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Research in Context: 

Systematic review: The authors reviewed the literature using traditional (e.g., PubMed) 

sources. AD atrophy is heterogenous at the individual level throughout the disease course – 

neuroanatomical normative modelling is a potential quantitative technique to capture this. 

Relevant literature is cited. 

Interpretation: Neuroanatomical normative modelling can generate personalised brain 

atrophy markers which can map changes over time in AD. We illustrate that 

neurodegeneration rates are heterogenous over the disease course and reveal what cannot be 

seen using traditional group average statistics. This is consistent with previous AD and 

normative modelling research. 

Future directions: Further validation of our personalised brain atrophy marker could be 

conducted in community-based samples, that comprise patients with both earlier and late-

stage AD (to capture the full disease course). Future studies should assess if these 

individualised markers are sensitive to (1) capturing the deceleration of atrophy in disease-

modifying clinical trials (2) being implemented as a decision-making tool in clinical settings. 

 

Abstract: 

INTRODUCTION: Neuroanatomical normative modelling can capture individual variability 

in Alzheimer's Disease (AD). We used neuroanatomical normative modelling to track 

individuals’ disease progression in people with mild cognitive impairment (MCI) and patients 

with AD. 

METHODS: Cortical thickness and subcortical volume neuroanatomical normative models 

were generated using healthy controls (n~58k). These models were used to calculate regional 

Z-scores in 4361 T1-weighted MRI time-series scans. Regions with Z-scores <-1.96 were 

classified as outliers and mapped on the brain, and also summarised by total outlier count 

(tOC). 

RESULTS: Rate of change in tOC increased in AD and in people with MCI who converted to 

AD and correlated with multiple non-imaging markers. Moreover, a higher annual rate of 

change in tOC increased the risk of MCI progression to AD. Brain Z-score maps showed that 

the hippocampus had the highest rate of atrophy change.  

CONCLUSIONS: Individual-level atrophy rates can be tracked by using regional outlier 

maps and tOC. 
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1 Background 

 

Alzheimer's Disease (AD) interacts with an individual’s distinct genetic and environmental 

influences, leading to a unique pattern of brain atrophy that changes dynamically as the 

disease progresses.1–4 This heterogeneity impacts individual differences in the time of 

symptom onset and the severity and progression of symptoms.3 While well-known clinically, 

this heterogeneity is often overlooked in research studies and clinical trials, creating 

challenges in the clinic (e.g., when planning treatment and care) and complicating clinical 

trial recruitment.5–10 Therefore, there is a need to measure disease heterogeneity at the 

individual level.11  

 

Neuroimaging provides insights into brain structure in vivo, rendering it an ideal tool for 

studying AD, yet most studies focus on group-average or subtype effects, overlooking the 

individual variability between patients.12,13 To overcome this reliance on group averages, 

neuroanatomical normative modelling is an emerging technique which captures individual-

level variability in the brain. 14,15 Based on the well-established normative modelling concept, 

as per height and weight growth charts for children 16, the neuroanatomical version builds 

separate normative models per brain region, based on a large independent reference dataset. 

A new individual can then be compared to these normative models to ascertain whether their 

brain volume or cortical thickness is lesser or greater than would be expected for someone of 

their age and sex. This deviation from normality can be quantified using Z-scores, of which 

brain-wide maps of Z-scores can be generated, providing a unique fingerprint of brain health 

relative to the norm for individual patients.3 Therefore, a great advantage of neuroanatomical 

normative modelling is that it can detect if a brain has been adversely affected by 

Alzheimer’s in multiple regions. Moreover, as neuroanatomical normative models compare 

single patient scans to an independent dataset, the patient can be considered individually, 

providing a natural fit to personalised healthcare and precision medicine. 

 

Recent applications of neuroanatomical normative modelling have generated personalised 

maps of individual patients' atrophy patterns. Using neuroimaging data from a large AD 

research cohort (Alzheimer’s Disease Neuroimaging Initiative (ADNI)) we have previously 

shown that cortical thinning patterns vary from patient to patient.17 Here, individualised 

brain-wide Z-score maps revealed heterogenous atrophy patterns in the AD group, 
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additionally cortical thinning heterogeneity in people with MCI was predictive of conversion 

to AD.  Furthermore, relationships between cortical thickness heterogeneity and cognitive 

function, amyloid-beta, phospho-tau, and ApoE genotype were observed. Similarly, atrophy 

patterns were shown to be related to disease severity, presenting phenotypes and 

comorbidities in amyloid-positive AD patients in a study using real-world memory clinic 

data.18 These studies corroborate the heterogeneity of brain atrophy in AD and provide 

evidence that neuroanatomical normative modelling can be used to explore anatomical-

clinical correlations at an individual level. However, the insights from these studies were 

based only on cross-sectional neuroimaging data. To fully understand the potential of 

neuroimaging biomarkers for clinical use and to comprehend causal mechanisms, 

longitudinal data is necessary. This will aid in understanding how patterns of atrophy change 

over time when monitoring disease progression at an individual level. 

