1) =
i, θBD(2)). It is important to note that evaluating pi,j(tk−tk−1) is the most computation-demanding
task when evaluating the joint probability. As a result, we mainly consider the number of evaluations
of this transition probability. The analytical form for this transition probability was derived in [1]:

pi,j(t) =

min(i,j)∑
k=0

(
i

k

)(
i+ j − k − 1

i− 1

)
a(t)i−kb(t)j−k(1− a(t)− b(t))k, (15)

where

a(t) =
ν(e(β−ν)t − 1)

βe(β−ν)t − ν
, b(t) =

β(e(β−ν)t − 1)

βe(β−ν)t − ν
.

Note that numerical evaluation (15) will be computationally expensive due to the presence of multiple
factorial terms. We use a Gosper refined version of the Stirling formula [8] to approximate these
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factorials

n! ≈

√(
2n+

1

3

)
πnne−n.

We find that this approximation leads to good performance in our examples. It is thus straightfor-
ward to evaluate the path likelihood for the case of a homogeneous linear birth-death process.

If we instead have observations of a sum of birth-death processes, the evaluation of the path
likelihood is much more difficult. In particular, the sum of the birth-death processes is no longer a
Markov process and we must therefore sum over possible values of our unobserved subpopulations.
Specifically, if we have two subpopulations we can formulate the equation (10), as

P (X(r)(t) = xt, t ∈ T |θBD(2))

=

x1∑
i1=0

· · ·
xNT∑

iNT
=0

P (X1(t1) = i1, X2(t1) = x1 − i1, . . . , X1(tNT
) = iNT

, X2(tNT
) = xNT

− iNT
|θBD(2))

=

x1∑
i1=0

· · ·
xNT∑

iNT
=0

P (X1(t1) = i1, X1(t2) = i2, · · · , X1(tNT
) = iNT

|θBD(2))

× P (X2(t1) = x1 − i1, X2(t2) = x2 − i2, · · · , X2(tNT
) = xNT

− iNT
|θBD(2)) .

(16)

Note that the last equality is due to the assumption that subpopulation grow independently, and
we can decompose the joint probability of mixture cell count into a summation of multiple joint
probabilities of the homogeneous linear birth-death process. It is not hard to see that if we naively
evaluate the above sum, the number of computations of the homogeneous joint probability is around
Ω(mint∈τ x

NT
t ). Since many examples have NT ≈ 10, and xt ≈ 100 this is clearly an infeasible

approach.
In order to avoid the exponential dependence on the number of time points, one option is to

use techniques from Hidden Markov Models (HMM). The main assumption of HMM is the Markov
property of the hidden process, and that the hidden process relates to the observable process ac-
cording to a specified distribution B. Recall that the time series of observed total cell count is given
by {X(ti); i ∈ T } and denote the time series of the subpopulations as {(X1(ti), . . . , XS(ti); i ∈ T }.
Then {X(ti); i ∈ T } in the HMM is the observable process, and {(X1(ti), . . . , XS(ti)); i ∈ T } is the
hidden Markov process due to the Markov property of the linear birth-death process. Notice that
the relationship between the hidden process {(X1(ti), . . . , XS(ti)); i ∈ T } and the observable process
{X(ti); i ∈ T } can be defined as

P(X(t) = x|(X1(t), . . . , XS(t)) = (x1, . . . , xS)) =

{
1 if x1 + . . .+ xS = x

0 o.w.

We can translate the live-cell imaging experiment into an HMM and significantly improve the
computational complexity of evaluating the exact likelihood function (7). In particular, we can use
popular HMM techniques, such as the forward-backward procedure to reduce the total number of
transition probability, i.e., equation (15), computation to Θ(H2NT ) for one replicate at one dosage
level, where H is the number of hidden states. In particular, we need to calculate the H by H
transition matrix for every time point, and if we assume the length of time intervals are identical, we
can reduce the upper bound to Θ(H2). However, the number of hidden states depends on both the
maximum total number of cells observed at each time point x and the number of subpopulations S.
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As we will now show, this is unfortunately not a sufficient reduction in computational complexity.
In particular, assume we observe x total cells. In that case, the number of hidden states is given
by

(
x−1
S−1

)
, and assuming that x ≫ S, we have that

(
x−1
S−1

)
= Θ

(
xS−1

)
as x → ∞. With only two

subpopulations this results in computational complexity of Θ(x2), and in many experiments, we
might have x ≈ 105 leading to an extremely high computational burden. If S = 3 we would end up
with the far worse computational complexity of Θ(x4).

In conclusion, using a naive approach to compute the joint probability of mixture cell count

would require Ω
(
mint∈T xNT

t

)
many computations of transition probability, which is clearly infea-

sible when many cell counts are in the thousands with over 10 observed time points. We also discuss
an HMM based approach to evaluating the likelihood that results in a significant reduction in the
computational burden for evaluating this likelihood. In particular, with this approach we can reduce
the number of computations of the transition probability to Ω

(
mint∈T x2

t

)
. Unfortunately we might

have mint∈T xt ≈ 5000. Note that this will be the complexity for evaluating the likelihood of one
single replicate at a single dose, so taking into account that we can have more than 10 different doses,
with more than 10 replicates at each dose we see that unfortunately, this HMM approach is compu-
tationally infeasible. In addition, this HMM approach will have significantly worse computational
complexity after we include observation noise terms and/or more than 2 subpopulations.

