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Abstract 24 

Understanding the genetic basis of biological aging in multi-organ systems is vital for 25 
elucidating age-related disease mechanisms and identifying therapeutic interventions. This study 26 
characterized the genetic architecture of the biological age gap (BAG) across nine human organ 27 
systems in 377,028 individuals of European ancestry from the UK Biobank. We discovered 393 28 
genomic loci-BAG pairs (P-value<5x10-8) linked to the brain, eye, cardiovascular, hepatic, 29 
immune, metabolic, musculoskeletal, pulmonary, and renal systems. We observed BAG-organ 30 
specificity and inter-organ connections. Genetic variants associated with the nine BAGs are 31 
predominantly specific to the respective organ system while exerting pleiotropic effects on traits 32 
linked to multiple organ systems. A gene-drug-disease network confirmed the involvement of the 33 
metabolic BAG-associated genes in drugs targeting various metabolic disorders. Genetic 34 
correlation analyses supported Cheverud's Conjecture1 – the genetic correlation between BAGs 35 
mirrors their phenotypic correlation. A causal network revealed potential causal effects linking 36 
chronic diseases (e.g., Alzheimer's disease), body weight, and sleep duration to the BAG of 37 
multiple organ systems. Our findings shed light on promising therapeutic interventions to 38 
enhance human organ health within a complex multi-organ network, including lifestyle 39 
modifications and potential drug repositioning strategies for treating chronic diseases. All results 40 
are publicly available at https://labs-laboratory.com/medicine.  41 
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Main 42 

Biological aging is complex and influenced by many factors, including genetics2, environmental 43 
exposures3, and modifiable lifestyle factors4 across multiple organ systems. A comprehensive 44 
understanding of the phenotypic landscape and genetic architecture underlying biological aging 45 
in multiple human organ systems is paramount in forging the path toward precision medicine5, 46 
including identifying vulnerability (e.g., smoking) and resilience factors (e.g., physical 47 
activities). This knowledge can improve our understanding of the underlying mechanisms 48 
driving age-related diseases, identify novel therapeutic targets, and develop personalized 49 
interventions for maintaining health and functional independence in the aging population. 50 
 Previous research efforts have made progress in studying the interconnectedness of multi-51 
organ systems in human health3,6–13. In a recent study by McCracken et al., a heart-brain-liver 52 
axis was studied, highlighting direct and indirect associations among the three organs and their 53 
interconnectivity and shared biological pathways11. A recent review highlighted the role of inter-54 
organ signals in metabolic control, including the secretion of peptides, small molecules, and lipid 55 
mediators by metabolic tissues and the involvement of the central nervous system in 56 
coordinating peripheral metabolic functions9. Riding the crest of the wave of artificial 57 
intelligence (AI), the biomedical community has increasingly adopted the biological age gap 58 
(BAG) as a comprehensive biomarker of human aging in multiple human organ systems. 59 
Specifically, BAG serves as a quantitative phenotype to capture the disparity between an 60 
individual's AI-derived age and chronological age, which can be used to model aging-related 61 
normative trajectory at the individual level and holds potential for application in disease 62 
populations to capture pertinent pathological processes. For instance, Nie et al. derived the 63 
biological age in nine organ systems to predict the possibility of becoming centenarian13. In our 64 
previous study, Tian et al. derived eight BAGs in eight organ systems, correlating them with 65 
cognition, chronic disease, lifestyle factors, and mortality3. We employed a support vector 66 
machine in cross-validation to predict BAGs for multiple organ systems (Method 1 for details).  67 

However, genetic determinants and biological pathways that underlie the observed 68 
heterogeneity of organ-specific BAGs remain elusive. Furthermore, whether chronic diseases 69 
and lifestyle factors causally impact the divergence between predicted age and chronological age 70 
in these organ systems remains to be established, manifesting as either a younger or older 71 
biological age. Our previous genome-wide association study (GWAS) uncovered the genetic 72 
heterogeneity of the multimodal brain BAGs using magnetic resonance imaging (MRI) data14. 73 
Expanding on prior research, the current study sought to comprehensively depict the genetic 74 
architecture underlying biological aging across nine human organ systems, including the brain, 75 
cardiovascular, eye, hepatic, immune, metabolic, musculoskeletal, pulmonary, and renal BAGs. 76 
Our overarching hypothesis postulates that the genetic determinants associated with the nine 77 
BAGs are not only specific to individual organ systems (i.e., BAG-organ specificity) but also 78 
directly or indirectly interconnected with other organ systems (i.e., inter-organ connection). 79 

In the current study, we analyzed multimodal data from 377,028 individuals of European 80 
ancestry in the UK Biobank study15 (UKBB) to comprehensively capture the genetic architecture 81 
of the nine organ systems (Method 2). First, we used data from 154,774 participants to perform 82 
GWAS, gene-level, partitioned heritability, and genetic correlation analyses (Method 3). In our 83 
Mendelian randomization analyses, we used 222,254 UKBB participants that did not overlap 84 
with the individuals used to compute BAG to avoid potential bias16. We i) identified both 85 
previously reported and newly identified genomic loci, ii) demonstrated a greater genetic 86 
heritability estimate for the brain BAG compared to other organ systems, iii) constructed a 87 
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network linking genes, drugs, and diseases for potential drug repurposing, iv) confirmed that 88 
BAG-associated variants and genes exhibit BAG-organ specificity and inter-organ connection, 89 
and v) established both genetic correlations and causal networks among the nine BAGs, chronic 90 
diseases, and lifestyle factors. All results, including the GWAS summary statistics, are publicly 91 
accessible through the MEDICINE (Multi-organ biomEDIcal sCIeNcE) knowledge portal: 92 
https://labs-laboratory.com/medicine. 93 
 94 
Results 95 

Genome-wide associations identify 393 genomic loci associated with the nine biological age 96 

gaps  97 

In the European populations, GWAS (Method 3a) identified 11, 44, 17, 41, 61, 76, 24, 67, and 98 
52 genomic loci (P-value<5x10-8) significantly associated with the brain, cardiovascular, eye, 99 
hepatic, immune, metabolic, musculoskeletal, pulmonary, and renal BAGs, respectively (Fig. 1). 100 
All details of the identified loci are presented in Supplementary eFile 1. Manhattan and QQ 101 
plots are presented in Supplementary eFigures 1-9 and available in the MEDICINE knowledge 102 
portal (https://labs-laboratory.com/medicine).  103 

We estimated the intercept of linkage disequilibrium score regression (LDSC)17 for the 104 
nine main GWAS and obtained intercepts of 0.9989±0.009, 1.0185±0.0099, 0.9926±0.0106, 105 
1.0416±0.0113, 1.0293±0.0107, 1.0308±0.0124, 1.0282±0.0099, 1.0442±0.0104, and 106 
1.0257±0.0112 for the nine BAGs. All the intercepts were close to 1, indicating no substantial 107 
genomic inflation in the primary GWAS. Furthermore, we conducted four sensitivity analyses 108 
(Method 3a) to assess the robustness of the primary nine GWASs on individuals of European 109 
ancestry (Supplementary eText 1). Our GWASs demonstrated robustness in split-sample 110 
GWAS, with a perfect concordance rate for the sign (+/-) of β values (C-β=1) between the split1 111 
and split2 GWASs. The two sets of β values were highly correlated (0.90<r-β<0.99 for Pearson’s 112 
r) and did not significantly differ (P-β>0.48 for two-sample t-test). We compared the GWAS 113 
results with linear models in PLINK and linear mixed-effect models in fastGWA18, resulting in a 114 
perfect concordance for the two sets of β values, as well as very similar LDSC intercept values. 115 
These findings further support the absence of cryptic population stratification in our primary 116 
GWASs. Sex-stratified GWASs unveiled distinctive genetic patterns specific to each sex, with 117 
noteworthy disparities observed in the genetic architecture of the immune BAG (r-β=0.29; P-118 
β=0.01; C-β=0.55). Immune responses exhibit sex differences that vary across the lifespan and 119 
are influenced by age and reproductive status19. Detailed quantitative information regarding these 120 
observations can be found in Supplementary eText 1, while visual representations of these 121 
patterns are available in Supplementary eFigures 5 and 7. Finally, the genetic signals identified 122 
within non-European populations were less prominent compared to the European GWAS due to 123 
the limited sample size, but we found a high concordance between the two sets of β values using 124 
the three proposed metrics (0.85<r-β<0.95; 0.89<C-β<1; P-β>0.12). This underscores the 125 
necessity of expanding sample sizes within underrepresented ethnic groups in future GWAS 126 
studies. Detailed statistics can be found in Supplementary eFiles 2-5. 127 