 

In this work we applied the  neuroanatomical normative modelling technique to quantify 

regional changes in neuroanatomical variation across the AD disease course. We used an 

emerging neuroanatomical normative modelling technique, which can map brain ageing at 

high spatial precision. Moreover, this model can be optimised with the inclusion of controls 

scanned at the same site of the clinical cohort (adaptive learning).14 We assessed whether 

markers of regional brain atrophy variation could track disease progression in people with 

MCI and patients with AD. We also explored how the rate of change in atrophy related to 

other common imaging and non-imaging AD markers. 

 

Methods 

 

2.1 Participants and patient dataset 

Participants were derived from two datasets: (1) a reference dataset comprised of healthy 

people across the human lifespan, and (2) a clinical target dataset which included people with 

AD or MCI in addition to age-matched cognitively normal controls. The reference dataset 

was made by combining data on healthy people from multiple publicly available sources 19, 

including Open Access Series of Imaging Studies (OASIS), Adolescent Brain Cognitive 

Development (ABCD) study and UK Biobank (UKB), totalling 58,836 from 82 sites. Data 

collection, data processing and participant demographics of the reference dataset were 

described previously14. The clinical data used in the preparation of this article was obtained 
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from the ADNI database; http://adni.loni.usc.edu. Inclusion criteria were the availability of 

T1-weighted MRI scans (acquired using 1.5T and 3T MRI scanners), which had at least 12 

weeks apart between scanning visits. Here data had a maximum range of 9.5 years (115 

months). Furthermore, AD participants had to meet the National Institute of Neurological and 

Communicative Disorders and Stroke–AD and Related Disorders Association criteria for 

probable AD. MCI participants reported a subjective memory concern either autonomously 

or via an informant or clinician, participants had no significant levels of impairment in other 

cognitive domains. Further to this criterion, we labelled participants with MCI as either those 

that continued to exhibit MCI as ‘MCI stable’, or conversely as those who progressed to 

being diagnosed with AD in the study period (115 months) as ‘MCI progressive’.  

 

2.1.1 Standard Protocol Approvals, Registrations, and Patient Consents 

Written informed consent was obtained from all participants before experimental procedures 

were performed. Approval was received by an ethical standards committee for ADNI study 

data use. 

 

2.2 MRI acquisition  

For the clinical dataset, T1-weighted images were acquired at multiple sites using 1.5T or 3T 

MRI scanners. Detailed MRI protocols for T1-weighted sequences are available online 

(http://adni.loni.usc.edu/methods/documents/mri-protocols/). The quality of raw scans was 

evaluated at Mayo Clinic for technical problems and significant motion artefacts and clinical 

abnormalities. 20 

 

2.3 Estimation of cortical thickness and subcortical volumes 

T1-weighted scans from both the reference and the clinical dataset underwent processing 

using automated FreeSurfer  to extract the cortical thickness of 148 cortical regions and grey 

matter tissue volume of 20 subcortical volumes from the Destrieux parcellations.21,22  For 

both datasets a mix of version 5 and 6 of FreeSurfer was used. Quality control of FreeSurfer 

processing for the reference dataset relied on both manual and automated filtering, as 

described previously.14 For the clinical dataset, quality control was based on a visual review 

of each cortical region performed at UCSF  
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(https://adni.bitbucket.io/reference/docs/UCSFFSX51/UCSF%20FreeSurfer%20Methods%2

0and%20QC_OFFICIAL.pdf). 

 

2.4 Neuroanatomical Normative modelling  

A non-Gaussian Bayesian Regression model was implemented, which accounts for the non-

Gaussian nature of MRI data and adjusts for unwanted noise from scanning acquisition across 

multiple sites.23 This model was trained on multi-site data to generate normative models per 

region using the covariates age and sex and site. Here, by training on 58,836 scans from 

datasets across 82 sites, the model produces a stable distribution of estimates across the entire 

lifespan – details of this process have been previously outlined.14,23 Next, these estimates 

were conditioned to our specific context, using an adapted transfer learning approach.19 The 

parameters of the reference normative model were recalibrated to the longitudinal ADNI 

dataset using 70% of cognitively normal healthy controls per ADNI site, where 70% was 

used to give stable estimates of the transferred model parameters, given that many of the scan 

sites in ADNI have small sample sizes. The remaining 30% of healthy controls, plus people 

with MCI and patients with AD were used for subsequent analysis, with Z-scores generated 

per region for each scan. The modelling steps and processed reference dataset are openly 

available: https://github.com/predictive-clinical-neuroscience/braincharts.  