5.6 Data and code availability

All data and code used for running experiments, model fitting, and plotting is available on
a GitHub repository at https://github.com/chenyuwu233/PhenoPop_stochastic. The required
Matlab version is Matlab R2022a or newer.
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Figure 1: One to one mixtures of imatinib-sensitive and resistant Ba/F3 cells are counted at 14
different time points under 11 different concentrations of imatinib. Error bars, based on 14 replicates
with outliers removed, depict the sample standard deviation, which increase with larger cell counts.
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Figure 2: Empirical energy distance between linear birth-death simulated data and multivariate
normal distributed data with respect to varying initial cell count: [10, 20, 50, 100, 500, 1000]. The
data consists of NR = 100, 000 replicates and 7 time points T = [1, 2, 3, 4, 5, 6, 7]. No drug effect is
assumed. The parameters used to generate the data are p1 = 0.4629, β1 = 0.9058, ν1 = 0.8101, p2 =
0.5371, β2 = 0.2785, ν2 = 0.2300. The box plot represents the values from 10 distinct datasets.
The figure demonstrates that the distribution of the linear birth-death process converges to the
multivariate normal distribution with mean and covariance given by Proposition 2 as the initial cell
count increases.
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Figure 3: Estimation of the initial proportion and GR50 for 2 subpopulations using the end-points
method and the live cell image method on simulated data. The parameter vector θBD(2) and obser-
vation noise c used in this example are ps = 0.4856, βs = 0.1163, νs = 0.0176, bs = 0.8262, Es =
0.0674,ms = 4.5404, pr = 0.5144, βr = 0.4624, νr = 0.3978, br = 0.8062, Er = 1.5776,mr =
4.2002, c = 1.2103. The pie chart illustrates the average of all bootstrap estimates for the ini-
tial proportion, while the box plot summarizes the distribution of the estimates for the GR50’s. The
vertical dashed lines in the box plot correspond to the true GR50 values employed to generate the
data, while the vertical solid lines indicate the concentration levels at which the data were collected.
Each color in the plot represents a distinct subpopulation: orange for sensitive and blue for resis-
tant. The shaded areas in the box plot indicate the concentration intervals where the true GR50’s
are located, and the colored dots mark outliers in the estimation of the GR50 for each subpopulation,
with red for sensitive and blue for resistant. This example demonstrates that our newly proposed
models can accurately recover the initial proportion and GR50 values with high precision.
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Figure 4: Absolute log ratio accuracy of three estimators {p̂s, ĜRs, ĜRr} using the PhenoPop, end-
points and live cell image methods. The results are summarized based on 30 different simulated
datasets. This figure demonstrates that there are no significant differences in estimation accuracy
among these three methods when the true parameters fall within the range described in Table 1.
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(a) Initial proportion (b) Sensitive GR50 (c) Resistant GR50

Figure 5: Comparison of the normalized CI widths of three estimators {p̂s, ĜRs, ĜRr} esti-
mated from three different methods. The y-axis represents the normalized CI width. The box
plot summarizes the results across 30 different simulated datasets. The significance bar indi-
cates the p-values derived from the Wilcoxon rank-sum test, with significance levels denoted as
∗ ∗ ∗ ≤ 0.001 ≤ ∗∗ ≤ 0.01 ≤ ∗ ≤ 0.05. This figure demonstrates that the newly proposed models
exhibit significant advantages in estimation precision, with the live cell image method demonstrating
the highest level of precision.
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Figure 6: Estimation of the initial proportion and GR50 for 3 subpopulations using the three es-
timation methods. The parameter vector θBD(3) and the observation noise in this example are
ps = 0.2135, βs = 0.3214, νs = 0.2773, bs = 0.8782, Es = 0.0344,ms = 2.5998, pm = 0.2718, βm =
0.7334, νm = 0.6776, bm = 0.8506, Em = 0.3558,mm = 4.6055, pr = 0.5147, βr = 0.0683, νr =
0.0253, br = 0.8614, Er = 1.5764,mr = 4.4706, c = 9.5209. The pie chart illustrates the average of
all bootstrap estimates for the initial proportion, while the box plot summarizes the distribution of
all estimates for the GR50’s. The vertical dashed lines in the box plot correspond to the true GR50