Certain genomic loci exhibited unique associations with individual organs, whereas 128 
others displayed connections to multiple organ BAGs in close genomic proximity based on their 129 
cytogenetic position. For instance, the locus on chromosome 6 associated with the hepatic 130 
(rs62401887, position: 24416482 at 6p22.3), immune (rs80215559, position: 25918225 at 131 
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6p22.3), metabolic (rs79220007, position: 26098474 at 6p22.2), musculoskeletal (rs2744575, 132 
position: 24494975 at 6p22.3), pulmonary (rs411535, position: 22061040 at 6p22.3), and renal 133 
BAGs (rs55925606, position: 25878848 at 6p22.2) was close with each other on the human 134 
genome. Bayesian colocalization20 analyses (Method 3h) supported two distinct causal SNP 135 
within this locus with the liver and musculoskeletal BAGs. Our results showed a posterior 136 
possibility (PP) of two distinct causal variants (PP.H3.ABF=0.744) or one shared causal variant 137 
(PP.H4.ABF=0.256) associated with both traits in the GPLD1 gene, although the PP.H4.ABF 138 
hypothesis did not achieve the suggested threshold (>0.8)20. Detailed results are presented in 139 
Supplementary eFigure 10. However, note that these loci on chromosome 6 are near the major 140 
histocompatibility complex (MHC) region; further dedicated analyses are needed to understand 141 
the underlying genetics across different BAGs (e.g., pleiotropy). 142 

Many of these loci were mapped to protein-encoding genes and provided functional 143 
insights. For example, the top lead SNP (rs62401887 at 6p22.3) within the locus of the hepatic 144 
BAG was mapped to the MRS2 gene by position (with a deleterious score of 14.89) and 145 
expression quantitative trait loci (eQTL, P-value=1.09x10-10) (Method 3c), which enables 146 
magnesium ion transmembrane transporter activity. We illustrate the regional Manhattan plot for 147 
the genomic locus with the highest significance for each organ BAG in Supplementary eFigure 148 
11. For instance, the brain BAG exhibited a highly significant locus (top lead SNP: rs371185851 149 
at 17q21.31) with multiple protein-encoding genes, including the widely recognized MAPT gene 150 
encoding tau protein associated with neurodegenerative diseases, such as Alzheimer's disease 151 
(AD)21. Moreover, the SNPs within this locus included enhancers and transcription start sites 152 
specific to brain tissue chromatin states, highlighting their functional relevance in brain-related 153 
processes (Supplementary eFigure11a).   154 
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Figure 1: Genomic loci associated with the nine biological age gaps 155 

 156 
Organ-specific biological age gap (BAG) was derived from a large cohort of 30,108 to 111,543 157 
European ancestry participants from the UK Biobank cohort. The nine organ systems include the 158 
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brain (N=30,108), cardiovascular (N=111,543), eye (N=36,004), hepatic (N=111,543), immune 159 
(N=111,543), metabolic (N=111,543), musculoskeletal (N=111,543), pulmonary (N=111,543), 160 
and renal (N=111,543) BAGs. 393 genomic loci-BAG pairs were identified using a genome-wide 161 
P-value threshold [–log10(P-value) > 7.30]. For visualization purposes, we denoted the genomic 162 
loci using their top lead SNPs that are not associated with any clinical traits in the EMBL-EBI 163 
GWAS Catalog. The anatomical illustration of the human body was created using 164 
BioRender.com. All analyses used the Genome Reference Consortium Human Build 37 165 
(GRCh37). We present representative features employed in the calculation of each organ organ's 166 
BAG. BMI: body mass index; IDP: imaging-derived phenotype; GM: gray matter; WM: white 167 
matter; FC: functional connectivity; OCT: optical coherence tomography; FVC: forced vital 168 
capacity; FEV: forced expiratory volume; PEF: peak expiratory flow. 169 
 170 
Phenome-wide associations demonstrate organ system specificity and inter-organ 171 

connection 172 

We aimed to investigate the agreement of the identified genomic loci in existing GWAS 173 
literature. To this end, we performed a phenome-wide association query in the EMBL-EBI 174 
GWAS Catalog22 for independent significant SNPs within each locus, considering linkage 175 
disequilibrium and redundant associations (Method 3d). 176 

This pheno-wide associations query identified 11,709 significant associations between 177 
the identified loci in our GWAS and clinical traits in the literature linked to each organ system 178 
(i.e., BAG-organ specificity) (Fig. 2a). The genomic loci associated with the brain BAG 179 
exhibited the highest proportion of associations (74 out of 173) with traits related to the brain, 180 
including imaging-derived phenotypes such as brain volume metrics and white matter 181 
microstructure, demonstrated in the keyword cloud presented in Fig. 2a. The brain BAG loci 182 
were also largely linked to many other traits related to other organ systems and chronic diseases, 183 
evidencing inter-organ connections, including metabolic (N=43/173, e.g., cholesterol levels), 184 
lifestyle factor (N=1/173, i.e., alcohol consumption), neurodegenerative traits (N=16/173, e.g., 185 
AD), and immune (N=7/173, e.g., lymphocyte count). For the eye BAG loci, most associations 186 
were found in the eye (N=31/128, e.g., retinal nerve fiber layer thickness) and brain traits 187 
(N=6/128, e.g., brain morphology), among others. 188 

For the seven body organ systems, among the loci associated with the cardiovascular 189 
BAG, most associations were observed with cardiovascular traits (319 out of 439), such as 190 
systolic/diastolic blood pressure and coronary artery disease. Other associations were found with 191 
musculoskeletal (N=30/439), metabolic (N=14/439), immune (N=6/439), renal (N=18/1890), and 192 
brain (N=9/439) traits. 376 out of 1853 associations were related to hepatic traits (e.g., blood 193 
protein, cirrhosis, and bilirubin) for the hepatic BAG loci. Among the loci associated with the 194 
immune BAG, abundant associations were found in metabolic (929 out of 1773), immune 195 
(N=244/1773), hepatic (N=149/1853), musculoskeletal (N=57/1853), and cardiovascular traits 196 
(N=72/1853). For the metabolic BAG loci, most associations were observed in metabolic traits 197 
(3841 out of 4907). We found a significant intertwining of metabolic systems with other organ 198 
systems, highlighting inter-organ connections in human metabolic activities. Details of the 199 
phenome-wide associations are presented in Supplementary eFile 6. Furthermore, we reported 200 
the complementary results of this phenome-wide association query using the GWAS Atalas23 201 
platform (Supplementary eText 2 and Supplementary eFile 7). 202 

 203 
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The SNP-based heritability estimates of the nine biological age gaps 204 

We estimated the SNP-based heritability (h2) across the nine organ systems using the full sample 205 
sizes (Fig. 2b) of the nine BAGs. Additionally, the distributions of the magnitude of the β 206 
coefficient in GWAS and the allele frequency of the alternative allele (effect allele) are shown in 207 
Fig. 2c and d. Notably, the sample sizes of the brain and eye BAGs were much smaller than that 208 
of the seven body organ BAGs; the body organ BAGs had the same populations.  209 