 

2.4.1 Individualised brain markers 

Outliers in terms of low cortical thickness were identified for each region, defined as Z < -

1.96 (corresponding to the bottom 2.5% of the normative distribution of cortical thickness). 

The number of outliers were summed across 168 regions for each participant, to give a total 

outlier count (tOC) across regions. Brain surface mapping was conducted using the Destrieux 

(148 cortical regions) and aseg (19 subcortical regions) atlas via the R package ggseg. All 

statistical analyses were implemented in R version 3.6.2. 

 

2.5 Disease course analysis 

2.5.1 Yearly timepoint assessment 

For these analysis, longitudinal data were subset into three time-points representing a cross-

sectional measure of baseline, 12-month and 24-month of study visits. Here study visits 

between 36 – 115 months was excluded because of a low number of study participants at each 
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time point due to study attrition. Brain outlier maps for each diagnostic group were mapped 

across the three time points. This enabled visualisation of the extent to which patterns of 

outlier regions overlap or are distinct across three years.  

 

2.5.2 Rate of change in tOC and regional Z-scores 

To assess longitudinal atrophy, we took two related approaches. First, we calculated the rate 

of change in tOC as the difference in baseline and final tOC (up to 115 months). A linear 

mixed-effect model was used to test for differences in the rate of change in tOC between 

diagnostic groups, whilst adjusting for age, sex and predicted Alzheimer’s disease 

progression (AC score,  which represents predicted years since amyloid PET positivity).24,25  

Second, we calculated the rate of change in Z-score per region. Here, we calculated the 

difference between the baseline and final Z-score, then we defined a new ‘normative model’ 

based on the distribution of rates of change in scans of cognitively unimpaired controls (n = 

610). We then classified individuals as ‘rate of Z-score change outliers’, if their rate of 

change was more than two standard deviations away from the mean in the controls (which 

was Z = -0.0009). Then, the neuroanatomical patterns of the ‘rate of Z-score change outliers’ 

were mapped onto brain surfaces for visualisation purposes. As a final step, to provide more 

detail, we focused on the region of the highest rate of change (in this case, the left 

hippocampus), and compared patients with AD who were ‘rate of Z-score change outliers’ 

with those that were not, based on their total Mini-Mental State Examination (MMSE) score 

and CSF Aβ 1-42 and p-tau181 values. 

 

2.5.3 Growth models 

Multilevel growth models were used to predict the trajectory of tOC over time using the lme4 

package in R. Here, a linear mixed effects model was generated, with a random effect of 

participant (including slope and intercept), and a fixed-effects interaction between time and 

group, while covarying for age and sex. 

 

2.5.4 MCI to AD conversion analysis 

Follow-up diagnosis status data, up to three years from the baseline scan, were obtained from 

647 people with MCI. We ran a survival analysis using Cox proportional hazards regression 

to assess whether tOC related to the risk of converting from MCI to AD in 3 years (MCI 

progressive n=75). This included assessing 1-year change in tOC (i.e., the difference in tOC 
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between baseline and month 12) as a predictor variable to explore how the change in tOC is 

associated with disease progression. We also compared the 1-year change in tOC between 

MCI stable and MCI progressive groups. 

 

2.6 Relationship to other disease markers 

2.6.1 Alzheimer’s staging score  

An Alzheimer’s disease staging score based, representing predicted years since amyloid PET 

positivity, was calculated based on latent-time disease-progression modelling of longitudinal 

amyloid PET SUVR and clinical scores (CDR-SB, ADAS-cog, MMSE).24,26 This disease 

staging score (AC score) has previously been shown to better stage patients along the 

Alzheimer’s continuum than conventionally used staging measures (e.g., early or late MCI) 24 

– this continuous staged measure was used as a covariate to adjust for disease stage when 

exploring how tOC relates to cognitive, amyloid and tau AD disease markers.  

 

2.6.2 Cognitive markers 

Linear regression adjusting for age, sex and years of education examined the relationship 

between tOC rate of change and cognitive composite scores (memory using ADNI MEM or 

executive function using ADNI EF).34 We then assessed the interaction between the 

diagnostic group and cognitive composite score. Total MMSE scores were only used in 

disease conversion and regional rate of change comparisons. The collection date of the 

cognitive variables were matched (within a 12-week range) to the date of TI-MRI acquisition. 