values employed to generate the data, while the vertical solid lines indicate the concentration levels
at which the data were collected. Each color in the plot represents a distinct subpopulation: orange
for sensitive, blue for moderate, and yellow for resistant. The shaded areas in the box plot indicate
the concentration intervals where the true GR50’s are located, and the colored dots mark outliers in
the estimation of the GR50 for each subpopulation, with red for sensitive, blue for moderate, and
yellow for resistant.
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Figure 7: An illustrative example under the high observation noise scenario, i.e. c = 500. The pa-
rameter vector θBD(2) and the observation noise in this example are ps = 0.3690, βs = 0.4380, νs =
0.3422, bs = 0.8398, Es = 0.0813,ms = 3.9647, pr = 0.6310, βr = 0.5320, νr = 0.4767, br =
0.8674, Er = 1.9793,mr = 4.8357, c = 500. Results are presented as in Figure 3. This example
demonstrates that all three methods are capable of recovering the initial proportion and GR50 even
under the high observation noise scenario.
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Figure 8: Estimation error of {p̂s, ĜRs, ĜRr} with respect to varying standard deviation of obser-
vation noise. The metric of estimation error is the mean absolute log ratio of estimates across 30
simulated datasets, each generated from a distinct parameter set. The value of the observation noise
parameter, c, in these 30 generating parameter sets was assigned to 5 different values in the set
C = {100, 200, 300, 400, 500} to generate the line plot. Three different line plots correspond to three
different methods, as indicated by the figure legends. This figure demonstrates that the estimations
of the three methods deteriorate as the level of observation noise increases.
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(a) Initial proportion (b) Sensitive GR50 (c) Resistant GR50

Figure 9: Comparison of the normalized CI widths of the three estimators {p̂s, ĜRs, ĜRr} using the
three different estimation methods, when the observation noise parameter is set to c = 100. The
y-axis represents the normalized CI width. The box plot summarizes the results across 30 different
datasets. The significance bar indicates the p-values derived from the Wilcoxon rank-sum test, with
significance levels denoted as ∗ ∗ ∗ ≤ 0.001 ≤ ∗∗ ≤ 0.01 ≤ ∗ ≤ 0.05. This figure demonstrates
the advantages of the live cell image method in estimation precision are preserved even when the
standard deviation of observation noise is 10% of the initial cell count.
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(a) Initial proportion (b) Sensitive GR50 (c) Resistant GR50

Figure 10: Comparison of the normalized CI widths of three estimators {p̂s, ĜRs, ĜRr} using the
three different estimation methods, when the observation noise parameter is set to c = 500. Results
are presented as in Figure 9. This figure demonstrates that the advantages of the live cell image
method in estimation precision become less significant as the standard deviation of observation noise
increases to 50% of the initial cell count.
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Figure 11: An illustrative example under the unbalanced initial proportion scenario, i.e. ps = 0.99.
The parameter vector θBD(2) and the observation noise in this example are ps = 0.9900, βs =
0.4301, νs = 0.4199, bs = 0.8644, Es = 0.0768,ms = 4.3186, pr = 0.0100, βr = 0.1458, νr =
0.1258, br = 0.8565, Er = 0.5348,mr = 3.7518, c = 4.8400. Results are presented as in Figure
3. This example demonstrates that our newly proposed model can accurately estimate parameters
even when the initial proportion of the resistant subpopulation is negligible, while the PhenoPop
method fails to estimate the parameters accurately.
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Figure 12: Estimation error of {p̂s, ĜRs, ĜRr} with respect to varying resistant initial proportions.
The metric of estimation error is the mean absolute log ratio across 100 simulated datasets, each
generated from a distinct parameter set. The value of ps in these 100 generating parameter sets was
assigned to 4 different values in the set P = {0.85, 0.90, 0.95, 0.99} to generate the line plot. Three
different line plots correspond to three different methods, as indicated by the figure legends. This
figure demonstrates the advantages of estimation accuracy provided by the newly proposed methods
when the initial proportion of the resistant subpopulation decreases toward 0.
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Figure 13: An illustrative example under the similar subpopulation sensitivity scenario. The pa-
rameter vector θBD(2) and the observation noise in this example are ps = 0.3263, βs = 0.8896, νs =
0.8215, bs = 0.8820, Es = 0.0654,ms = 3.8539, pr = 0.6737, βr = 0.0925, νr = 0.0661, br =
0.8171, Er = 0.1500,mr = 3.6015, c = 7.6660. Results are presented as in Figure 3. This example
demonstrates that all three methods are capable of recovering the initial proportion and GR50 even
when two subpopulations have similar drug sensitivity, while the newly proposed methods exhibit
superior estimation precision compared to the PhenoPop method.
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Figure 14: Estimation error of {p̂s, ĜRs, ĜRr} with respect to varying similarity between subpop-
ulation drug sensitivities. The metric of estimation error is the mean absolute log ratio across 80
simulated datasets, each generated from a distinct parameter set. The value of Er in these 80 gen-
erating parameter sets was assigned to 5 different values in the set E = {0.15, 0.3, 0.45, 0.85, 2} to
generate the line plot. Three different line plots correspond to three different methods, as indicated
by the figure legends. This figure demonstrates that the estimation accuracy of the three methods
improves as the discrepancy of drug sensitivity between the two subpopulations increases, with the
live cell image method exhibiting the smallest average error among the three methods.
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