Upon analyzing the full sample sizes, the estimated h2 for the brain BAG (0.47±0.02) 210 
outperformed all other organ systems, followed by the eye (0.38±0.02), pulmonary (0.36±0.006), 211 
renal (0.31±0.006), metabolic (0.29±0.006), cardiovascular (0.27±0.006), musculoskeletal 212 
(0.24±0.006), hepatic (0.23±0.006), and immune BAGs (0.21±0.006) (Fig. 2b). All heritability 213 
estimates were statistically significant after controlling for multiple comparisons using the 214 
Bonferroni correction. This trend persisted when subsampling the population of other BAGs to 215 
match that of the brain BAG, with comparable distributions in sex and age (Supplementary 216 
eFigure 12a). Detailed results of the h2 estimate are presented in Supplementary eTable 1a-b. 217 
Of note, we employed the GCTA24 software to estimate h2, acknowledging that previous 218 
research25,26 has demonstrated variations in the magnitude of h2 estimates based on the choice of 219 
methods. 220 

To gain deeper insights into the significant genetic signals in the brain and eye, we 221 
conducted a detailed examination of the effect sizes (β coefficient) in the GWAS of the nine 222 
BAGs, as the effect size is independent of the sample size. The independent significant SNPs of 223 
the brain (|β|=0.062±0.013; [0.0470, 0.093]) and eye (|β|=0.0645±0.030) BAG showed larger 224 
mean magnitudes than the seven body organ systems (Fig. 2c). Among the body organ BAGs 225 
with the same sample size, the renal BAG showed the largest effect size (0.023<|β|<0.306). This 226 
pattern persisted with the results using the subsampled populations to the brain BAGs, presented 227 
in Supplementary eFigure 12b. The full set of statistics (e.g., β coefficient) of the independent 228 
significant SNPs is detailed in Supplementary eFile 5 for the European ancestry GWAS.   229 

It is widely recognized that the effect size of common genetic variants tends to increase 230 
as the allele frequency decreases27,28. This “inverse relationship” was evidenced by our data 231 
using independent significant SNPs from the 9 BAGs (Supplementary eFigure 13); the SNP 232 
with a lower allele frequency requires a larger sample size to achieve statistical significance. We 233 
then hypothesized that the smaller sample sizes of the brain and eye BAGs enabled us to detect 234 
significant variants with a relatively higher allele frequency but could not identify the SNPs with 235 
a relatively lower allele frequency associated with the body organ BAGs. As shown in Fig. 2d, 236 
we observed that the alternative (effect) allele frequency of the independent significant SNPs 237 
associated with the brain and eye BAGs was relatively higher than that of the body organ BAGs. 238 
This indicates that larger samples are required for the brain and eye to detect SNP effects with a 239 
relatively lower allele frequency. This relationship persisted by subsampling the population of 240 
other BAGs to that of the brain BAGs, which is presented in Supplementary eFigure 12c. As 241 
expected, the β coefficients derived from the whole samples (N>10k for body organ BAGs) were 242 
not significantly different from the results using the brain-BAG comparable down-sampled 243 
samples (N=30,108) (Supplementary eTable 2).  244 

Another hypothesis is that the features used to compute the brain and eye BAGs – in vivo 245 
imaging features – are more heritable than those of the body-organ systems. We compared the 246 
genetic structure of the nine BAGs and the individual features used to compute the BAGs. This 247 
comparison is crucial for gaining insights into how the choice of predictors impacts the results of 248 
BAG GWAS, which, in turn, is fundamental for subsequent analyses related to pleiotropy and 249 
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trait associations. We first estimated the SNP-based heritability for four pulmonary features and 250 
compared these with a set of multimodal brain imaging-derived phenotypes from our previous 251 
studies14,29–32 using the same GCTA software. We hypothesized that the brain imaging features 252 
would exhibit a higher degree of heritability than the 4 pulmonary features of the pulmonary 253 
BAG (i.e., forced vital capacity, forced expiratory volume, peak expiratory flow, and the ratio of 254 
forced expiratory volume to forced vital capacity), supported by the results in Supplementary 255 
eTable 1c. We then performed GWAS for the four pulmonary features within the European 256 
ancestry populations. The Manhattan and QQ plots are presented in Supplementary eFigure 14. 257 
The pulmonary BAG showed high genetic correlations using LDSC with the four pulmonary 258 
features (-0.79<gc<0.83, Supplementary eTable 3). Using Bayesian colocalization analysis 259 
(Method 3h), we identified 99 potential causal variants (PP.H4.ABF>0.80) between the 260 
pulmonary BAG and the four underlying features (Supplementary eFile 8). We showcased one 261 
causal variant evidenced at one locus (4q24) between the pulmonary BAG and the FEV/FCV 262 
feature (Supplementary eFigure 15). The PP.H4.ABF (0.99) denotes the posterior probability 263 
of hypothesis H4, which suggests that both traits share the same causal SNP (rs7664805, mapped 264 
gene: NPNT). SNPs in linkage disequilibrium with the causal SNP were previously linked to 265 
chronic obstructive pulmonary disease in the GWAS Catalog. To elucidate the genetic overlap at 266 
the individual SNP level, we showed the β coefficient of the 48 potential causal variants that 267 
passed the genome-wide significance for the pulmonary BAG and at least one pulmonary feature 268 
in Supplementary eFigure 16.  269 
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Figure 2: Phenome-wide associations of the identified genomic loci and SNP-wide 270 
heritability estimates of the nine biological age gap 271 

 272 

 273 
a) Phenome-wide association query of the identified genomic loci in the EMBL-EBI GWAS 274 
Catalog (query date: 24th April 2023, via FUMA version: v1.5.4) showed an organ-specific and 275 
inter-organ landscape. By examining the independent significant SNPs considering linkage 276 
disequilibrium (Method 3d) within each genomic locus, we linked them to various clinical traits. 277 
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These traits were categorized into high-level groups encompassing different organ systems, 278 
neurodegenerative and neuropsychiatric disorders, and lifestyle factors. To visually represent the 279 
findings, we generated keyword cloud plots based on the frequency of these clinical traits within 280 
each BAG. The length of each rectangle block indicates the number of associations concerning 281 
the genomic loci in our analysis and clinical traits in the literature. The individual disease traits 282 
were categorized within their respective organ systems. However, this categorization doesn't 283 
imply that the sum of these diseases exclusively represents the entirety of the organ system or 284 
that these diseases are solely associated with one specific organ system. Additional searches on 285 
alternative public GWAS platforms, such as the GWAS Atlas, are provided in Supplementary 286 
eText 2. b) Brain BAG is more heritable than other organ systems using GCTA24. c) Brain BAG 287 
showed larger effect sizes of the independent significant SNPs than other organ systems. The 288 
kernel density estimate plot shows the distribution of the effect sizes (i.e., the magnitude of the 289 
linear regression β coefficients) in the nine GWAS. The white horizontal lines represent the 290 
mean effect sizes. d) The distribution of the alternative allele frequency (effect allele) for the 291 
nine BAGs. Of note, only independent significant SNPs were shown for each BAG in Figures c-292 
d. All results in Figures b-d used the original full sample sizes of the nine BAGs; the brain, eye, 293 
and other body organ BAGs have different sample sizes. Error bars represent the standard error 294 
of the estimated parameters. Results for Figure b-d using the down-sampled sample sizes 295 
(N=30,108 of the brain BAG) are shown in Supplementary eFigure 12. ALT FREQS: allele 296 
frequency of the alternative (effective) allele.  297 
 298 