 

2.6.3 Amyloid and Tau markers  

Florbetapir and flortaucipir were used to index cerebral amyloid and tau deposition. For tau, a 

summary SUVR was generated by taking the mean across all brain regions and dividing by 

inferior cerebellar GM (reference region) as detailed previously 

(https://adni.bitbucket.io/reference/docs/UCBERKELEYAV1451/UCBERKELEY_AV1451

_Methods_Aug2018.pdf). This summary SUVR which was matched to 133 longitudinal T1-

weighted MRI scans (total of 107 participants). For amyloid, summary SUVR was based on 

the whole cerebellum reference region for  667 cases with matching T1-weighted MRI scans 

(total of 489 participants). Details of the PET processing methods are provided by Landau 

et.al, UC Berkeley, and can be found on the ADNI database; http://adni.loni.usc.edu.27 Both 

measures were matched from the PET scanning date to the MRI T1-weighted date scan date 
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in a 12-week range. CSF amyloid-beta (Aβ 1-42) and phospho-tau 181 were also employed 

as amyloid and tau markers in this study, which were matched (within a 12-week range) to 

the date of TI-MRI acquisition. CSF amyloid had a total of 858 cases matched (n=294), and 

CSF phospho-tau 181 had a total of 856 cases (n= 293). A linear regression adjusting for age 

and sex examined the relationship between the rate of change in tOC and amyloid and tau 

markers. We assessed the interaction between the diagnostic group and amyloid and tau 

markers in a subsequent regression. 

 

2.6.4 Genetic markers 

ApoE ε4 status was determined by either being ApoE ε4 homozygous, ApoE ε4 heterozygous 

or ApoE ε4 non-carrier. Group differences in the rate of change in tOC were assessed as a 

linear regression, adjusting for age and sex. A Polygenic Risk Score (PRS) was previously 

generated for all ADNI participants with genome-wide data by Altmann and colleagues.28 

Effects for APOE-ε2 and APOE-ε4 were manually added using effect sizes. A p-value 

inclusion cut-off was used which included SNPs passing genome-wide suggestive 

significance (P = 1.0×10-05). The relationship between PRS and rate of change in tOC was 

examined using linear regression, adjusting for age, sex and ApoE ε4 status. We assessed the 

interaction between the diagnostic group and PRS in a subsequent regression.  

 

3 Results 

3.1 Participants 

A total of 1,492 participants and 4,361 scans from across 62 ADNI sites were included 

(Table 1). Here 70% of controls were removed from the clinical dataset and were used as a 

calibration dataset to adapt the normative model to the new sites. These were randomly 

selected and stratified across sites and gender to make sure all sites and genders are present in 

the adaptation set. The final clinical dataset amounted to a total of 1181 participants with a 

total of 3362 scans.  

 

 Controls MCI AD Total 
Statistical 

differences 

n 245 647 245 1181 - 

total of scans 610 2095 595 3362 - 
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Median (IQR) of 

scans per 

participant 

3(2) 4(3) 3(2) 4(3) - 

Follow-up time in 

time series data  

(months) mean ± 

sd 

37.4 ± 

25.8 

30.6 ± 

24.8 

13.9 ± 

12.01 
29.3 ± 24.5 

F(2, 603)= 34.4, 

P=9.6 ×10-15 

Sex (M:F) 110:159 289:236 106:100 505:495 
X2= 14.32, 

P=7.6×10-04 

Baseline age mean 

± sd & range 

 

74.8 ± 6.4 

(57-93) 

73.1±7.7 

(55-92) 

74.4 ± 8.1 

(55-91) 

73.8 ± 7.5 

(55-93) 

F(2, 997)=4.78, 

P=0.008 

Baseline AC score 

(years)† mean ± sd 

& range 

-4.55 ± 5.8 

(-15.3 – 

9.9) 

7.23 ± 3.8 

(-3.5 – 

15.8) 

13.3 ± 2.1 

(2.5-16.5) 

4.37 ± 8.52 

(-15.3 – 

16.5) 

F(2, 

607)=868.4, 

P=2.2×10-16 

MMSE score 

mean ± sd total & 

range 

28.95 ± 

1.31 

(22-30) 

27.78 ± 

2.03 

(19-30) 

22.05 ± 

3.77 

(5-30) 

26.89 ± 

3.47 

(5-30) 

F(2, 

845)=486.8, 

P=2.2×10-16 

Baseline ADNI 

memory mean ± 

sd total & range 

1.23 ± 

0.62 

(-0.3- 3.3) 

0.39 ± 0.7 

(-1.6-2.4) 

- 0.9 ± 06 

(-2.87-

0.39) 

0.35 ± 1.01 

(-2.8-3.3) 