Genes linked to the nine biological age gaps are implicated in organ system-specific 299 

biological pathways 300 

To biologically validate our GWAS findings at the gene level, we performed gene-based 301 
associations using the MAGMA33 software based on the full P-value distribution from the 302 
GWAS of the nine BAGs. The significantly associated genes (Supplementary eFile 9) were 303 
used for the gene set enrichment analysis (GSEA, Method 3e) to annotate relevant biological 304 
pathways underlying each organ system (Fig. 3a).  305 
 Genes associated with the cardiovascular BAG were implicated in the insulin-like growth 306 
factor II binding (IGF-II) pathway (P-value=7.08x10-7). Genes associated with the eye BAG 307 
were enriched in the pathway of forebrain dorsal-ventral pattern (FDVP) formation (P-308 
value=6.46x10-7). Among others, the most significant enrichment result shown in the hepatic 309 
BAG was the flavonoid glucuronidation pathway (P-value=1.71x10-8). Genes linked to the 310 
metabolic BAG displayed enrichment in several pathways, including the flavonoid 311 
glucuronidation pathway (P-value=2.46x10-15) and triglyceride-rich lipoprotein particle clearance 312 
pathway (P-value=3.72x10-15), both of which are implicated in liver function. In addition, the 313 
neutral lipid metabolic process, regulated by complex pathways featuring lipid metabolism 314 
enzymes and structural proteins, was also identified. Genes associated with the musculoskeletal 315 
BAG exhibited enrichment in the gene set in an amplicon at 20q11 (P-value=1.54x10-15), defined 316 
by a study of copy number alterations conducted on 191 patients with breast tumors34. Genes 317 
associated with the pulmonary BAG displayed significant enrichment in the pathways of the 318 
negative regulation biosynthetic process (P-value=3.72x10-10), consistent with a previous DNA 319 
methylation analysis of pulmonary function using old-aged Chinese monozygotic twins35. Genes 320 
associated with the renal BAG were implicated in the xenobiotic glucuronidation pathway (P-321 
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value=1.56x10-6). Given that the kidney contains most enzymes metabolizing foreign substances 322 
(i.e., xenobiotics), it plays a crucial role in the overall metabolism of drugs and other foreign 323 
compounds within the body (Fig. 3a). Detailed results of GSEA are presented in 324 
Supplementary eFile 10. Sex-stratified results are presented in Supplementary eFigure 17. 325 
 326 

Genes linked to the nine biological age gaps display organ system-specific gene expression 327 

patterns 328 

To investigate the gene expression patterns of the significant genes associated with the nine 329 
BAGs, we performed a tissue-specific gene expression analysis33 using MAGMA and the GTEx 330 
RNA-seq dataset36 (Method 3f). 331 
 Across 54 human organ tissues (Fig. 3b), genes associated with the cardiovascular BAG 332 
exhibited significant overexpression in various heart-related tissues (e.g., the aorta and tibial 333 
artery) and other organs (e.g., the uterus and colon sigmoid). Genes associated with the hepatic 334 
BAG were overexpressed in the liver and adipose subcutaneous. Several immune system-related 335 
tissues showed a high average expression of the genes related to the immune BAG, including the 336 
spleen, blood, and lymphocytes. Likewise, the genes associated with the metabolic BAG showed 337 
a high expression level in the liver and intestine – critical organs in the metabolic system. The 338 
genes related to the pulmonary BAG displayed significant overexpression in the esophagus 339 
gastroesophageal junction, artery, and others. The genes associated with the renal BAG were 340 
overexpressed in the kidney. Detailed results are presented in Supplementary eFile 11. Sex-341 
stratified results are presented in Supplementary eFigure 18.  342 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 11, 2024. ; https://doi.org/10.1101/2023.06.08.23291168doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.08.23291168
http://creativecommons.org/licenses/by-nd/4.0/


13 
 

Figure 3: Gene-level biological pathway annotation and tissue-specific gene expression    343 

 344 
a) Validation of the nine BAGs in gene set enrichment analyses. Gene set enrichment analyses 345 
were performed using curated gene sets and GO terms from the MsigDB database. b) Validation 346 
of the nine BAGs in gene-property analyses. Gene-property analyses evaluate tissue-specific 347 
gene expressions for the nine BAG-related genes using the full SNP P-values distribution. Only 348 
significant gene sets are presented after adjusting for multiple comparisons using the Bonferroni 349 
correction. Abbreviation: EGJ: esophagus gastroesophageal junction. 350 
 351 
  352 
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Gene-drug-disease network substantiates potentially repositionable drugs for aging-related 353 

diseases 354 

We performed a drug target enrichment analysis37 for the genes linked to the nine BAGs in the 355 
targeted gene sets of drug categories using the DrugBank database38, thereby constructing a 356 
gene-drug-disease network of potentially repositionable drugs (Method 3g).  357 

The constructed gene-drug-disease network (Fig. 4) identified significant interactions 358 
between 12 metabolic BAG-linked genes, 46 drugs, and many metabolic disorders encoded in 359 
the ICD10 code (E70-E90). For instance, the PPARD gene was the target gene of the PPAR-δ 360 
agonist (SAR 351034, denoted in Fig. 4), which aimed to improve insulin sensitivity and lipid-361 
related activities and battle against inflammation and oxidative stress, serving as actionable drugs 362 
for metabolic disorders, diabetes, and kidney and liver injury-related diseases39. Our results 363 
showed that genes associated with the metabolic BAG were used to develop drugs treating 364 
various other diseases – beyond metabolic disorders – related to multiple organ systems (Fig. 4). 365 
These included heart-related diseases (e.g., chronic rheumatic heart diseases for I05-I09) and 366 
cerebrovascular disease (I60-I69), although the enrichment did not survive correction for 367 
multiple comparisons (Fig. 4). For instance, the drug MPSK3169A (clinical trial number: 368 
NCT01609140; metabolic BAG linked gene: PCSK9) is used to treat cerebrovascular disease and 369 
coronary heart disease; T3D-959 (clinical trial number: NCT04251182; pulmonary BAG linked 370 
gene: PPARD), was a candidate drug targeting AD. Detailed results are presented in 371 
Supplementary eFile 12.  372 

The drug-gene-disease network reveals the association between genes related to the 373 
metabolic BAG and drugs targeting various chronic diseases. It highlights the importance of the 374 
metabolic system in the overall functioning of the human body and the potentials of 375 
repositioning existing drugs to tackle biological aging. 376 

 377 
  378 
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Figure 4: Gene-drug-disease network of the nine biological age gaps    379 

 380 
The gene-drug-disease network reveals a broad spectrum of gene, drug, and disease interactions 381 
across the nine BAGs, highlighting the metabolic-related genes. The ICD-10 code icons 382 
symbolize disease categories linked to the primary organ systems (e.g., G30 for Alzheimer's 383 
disease in the CNS). All presented genes passed the nominal P-value threshold (<0.05) and were 384 
pharmaco-genetically associated with drug categories in the DrugBank database; the symbol * 385 
indicates gene-drug-disease interactions that survived the Bonferroni correction. Abbreviation: 386 
ICD: International Classification of Diseases; EGJ: esophagus gastroesophageal junction.  387 
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 388 
Heritability enrichment in different cell types, functional categories, tissue-specific gene 389 