F(2, 

891)=604.8, 

P=2.2×10-16 

Baseline ADNI 

executive function 

mean ± sd total & 

range 

1.06 ± 

0.81 

(-0.9-2.9) 

0.36 ± 

0.87 

(-1.9-2.9) 

-0.99 ± 

1.06 

(-3.0-2.6) 

0.28 ± 1.14 

(-3.0-2.9) 

F(2, 

886)=279.6, 

P=2.2×10-16 

Baseline CSF  Aβ 

1-42 (pg/mL) 

mean ± sd total & 

range 

335.46 ± 

386.9 

(90.7 - 

2099) 

337.89 ± 

440 

(82.5-

2501) 

200 ± 

215.6 

(80.4-

1286) 

300.83 ± 

385.52 

(80.4-

2501) 

F(2, 291)=3.69, 

P=0.03 

Baseline CSF p-

tau (pg/mL) mean 

± sd total & range 

33.07 ± 

18.5 

(8.8-98.5) 

38.19 ± 

23.0 

(8.53-

121) 

58.02 ± 

34.3 

(12.8-

188) 

42.39 ± 

27.38 

(8.53-188) 

F(2, 290)=20.1, 

P=6.6×10-09 

Baseline amyloid 

PET SUVR mean 

± sd total & range 

1.12 ± 

0.23 

(0.85-2.69) 

1.19 ± 

0.22 

(0.18-

0.84) 

1.44 ± 

0.19 

(0.93-

1.82) 

1.21 ± 0.24 

(0.18-2.26) 

F(2, 486)=61.0, 

P=2.2×10-16 

Baseline tau PET 

SUVR mean ± sd 

total & range 

1.50 ± 

0.18 

(1.15-2.04) 

1.56 ± 

0.23 

(1.21-

2.41) 

1.84 ± 

0.42 

(1.48-

2.75) 

1.56 ± 0.25 

(1.15-2.75) 

F(2, 104)=10.6, 

P=6.2×10-05 

ApoE ε4 non-

carrier 

(proportion in 

group sample) 

69.0% 57.1% 31.2% 55.3% 
**X2= 90.41, 

P=2.2×10-16 

 

Table 1. Demographics of the clinical sample (ADNI), Key: * adjusting for age, sex and 

ApoE ε4, ** X2 of ApoE ε4 status. † Disease stage score represents predicted years since 

amyloid PET positivity 
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3.2 The change in neuroanatomical outliers between baseline and 24 

months 

The proportion of cortical thickness and subcortical volume outliers defined in each group 

differed in regional patterns between Alzheimer's, MCI and control groups, across 24 months 

(Fig. 1). Here the proportion of outliers in each diagnostic group was mapped cross-

sectionally at yearly time points over 24 months. In patients with AD, we found that the 

proportion of outliers differed with each yearly time point. Here, the region with the highest 

proportion of outliers is consistently the left hippocampus, with 47% at baseline, 60% at 12 

months and 72% at 24 months. Yet, the total number of cortical and subcortical outliers 

fluctuated with no particular trend; at baseline there were 134 cortical regions and 12 

subcortical regions with outliers, to 128 and 9 at 12 months and 131 and 11 at 24 months 

respectively.  
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Fig 1. Mapped are the percentage of outliers present in each diagnostic group at 1st – 3rd year of visits, 

for both cortical (left) and subcortical (right) areas. The colour bar reflects outlier proportion from 

2.5% to 100% (thresholding of Z-scores). Zero percent (grey) represents that no participants have 

outliers in those respective regions. 
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3.3 Higher rate of atrophy in brain regions in patients with AD 

In subcortical areas the highest proportion of rate of change was in the left hippocampus 

which was 52%, therefore 48% of AD patients did not follow this trend of increased atrophy 

here (Fig. 2). When comparing patients with AD that did or did not have heightened atrophy 

rates there was no difference in total MMSE score, AC score, p-tau [P>0.05]. There was a 

difference in CSF Aβ 1-42 [β = 80.37, P = 0.0003], here patients with AD that had 

heightened atrophy rate in the left hippocampus had higher CSF Aβ 1-42 levels, as (mean = 

209.98, sd = 224.87) compared to those did not (mean = 129.61, sd = 30.02). 

Fig 2. Mapped is the proportion of participants with a high rate of atrophy in cortical (left) and 

subcortical (right) areas. 

 

3.4 tOC increases with time in AD and in people with MCI who convert to 

AD 

Growth models showed an increase in tOC over time was observed in the AD group (β = 

0.38, P = 6.8×10-12) and in the MCI group  (β = 0.01, P = 0.002) but not in controls (β = -

0.001, P = 0.79) (Fig 3, panels A;B). Furthermore, linear regression revealed that there was a   

significant increase in the rate of tOC change over time that differed between groups overall 

when adjusting for baseline AC score, baseline age and sex [F(5, 382) = 7.07, P = 2.4×10-06]. 