expression, and chromatin states  390 

To further biologically validate our GWAS findings at the SNP level, we performed partitioned 391 
heritability analyses40 (Method 3i) to estimate the heritability enrichment of genetic variants 392 
related to the nine BAGs concerning three different cell types41 (i.e., neurons, oligodendrocytes, 393 
and astrocytes, Fig. 5a), 53 non-tissue-specific functional categories40 (Fig. 5b), 205 tissue-394 
specific gene expression data36 (Fig. 5c) and 489 tissue-specific chromatin states42,43 (Fig. 5d).  395 
 We found significant heritability enrichment in oligodendrocytes (P-value=0.03), a 396 
specific type of neuroglial cells, for the brain BAG. The cardiovascular BAG also exhibited 397 
significant heritability enrichment in neurons (P-value=0.01) (Fig. 5a, Supplementary eFile 398 
13). Concerning the heritability enrichment in non-tissue-specific functional categories, we 399 
exemplified the four highest significant partitioned heritability estimates for each BAG in Fig. 400 
5b. For the brain BAG, the super-enhancer regions employed 17.16% of SNPs to explain 401 
0.47±0.04 of SNP heritability (P-value=1.80x10-11), and the histone H3 at lysine 9 402 
(H3K9ac) regions used 12.61% of SNPs to explain 0.61±0.12 of SNP heritability (P-403 
value=2.96x10-4). For the eye BAG, the super-enhancer regions explained 0.39±0.05 of SNP 404 
heritability (P-value=2.12x10-6) using 16.84% of SNPs. For the hepatic BAG, the H3K9ac 405 
regions explained 0.69±0.13 of SNP heritability (P-value=3.60x10-5) using 12.61% of SNPs. For 406 
the immune BAG, the TSS regions (i.e., core promoters) explained 0.37±0.08 of SNP heritability 407 
(P-value=1.48x10-6) using 1.82% of SNPs. The 3.11% of SNPs annotated by the promoter 408 
regions explained 0.30±0.08 of SNP heritability (P-value=7.64x10-4) for the metabolic BAG. For 409 
the cardiovascular (enrichment=16.39±2.23; P-value=4.70x10-11), musculoskeletal 410 
(enrichment=17.34±4.08; P-value=1.65x10-6), pulmonary (enrichment=16.82±2.51; P-411 
value=7.58x10-9), and renal (enrichment=13.96±1.88; P-value=7.25x10-9) BAGs, the highest 412 
heritability enrichment was found in the regions conserved across mammals (Fig. 5b, 413 
Supplementary eFile 14). These results suggested disproportionate genomic contributions to the 414 
heritability of BAGs from multiple functional categories. 415 
 In addition, the nine BAGs showed high heritability enrichment in specific tissues 416 
corresponding to their organ systems. For example, the cardiovascular BAG showed significant 417 
heritability enrichment in multiple tissue types, including the artery (e.g., the aorta: P-418 
value=1.03x10-7), myometrium (P-value=1.35x10-4), and uterus (P-value=2.43x10-4). Significant 419 
heritability enrichment was found in the liver for the hepatic (P-value=5.60x10-9) and metabolic 420 
BAGs (P-value=6.24x10-9). For the immune BAG, significant heritability enrichment was found 421 
in fetal blood tissues (P-value=7.36x10-9) (Fig. 5c, Supplementary eFile 15). These findings 422 
were aligned with the tissue-specific gene expression patterns observed at the gene level (Fig. 423 
3b). 424 
 The results from multi-tissue chromatin states-specific data further provide the proof-of-425 
concept for the organ-specific heritability enrichment among these nine BAGs. For the brain 426 
BAG, significant heritability enrichment was found in multiple brain tissues in the H3K4me3 427 
(e.g., P-value=9.06x10-5 for the hippocampus), H3K4me1 (e.g., P-value=6.94x10-5 for the 428 
hippocampus), and H3K27ac (e.g., P-value=1.15x10-5 for the anterior caudate) regions. For the 429 
cardiovascular BAG, significant heritability enrichment was shown in the right ventricle in the 430 
H3K4me3 region (P-value=6.36x10-5) and the artery aorta in the H3K27ac region (P-431 
value=5.81x10-7). Significant heritability enrichment was found in primary hematopoietic stem 432 
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cells in the H3K4me1 region for the immune BAG for both females (P-value=5.61x10-5) and 433 
males (P-value=9.50x10-5). The fetal leg muscle tissue in the DNase regions (P-value=6.54x10-5) 434 
for the musculoskeletal BAG showed significant heritability enrichment. For the pulmonary 435 
BAG, significant heritability enrichment was found in the fetal lung in the H3K4me1 (P-436 
value=1.33x10-9) and DNase regions (P-value=3.80x10-8), among other tissues from the 437 
stomach, artery, and muscle. For the renal BAG, significant enrichment was shown in the liver in 438 
the H3K9ac region (P-value=2.46x10-5) and the gastric tissues in the H3K27ac region (P-439 
value=6.24x10-5) (Fig. 5d, Supplementary eFile 16).  440 
 441 
 442 
Cheverud's Conjecture: genetic correlations between the nine biological age gaps mirror 443 

their phenotypic correlations 444 

We estimated the genetic correlation (gc) (Method 3h) and the phenotypic correlation (pc for 445 
Pearson's correlation coefficient) between each pair of the nine BAGs. Our results supported the 446 
long-standing Cheverud's Conjecture1 – the genetic correlation between two clinical traits 447 
reflects their phenotypic correlation (Fig. 5e).  448 
 The musculoskeletal and hepatic BAGs showed the highest genetic correlation (gc=0.40) 449 
and phenotypic correlation (pc=0.38). Similarly, the hepatic and renal BAGs showed a high 450 
genetic correlation (gc=0.39) and phenotypic correlation (pc=0.37). The musculoskeletal BAG 451 
also showed significant genetic and phenotypic correlations with pulmonary (gc=0.35, pc =0.19) 452 
and renal BAGs (gc=0.13, pc =0.21). In addition, the eye BAG showed small genetic and 453 
phenotypic correlations with the brain BAG (gc=0.15, pc =0.11). The correlations between the 454 
brain and eye BAGs and other organ BAGs were relatively weaker than those observed among 455 
other organ pairs. These findings indicate the presence of shared genetic underpinnings that 456 
collectively contribute to the biological aging processes captured by these organ BAGs. Most of 457 
the genetic correlations showed consistency between females and males, albeit sex differences 458 
were evident in certain BAGs, particularly in the cardiovascular BAG results. Specifically, males 459 
exhibited dominant correlations between cardiovascular BAGs and hepatic and renal BAGs, 460 
while females demonstrated unique correlations with musculoskeletal and pulmonary BAGs 461 
(Supplementary eFigure 19). Sex differences in cardiovascular diseases have been explored in 462 
prior literature44, highlighting the divergent effects of factors associated with both sex and gender 463 
on the clinical presentations and outcomes of cardiovascular disease. Detailed results are 464 
presented in Supplementary eFile 17.  465 
 466 

Genetic correlations between the nine biological age gaps and 41 clinical traits of chronic 467 