Pairwise comparisons (Tukey post-hoc) were significant [P<=0.001] in AD versus controls 

and AD versus MCI, however, this was not significant in controls versus MCI [P= 0.93], with 

the rate of change in tOC being highest in the AD group (mean increase = 5.43, SD=14.19), 

intermediate in the MCI group (mean=0.31, SD= 5.54) and lowest in controls (mean = 0.06, 
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SD= 1.88) (Fig 3, panel C). Further to these diagnostic groups, the severity of dementia 

reflected by the AC score was significantly associated with the rate of change in tOC across 

the whole sample, when adjusting for age and sex (β = 0.22, P = 3.7×10-05). 

 

 

Fig. 3. Change in total outlier count according to diagnostic group (a) Spaghetti plot of 

tOC according to diagnostic group. Each line represents an individual participants trajectory 

of tOC scores over the scanning period (b) Linear growth model for each diagnostic group (c) 

Density plot of the rate of change in tOC in diagnostic groups. Across the whole sample the 

rate of change ranged from -73.18 to 56.29, mean = 1.16, SD= 7.6. 
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Growth models showed that an increase in tOC over time was observed in both the MCI 

progressive group (β = 0.10, P = 4.8×10-05) and the MCI stable group to a lesser extent (β = 

0.08, P = 0.002) (Fig 4, panels A;B). Furthermore, linear regression showed that the MCI 

progressive group had a significantly higher rate of tOC change over time (mean= 4.54, SD= 

11.48) when compared to the MCI stable group (mean = 0.3, SD= 5.54),  when adjusting for 

age, sex and AC score [F(4, 221) = 3.63, P = 0.006] (Fig 4, panel C). There was a difference 

in the rate of change in the first 12 months between the MCI stable and progressive groups (β 

= 4.144, P = 4.76×10-07).  survival analysis indicated that for every increase in 3 points of 

tOC in the first 12 months, the risk of progression from MCI to AD between 12 months and 

36 months (in the following two years) increased by 23% (HR = 1.07, 95% CI [1.03,1.08], P 

= 1.4×10-04) (Fig 4, panel D). 

 

 

 

Fig. 4. Change in total outlier count (tOC) according to disease conversion status (a) 

Spaghetti plot of tOC in either MCI stable or MCI progressive. Each line represents an 

individual change in tOC over the scanning period (b) Linear growth model for MCI stable or 

MCI progressive (c) The density spread of the rate of change in tOC in people with MCI. 

Stable MCI median = 0, MCI progressive = 3 (d) Kaplan–Meier plot of MCI progression to 
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AD between 12 and 36 months: the two lines represent a median split of tOC, with <3 classed 

as low tOC (blue), and ≥3 classed as high tOC (red). Crosses indicate censoring points (i.e., 

time from baseline at last diagnosis assessment). Filled colour represent the 95% confidence 

intervals. 

 

3.5 Rate of change in tOC correlates with cognitive and amyloid and tau 

markers  

The rate of change of tOC across the whole sample was significantly associated with poorer 

memory performance [β = -1.64, P = 1.1x10-07] and executive function [β = -1.34, P = 

8.5x10-07] in separate linear regression models, controlling for age and sex. To check for the 

association between the diagnostic group and the two cognitive performance variables, a 

group-by-memory or group-by-executive function interaction was modelled but was not 

significant (P>0.05) (Fig.5, panel A;B). However, the rate of change of tOC across the entire 

sample was not associated with either a reduction in CSF Aβ 1-42 [β = -0.34, P = 0.92] or an 

increase in amyloid PET summary SUVR [β = -0.0, P = 0.82] when adjusting for age and sex, 

and neither were influenced by diagnostic group-tOC interaction (P>0.05) (Fig.5, panel 

C;E). The rate of change of tOC across the entire sample was significantly associated with an 

increase in tau PET summary SUVR [β = 2.25, P = 0.009], but not CSF p-tau181 [β = 0.08, P 

= 0.72] when adjusting for age and sex, and neither were influenced by diagnostic group-tOC 

interaction (P>0.05) (Fig.5, panel D;F). 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 16, 2023. ; https://doi.org/10.1101/2023.06.15.23291418doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.15.23291418
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

 

 

Fig 5: The relationship between cognitive function and CSF markers with the rate of 

change in tOC. Fitted lines are from a linear regression model per diagnostic group for (A) 

Memory function, (B) Executive function, (C) CSF  Aβ 1-42, and (D) CSF phospho-tau (E) 

Summary SUVR amyloid PET (F) Summary SUVR tau PET. 
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diagnostic group-ApoE ε4 status interaction (P>0.05) (Fig.6, panel A). This was driven by 

ApoE ε4 homozygosity (β = 2.87, P= 0.008), as opposed to ApoE ε4 heterozygosity (β = -

0.37, P= 0.58). 