diseases, cognition, and lifestyle factors 468 

We also estimated gc between the nine BAGs and 41 clinical traits to examine their genetic 469 
correlations. The 41 clinical traits encompassed many common chronic diseases and conditions 470 
and their disease subtypes7,45–48, cognition (e.g., general intelligence and reaction time, and 471 
lifestyle factors (e.g., computer use) (Fig. 5f and Supplementary eTable 4). 472 
 The brain BAG was genetically associated with several brain diseases of the central 473 
nervous system (CNS) and their subtypes, including AD (gc=0.37±0.14) and late-life depression 474 
(LLD, gc=0.25±0.07). Furthermore, we observed significant genetic correlations between the 475 
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brain BAG and years of education (gc=-0.14±0.05) and intelligence (gc =-0.15±0.05). The 476 
cardiovascular BAG was positively correlated with stroke (gc=0.20±0.05), a significant 477 
cardiovascular disease, and was negatively correlated with years of education (gc=-0.17±0.05). 478 
The musculoskeletal BAG was positively correlated with hyperlipidemia (gc=0.18±0.06), 479 
rheumatoid arthritis (gc=0.13±0.03), and Crohn's disease (gc=0.19±0.06) and was negatively 480 
correlated with atrial fibrillation (gc=-0.11±0.04), years of education (gc=-0.21±0.04), and 481 
intelligence (gc=-0.18±0.03). The pulmonary BAG was positively associated with 482 
hyperlipidemia (gc=0.12±0.04), stroke (gc=0.15±0.05), liver fat (gc=0.12±0.04), and lung 483 
carcinoma (gc=0.17±0.05). Finally, the renal BAG was positively correlated with chronic kidney 484 
disease (gc=0.39±0.06) and atrial fibrillation (gc=0.09±0.03). Notably, type 2 diabetes showed 485 
abundant positive genetic correlations with multiple BAGs, including the brain, cardiovascular, 486 
metabolic, pulmonary, and renal. Detailed results are presented in Supplementary eFile 18. 487 
Furthermore, we calculated the genetic correlation between the nine BAGs and longevity49 and 488 
household income50. Our findings indicated that the cardiovascular (gc=-0.16±0.09) and 489 
pulmonary BAG (gc=-0.12±0.07) exhibited negative associations with longevity, defined as 490 
cases surviving at or beyond the age corresponding to the 90th survival percentile; the brain 491 
BAG (gc=-0.21±0.04), musculoskeletal (gc=-0.29±0.03), and pulmonary BAG (gc=-0.16±0.03)  492 
were negatively genetically correlated with household income. We used GWAS summary 493 
statistics from a prior study51 to detect a significant genetic correlation between the immune 494 
BAG (gc=-0.13±0.03), pulmonary BAG (gc=-0.09±0.03), and telomere length (Supplementary 495 
eTable 5). 496 
 These genetic correlations yield insights into potential shared mechanisms underlying the 497 
nine BAGs, their relationships with chronic diseases, particularly AD and type 2 diabetes, and 498 
cognition. These compelling results prompted us to explore the potential causal effects of these 499 
traits on the nine BAGs. In the subsequent section, we unbiasedly selected 17 clinical traits 500 
encompassing chronic diseases, cognition, and lifestyle factors to perform Mendelian 501 
randomization (Method 3g).  502 
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Figure 5: Partitioned heritability enrichment and genetic correlation of the nine biological 503 
age gaps 504 

 505 
a) Cell type-specific partitioned heritability estimates for neurons, oligodendrocytes, and 506 
astrocytes. b) Partitioned heritability estimates for the general 53 functional categories. For 507 
visualization purposes, we only showed the four categories with the highest significant estimates 508 
for each BAG. The label for 500 denotes a 500-bp window around each of the 24 main 509 
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annotations in the full baseline model, which prevents a biased estimate inflated by heritability in 510 
flanking regions52. c) Tissue-specific partitioned heritability estimates using gene sets from 511 
multi-tissue gene expression data. d) Tissue and chromatin-specific partitioned heritability 512 
estimates using multi-tissue chromatin data. e) Cheverud's Conjecture: the genetic correlation 513 
between two BAGs (gc, lower triangle) mirrors their phenotypic correlation (pc, upper triangle). 514 
f) Genetic correlations between the nine BAGs and 41 clinical traits, including chronic diseases 515 
and their subtypes involving multiple human organ systems, education, intelligence, and reaction 516 
time. The symbol * denotes Bonferroni-corrected significance; the absence of * indicates all 517 
results remain significant after correction. The standard error of the estimated parameters is 518 
presented using error bars. Abbreviation: AD: Alzheimer's disease; ASD: autism spectrum 519 
disorder; LLD: late-life depression; SCZ: schizophrenia; DB: type 2 diabetes; WMH: white 520 
matter hyperintensity; HPLD: hyperlipidemia; AF: atrial fibrillation; RA: rheumatoid arthritis; 521 
CD: Crohn's disease; CKD: chronic kidney disease.   522 
 523 

Hepatic and musculoskeletal biological age gaps are causally associated with each other 524 

We performed two-sample bi-directional Mendelian randomization for each pair of BAGs by 525 
excluding overlapping populations to avoid bias16 (Method 3j). We found that the hepatic and 526 
musculoskeletal BAGs showed a bi-directional causal relationship [from the hepatic BAG to the 527 
musculoskeletal BAG: P-value=9.85x10-7, OR (95% CI) = 1.47 (1.26, 1.71); from the 528 
musculoskeletal BAG to the hepatic BAG: P-value=1.54x10-8, OR (95% CI) = 2.78 (1.95, 3.97)] 529 
(Fig. 6). This causal relationship echoes our genetic correlation results: the musculoskeletal and 530 
hepatic BAGs showed the highest genetic correlation compared to other organ systems (Fig. 5e). 531 
Detailed results and sensitivity check results are presented in Supplementary eFile 19 and 532 
Supplementary eFigure 20 and 21. 533 

We performed three additional sensitivity check analyses for this bi-directional causal 534 
relationship. First, we reperformed the GWAS for hepatic BAG and musculoskeletal BAG, 535 
incorporating weight as a covariate due to its established causal associations with several organ 536 
systems (Fig. 6). This analysis reaffirmed this bi-directional causal relationship (Supplementary 537 
eText 3A). Furthermore, we performed Mendelian randomization by excluding the common 538 
SNP within the APOE gene (rs429358) due to its pleiotropic effects. This analysis underscored 539 
the robustness of the potential causal relationship from the hepatic BAG to the musculoskeletal 540 
BAG, both with and without including this SNP as an instrumental variable, as elaborated in 541 
Supplementary eText 3B. Finally, the latent causal variable (LCV53, Method 3j) model 542 
confirmed a partially genetically causal effect from the hepatic BAG to the musculoskeletal 543 
BAG [genetic causality proportion =0.75±0.14, -log10(P-value)=11.0, gc=0.41±0.06] 544 
(Supplementary eTable 6). 545 
 546 
 547 
Biological age gaps are causally associated with several chronic diseases, body weight, and 548 

sleep duration 549 

We investigated the bi-directional causal effects between chronic diseases (e.g., AD) and 550 
lifestyle factors (e.g., sleep duration) and the nine BAGs. We unbiasedly and systematically 551 
included 17 clinical traits (Method 3j) guided by our genetic correlation results (Fig. 5f). The 17 552 
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clinical traits included chronic diseases linked to the brain, cardiovascular, metabolic, digestive, 553 
renal, and musculoskeletal systems, cognition, and lifestyle factors (Supplementary eTable 7).  554 
 In the forward Mendelian randomization, we found potential causal effects of AD on the 555 
brain [P-value=3.99x10-8, OR (95% CI) = 1.05 (1.03, 1.06), number of SNPs=10], hepatic [P-556 
value=7.53x10-7, OR (95% CI) = 1.03 (1.02, 1.04), number of SNPs=10], musculoskeletal [P-557 
value=1.73x10-5, OR (95% CI) = 0.98 (0.97, 0.99), number of SNPs=10], and renal [P-558 
value=5.71x10-4, OR (95% CI) = 0.98 (0.97, 0.99), number of SNPs=10] BAGs. Body weight 559 
showed causal effects on multiple organ systems, including the immune [P-value=8.96x10-5, OR 560 
(95% CI) = 1.08 (1.04, 1.11), number of SNPs=160], musculoskeletal [P-value=4.32x10-15, OR 561 
(95% CI) = 0.83 (0.79, 0.86), number of SNPs=160], pulmonary [P-value=3.50x10-7, OR (95% 562 
CI) = 0.84 (0.79, 0.90), number of SNPs=160], and renal BAGs [P-value=4.53x10-13, OR (95% 563 
CI) = 1.18 (1.13, 1.23), number of SNPs=160]. In addition, we also found that Crohn's disease 564 
had causal effects on the hepatic BAG [P-value=3.00x10-3, OR (95% CI) = 1.02 (1.00, 1.03), 565 
number of SNPs=77], type 2 diabetes on the metabolic BAG [P-value=9.92x10-12, OR (95% CI) 566 
=1.16 (1.09, 1.24), number of SNPs=8], inflammatory bowel disease [P-value=1.42x10-3, OR 567 
(95% CI) = 1.02 (1.00, 1.03), number of SNPs=80] and primary biliary cholangitis [P-568 
value=7.41x10-4, OR (95% CI) = 1.02 (1.00, 1.03), number of SNPs=16] on the musculoskeletal 569 
BAG (Fig. 6).  570 
 For the inverse Mendelian randomization, we found potential causal effects of the 571 
metabolic [P-value=6.85x10-4, OR (95% CI) = 0.94 (0.91, 0.97), number of SNPs=71] and 572 
pulmonary [P-value=3.79x10-5, OR (95% CI) = 0.84 (0.79, 0.91), number of SNPs=62] BAGs on 573 
body weight, the cardiovascular BAG on triglycerides versus lipid ratio in very large very-low-574 
density lipoprotein (VLDL) [P-value=2.14x10-4, OR (95% CI) = 1.09 (1.04, 1.14), number of 575 
SNPs=39], and the brain BAG on sleep duration [P-value=2.61x10-3, OR (95% CI) = 1.09 (1.04, 576 
1.14), number of SNPs=10] (Fig. 6). Detailed results are presented in Supplementary eFile 20. 577 

We performed several sensitivity analyses (Method 3j) to test the robustness of our 578 
findings. Based on these sensitivity checks, we identified potential outlier instrumental variables 579 
(IVs, i.e., SNPs) for four Mendelian randomization tests (AD and body weight on 580 
musculoskeletal BAG, Crohn's disease on hepatic BAG, and type 2 diabetes on metabolic BAG) 581 
in the forward Mendelian randomization and one Mendelian randomization test (metabolic BAG 582 
on body weight) in the inverse Mendelian randomization. Detailed results of the sensitivity check 583 
are presented in Supplementary eFigure 22-37 for all significant results. We showcased a 584 
detailed analysis of the sensitivity results for the metabolic BAG on body weight in 585 
Supplementary eText 3C. In summary, the potential causal link from the metabolic BAG to 586 
body weight remained robust across several sensitivity checks despite the identification of two 587 
potential outlier instrumental variables, namely, rs117233107 and rs33959228.  588 

In addition, we used the LCV method and found a partially genetically causal effect from 589 
longevity (99th survival percentile) to the brain BAG (genetic causality proportion =0.45±0.20, 590 
P-value=0.04). Importantly, we selected the LCV method over Mendelian randomization 591 
because of the partial population overlap between the longevity GWAS summary statistics and 592 
our BAG GWAS summary statistics. The LCV analysis also detected a partially genetically 593 
causal effect from telomere length to the immune BAG (genetic causality proportion =0.33±0.12, 594 
P-value=0.0002) and the pulmonary BAG (genetic causality proportion =0.67±0.20, P-595 
value=3.57x10-16) (Supplementary eTable 6).  596 
  597 
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Figure 6: Causal multi-organ network between the 9 biological age gaps and 17 clinical 598 
traits of chronic diseases, lifestyle factors, and cognition  599 
 600 

 601 
We conducted two sets of Mendelian randomization analyses. Firstly, we examined the causal 602 
relationships between each pair of BAGs, excluding overlapping populations. Secondly, we 603 
investigated the causal associations between the 9 BAGs and the 17 unbiasedly selected clinical 604 
traits. Bi-directional analyses, including forward and inverse analyses on the exposure and 605 
outcome variables, were performed in all experiments. Significant tests were adjusted for 606 
multiple comparisons using the Bonferroni correction. Each colored arrow represents a potential 607 
causal effect connecting the exposure variable to the outcome variable. The symbol "+" denotes 608 
an OR larger than 1, while "-" represents an OR smaller than 1. Detailed OR and 95%CI 609 
information can be found in Supplementary eFigure 38 and eFile 19-20. It's crucial to approach 610 
the interpretation of these potential causal relationships with caution despite our thorough efforts 611 
in conducting multiple sensitivity checks to assess any potential violations of underlying 612 
assumptions. Abbreviation: AD: Alzheimer's disease; T2D: type 2 diabetes; PBC: primary 613 
biliary cholangitis; CD: Crohn's disease; IBD: inflammatory bowel disease; CI: confidence 614 
interval; OR: odds ratio.  615 
  616 
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Discussion 617 

The current study comprehensively depicts the genetic architecture of common genetic variants 618 
on biological aging of nine human organ systems using multimodal data from 377,028 European 619 
ancestry participants. We identified many genomic loci for the BAGs of nine human organ 620 
systems, which exhibited significant associations with a wide range of clinical traits documented 621 
in the GWAS Catalog. These associations were observed within a phenotypic landscape 622 
characterized by BAG-organ specificity and inter-organ connections. The brain BAG showed the 623 
highest SNP-based heritability estimate among all nine organ systems. GSEA, tissue-specific 624 
gene expression patterns, and heritability enrichment results provided additional evidence 625 
supporting biological validation for BAG-organ specificity and inter-organ connections. The 626 
phenotypic correlation between BAGs was a proxy for their genetic correlation, thereby 627 
supporting the long-standing Cheverud's Conjecture. Mendelian randomization demonstrated 628 
potential causal relationships between chronic diseases, particularly AD and type 2 diabetes, 629 
body weight, sleep duration, and the nine BAGs.  630 

Our large-scale multi-organ GWAS significantly expands the current catalog of genetic 631 
variants associated with health-related traits. The discovery of these identified genomic loci has 632 
significant clinical implications. These findings provide an invaluable foundation to validate 633 
genes or regulatory elements, molecular pathways, and biological processes related to the clinical 634 
traits and diseases of interest in the current study and future GWAS analyses. Previous GWAS 635 
mainly focused on the BAG in one organ system, such as the brain BAG54–57 from imaging-636 
derived phenotypes. These investigations have largely overlooked the inherent 637 
interconnectedness of human organ systems, which are intricately intertwined with distinct axes. 638 
Recent studies have identified notable axes, such as the heart-brain-liver11, brain-eye58, and 639 
brain-heart59 axes, highlighting the importance of comprehending these intricate relationships to 640 
understand human physiology and health. 641 

Our phenome-wide associations validate the pleiotropic effects of the identified genomic 642 
loci, influencing various health-related clinical traits in the GWAS Catalog. Our findings also 643 
highlight BAG-organ specificity and inter-organ connections, further supporting that biological 644 
aging is a complex, multifaceted phenomenon. The human brain regulates various physiological 645 
processes and maintains homeostasis throughout the body. Consequently, it is unsurprising that 646 
the brain exhibits interconnectedness with clinical traits associated with multiple organ systems. 647 
The remarkable enrichment of metabolic traits across various organ systems is unsurprising. As a 648 
vital metabolic organ, the liver substantially overlaps genetic variants and loci with both the 649 
hepatic and metabolic BAGs. Biologically, the liver's metabolic functions are intricately 650 
regulated by hormones like insulin and other metabolic regulators12. Similarly, the interplay 651 
between immune and metabolic processes is essential for maintaining overall health and is 652 
crucial for the body's ability to respond to pathogens and regulate metabolic homeostasis6. 653 