Furthermore, when adjusting for age, sex and ApoE ε4 status, linear regression revealed a 

significant interaction between PRS and the diagnostic group [F(2, 420) = 3.77, P = 0.02], 
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whereby an increase in PRS was driven by the AD group (β = 586.2, P= 0.01). However, 

there is no significant relationship between the increase of PRS and the increased rate of 

change of tOC across all diagnostic groups (β = 59.24, P = 0.38) (Fig.6, panel B;C). 

 

 

Fig. 6. The relationship between genetic risk of AD and the rate of change in tOC (a) The density 

spread of the rate of change in tOC according to ApoE 4 status (b) Linear regression model of 

Polygenic Risk Score and the rate of change in tOC according to diagnostic group. 

 

4 Discussion  

 

We applied neuroanatomical normative modelling to generate tOC – a personalised brain 

atrophy marker for patients with AD. This marker is a single summary measure of atrophy 

across subcortical and cortical brain regions that exceeds expectations. Atrophy variation can 

also be mapped to an individual brain surface to provide regional information. For the first 
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acquired up to 9 years (mean follow-up time 2.4 years). We illustrate that neurodegeneration 

affects different patients with AD in a non-uniform way over the disease course.  

A key advantage of neuroanatomical normative modelling is that it provides region-level 

information by implementing separate normative models for each parcellated 

neuroanatomical region. In our study, we ran a total of 168 models and from them, we 

observed that patterns of outliers vary over time in the AD group. For instance, the 

percentage of participants with AD that had outliers in the hippocampus increased from 47% 

to 72% in 3 years, suggesting the presence of atrophy in the hippocampus is more 

heterogenous in earlier stages of the disease and then varies less (i.e., becomes more 

common) as the disease progresses (Fig 1). This is also consistent with our finding that the 

rate of change in outliers over the study period was highest in the left hippocampus, with 

52% of the AD group having marked increasing atrophy in this area (Fig. 2). Hippocampal 

atrophy is seen as characteristic of AD and is included in AD diagnostic criteria, as well as 

being used in clinical trials and generally considered a key structural marker.45 However, our 

results show that in the ADNI AD sample, 48% of patients do not have greater-than-expected 

rates of neurodegeneration in that region. Moreover, we found that total MMSE score and or 

CSF p-tau181 levels were not associated with either having or not having an elevated 

hippocampal atrophy rate. These results highlight the neuroanatomical heterogeneity in 

patients with AD, and furthermore reveal what is not always observed in group-average 

statistical designs. Building on these results, it will be useful to assess the sensitivity of 

neuroanatomical normative models to the earliest signs of Alzheimer’s in community 

samples. This would support the future use of the technique to assess MRI in memory clinics 

and related services, potentially helping to reduce diagnostic uncertainty when assessing 

patients at risk of Alzheimer’s.  

 

The primary trends of tOC are consistent with previous efforts to quantify neuroanatomical 

variation in dementia research. Although employing a different neuroanatomical normative 

modelling technique (hierarchical Bayesian regression 29), we previously found that patients 

with AD had a higher tOC and large inter-individual differences in regional outliers at 

baseline, when compared to people with MCI and cognitively normal controls.18,30 Here, our 

longitudinal data showed an increase in tOC in patients with AD. Interestingly, the rate of 

change in tOC in the AD group increased, suggesting an accelerating accumulation of brain 
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structure outliers over the study period. Therefore, tOC can track neurodegeneration across 

the disease course in AD (Fig. 3).  

 

As well as capturing accumulating atrophy in AD, we show the utility of tOC in the risk 

disease state of AD, MCI. We show that people with MCI that later progress to AD have 

increasing rates of tOC (Fig 4, panels A-C). This is consistent with previous efforts that have 

also shown that in a 3-year time period, an increase in 10 tOC points gives a 31.4% chance of 

clinical progression in 3 years.30 Crucially, we further found that the rate of change of tOC 

over one year (i.e., between baseline scan and 12 month scan), was significantly predictive of 

progression to dementia in the next 2 years (Fig 4, panel D). This could suggest that annual 

scans for people with MCI to monitor brain health could benefit the clinical decision-making 

process (e.g., for early AD detection). Moreover, with further validation, it could warrant a 

run-in period of 12 months in clinical trials, where that have a high or low rate of change in 

the 1st year can help stratify enrolment.  

 

We also observed that the rate of change in tOC was associated with amyloid and tau PET 

SUVR and CSF levels (Fig 5. panels C-F). This is in line with previous associations of 

amyloid and tau with neuroanatomical changes in AD,31–34 and further supports the 

established hypothesis that amyloid and tau are risk factors for neurodegeneration,35 although 

it is important to note that the amyloid/tau/neurodegeneration (ATN) interplay is likely to 

differ from individual to individual.36,37 We also assessed how genetic factors could relate to 

tOC. We found that an increased rate of tOC in AD is associated with a higher Alzheimer-

PRS and ApoE ε4 homozygosity (Fig 6), consistent with other structural imaging markers 

findings.28,38–40 Likewise, our results also support that memory and executive function are 

risk factors for the accelerated rate of atrophy (Fig 5. panels A;B). 41,42 This highlights that 

individualised measures of neurogenerative change (i.e., tOC) are sensitive to standard CSF, 

PET, genetic and cognitive AD markers, and may be easily interpreted with current clinical 

frameworks.43,44  

 

Indeed, accelerated brain atrophy is a widely accepted marker of AD,4,46 yet brain outlier 

maps and tOC may offer better clinical utility than using raw brain volumes/thicknesses. As 

neuroanatomical normative modelling generates Z-scores derived from a large reference 

cohort, they are a standardised value which can allow for individual-level inferences. For 

instance, in a clinical setting, a patient's tOC could be compared to another patient's tOC. 
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Also, the tOC can be derived from serial MRI scans to track atrophy rates across multiple 

time points. Similar brain atrophy markers derived from normative modelling have already 

been considered for clinical translation; the Quantitative Neuroradiology Initiative (QNI) has 

provided a framework to compile reference brain MRI data which can then contextualise a 

dementia patient's brain health and provide a personalised score to support the clinical 

decision-making process eventually.47 Building on this idea, our application of 

neuroanatomical normative modelling can offer regional information on brain health 

(mapped outlier scores), and improved neuroanatomical normative model estimates by using 

a large reference cohort.48  

 

One setback with translating computational statistical designs in clinical settings are the 

technical barriers of application and limits to data sharing. However, neuroanatomical 

normative modelling implementation does not require access to raw scans, as the end-user 

only requires a pre-trained reference model, which contains no identifiable data. Furthermore, 

scripts to generate individual Z-scores, tOC and outlier maps are openly available.49 

 

Neuroanatomical normative modelling also has the potential to aid in trials of AD 

therapeutics. For example, it could be used to stratify people for trial enrolment based on the 

extent (tOC) and spatial distribution of their brain atrophy, to identify subgroups based on 

different atrophy patterns or as a personalised outcome measure, where the impact of the 

treatment using unique brain ‘fingerprints’ can be quantified, increasing power and 

sensitivity to subtle changes over time.50  

Yet before clinical and drug trial implementation, additional diversification of datasets is 

needed. Although our reference (training) dataset is large, it is over-representative of 

European ancestry due to the datasets predominantly from academic studies (which do not 

match either regional or global population demographics). 51,52 Though ADNI participants are 

mostly European-ancestry 53, caution should be made when transferring the model to diverse 

datasets, or participants from underrepresented demographics.54 Future work will require the 

reference dataset and clinical datasets to include participants from non-research studies, 

different social-economic backgrounds and ethnicities to reduce bias and mitigate healthcare 

inequalities.55 
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Moreover, further optimisations of neuroanatomical normative modelling are possible. 

Although scanner effects and non-gaussian nature of MRI data were accounted for, unwanted 

noise might be generated by longitudinal data collection. To assess this, it will be useful to 

understand test-retest reliability by calculating the difference in scans which have been 

acquired in close succession (< one week). Also, unwanted noise might be limited at the stage 

of data processing by implementing the longitudinal FreeSurfer pipeline.56 Moreover, in our 

model, brain regions are treated independently, yet is likely that regional Z-score are inter-

correlated, particularly between neighbouring or bilateral regions. Solutions to this would be 

to consider the spatial extent of affected voxels and the magnitude in those voxels, 57 and to 

employ normative models which use brain connectivity data, which have shown recent 

promise. 51 

 

To conclude, we show that atrophy across MCI and AD disease course differs at the 

individual level – and that this can be tracked using tOC and brain Z-score maps generated by 

neuroanatomical normative modelling. Our studies further corroborate the utility of tOC and 

brain Z-score maps as personalised brain atrophy markers for patients with AD and predict 

disease progression in people with MCI. The next steps are to diversify the training and 

clinical data used in neuroanatomical normative modelling for AD research, in efforts to 

validate these markers for future translation into clinical settings and in drug trial design. 
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