We highlighted that the brain BAG is the most heritable among the nine organ systems. 654 
Determining the genetic heritability of specific organ systems can be complex as no organ 655 
system functions independently, and many diseases or traits involve complex interactions 656 
between multiple organ systems, as well as genetic and environmental factors. The brain plays a 657 
crucial role in developing and functioning various physiological processes across the body. Its 658 
intricate structure and diverse cell types render it vulnerable to genetic influences60. Therefore, 659 
the brain may exhibit higher genetic stability and less environmental variability61 than other 660 
organs. The human brain's extensive functional connectivity and intricate networks may also 661 
contribute to its higher heritability. These networks facilitate the transmission of genetic 662 
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information and the propagation of genetic effects across different brain regions30. Lastly, 663 
genetic variations shaping the human brain are pleiotropic and influence cognitive abilities, 664 
behavior, and susceptibility to neurological and psychiatric disorders. Collectively, these factors 665 
may contribute to the marked genetic heritability observed in the human brain compared to other 666 
organ systems. 667 

Our gene-level and partitioned heritability analyses further validate our GWAS findings, 668 
supporting BAG-organ specificity and inter-organ connections. In GSEA, the genes associated 669 
with the cardiovascular BAG were implicated in the IGF-II pathway. IGF-II activates two 670 
receptors (IGF-1R and IR-A) to promote cell growth and survival. The IGF signaling pathway is 671 
essential for cardiac development in the human heart - the first functional organ to develop62. In 672 
particular, IGF-II promotes fetal cardiomyocyte proliferation through the tyrosine kinase 673 
receptors IGF1R and INSR. Previous research provided appealing evidence on IGF signaling in 674 
cardiac regeneration in animal models and induced pluripotent stem cells63. The flavonoid 675 
glucuronidation pathway was the most significant enrichment result shown in the hepatic BAG. 676 
A previous study demonstrated that procyanidin C1, a flavonoid in grape seed extract, extended 677 
the lifespan of mice64. Furthermore, ample evidence indicated that natural flavonoids could be 678 
potential therapeutic approaches for non-alcoholic fatty liver disease65. The metabolites formed 679 
through this pathway can also exert effects beyond the liver and impact other organ systems. Our 680 
tissue-specific gene expression analyses provided additional support for the biological relevance 681 
of our GWAS findings, as the identified genes exhibited specific expression patterns within 682 
tissues from the corresponding organ systems. 683 

The heritability enrichment analysis further validates the BAG-organ specificity and 684 
inter-organ connections by highlighting the disproportional heritability enrichment of genetic 685 
variants in different functional categories, cell types, tissues, and chromatin states. The cell type-686 
specific enrichment results in the brain (i.e., oligodendrocytes) and cardiovascular (i.e., neurons) 687 
BAGs align with previous research. Specifically, Zhao et al. conducted a large-scale GWAS on 688 
brain white matter microstructure and found significant heritability enrichment in glial cells, 689 
particularly oligodendrocytes31, which aligns with our current findings. Our previous multimodal 690 
brain BAG GWAS54 also confirmed this enrichment in the brain BAG derived from the white 691 
matter microstructural features. Similarly, research has revealed the presence of an "intrinsic 692 
cardiac nervous system" within the heart, often called the "heart brain." This system consists of 693 
around 40,000 neurons similar to those found in the brain, indicating that the heart possesses a 694 
distinct nervous system66. 695 

Our genetic correlation results confirmed that the genetic correlation generally mirrors 696 
phenotypic correlations in multi-organ biological age. This suggests that environmental factors 697 
likely affect the aging of multiple organ systems in the same direction. Providing evidence for 698 
Cheverud's Conjecture can have clinical implications by providing valuable insights into the 699 
genetic basis of complex age-related diseases. For instance, by identifying the shared genetic 700 
factors underlying multiple age-related diseases, we can target these common pathways to 701 
develop novel treatments or repurpose existing drugs67 that have proven efficacy in one disease 702 
or condition for treating others. Moreover, the validation of Cheverud's Conjecture emphasizes 703 
the importance of considering the genetic covariance of age-related diseases in clinical practice. 704 
It underscores the need for comprehensive genetic assessments and genomic analyses to 705 
understand disease risk and progression68. 706 

We found a bi-directional causal relationship between the hepatic and musculoskeletal 707 
BAGs. Abundant research has suggested that liver function and metabolic health, particularly 708 
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related to glucose and lipid metabolism, can significantly impact musculoskeletal health69. This 709 
inter-organ connection can cause dysregulation of liver metabolism (e.g., non-alcoholic fatty 710 
liver disease) linked to musculoskeletal disorders, including osteoporosis, sarcopenia, and 711 
muscle wasting. The musculoskeletal system can also exert an inverse influence on liver 712 
function. Regular physical activity and muscle strength have been linked to enhanced liver health 713 
and decreased susceptibility to liver diseases. To further support this, causal effects of primary 714 
biliary cholangitis, a chronic liver disease, on elevated musculoskeletal BAG were confirmed in 715 
our Mendelian randomization results (Fig. 6). The absence of direct causal relationships between 716 
the remaining BAGs can be attributed to various factors with potential explanations and 717 
implications. One possible explanation is that the brain BAG, having the smallest sample size in 718 
our GWAS (after removing overlapping participants), may be limited in statistical power. In 719 
addition, this may suggest that various factors, including chronic diseases, environmental 720 
exposures, and lifestyle choices, influence biological aging in alternative pathways or mediate 721 
such changes. Thus, understanding the collective contribution of chronic diseases, environmental 722 
factors, and lifestyle choices is crucial for comprehending the overall aging process and its 723 
impact on organ health. 724 

We found that several clinical traits collectively cause organ systems to appear older or 725 
younger than their chronological age. For instance, body weight was causally associated with the 726 
immune, musculoskeletal, metabolic, and pulmonary BAGs. For several reasons, body weight 727 
can causally influence multiple organ systems. Excessive body weight (e.g., obesity) has 728 
metabolic consequences, including increased inflammation, insulin resistance, and dysregulation 729 
of metabolic pathways in adipose tissue70. It also leads to mechanical stress on the body, 730 
contributing to musculoskeletal strain71 and cardiovascular workload72. Hormonal imbalances73 731 
and lifestyle factors linked to body weight also influence multi-organ function and the 732 
development of chronic diseases. Being overweight is also a risk factor for type 2 diabetes, 733 
which was positively causally associated with metabolic BAG (Fig. 6). AD was causally linked 734 
to the brain, hepatic, musculoskeletal, and renal BAGs. AD, a neurodegenerative disorder 735 
primarily affecting the brain, can have causal influences on multiple organ systems. For example, 736 
it has broader systemic involvement beyond the brain, mediated by mechanisms including 737 
protein aggregation (e.g., amyloid-β and tau74), vascular dysfunction75, inflammation76, and other 738 
secondary factors. Protein aggregates can spread to other organs; vascular abnormalities can 739 
impact blood flow; inflammation can affect distant organ systems; secondary factors, such as 740 
medication use and lifestyle changes, also contribute.  741 

 742 
Limitations 743 

This study has several limitations. First, the generalizability of genetic findings from European to 744 
non-European ancestry populations is limited. Future studies can extend their scope to 745 
encompass a more diverse array of underrepresented ethnicities, a wider range of disease 746 
cohorts, and individuals of varying ages throughout their entire lifespan. Secondly, it is essential 747 
to approach the causality results cautiously, considering the assumptions underlying Mendelian 748 
randomization. In future studies, more advanced multi-response Mendelian randomization 749 
methods77 should be utilized. Thirdly, despite our efforts of quality check analyses to scrutinize 750 
our primary GWAS, it's essential to acknowledge that potential ascertainment bias78 and 751 
confounding related to demographic and socioeconomic factors could potentially introduce 752 
cryptic population stratification, which may not be entirely resolved in the current study. Finally, 753 
the large number of genomic loci identified in our GWAS may have connections to BAGs due to 754 
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various factors, such as biological processes, potential confounding due to demographics, or 755 
specific study design and phenotyping aspects. It's important to note that the effects at these loci 756 
might not be inherently biological but could be influenced by other unmeasured confounding 757 
factors. 758 
 759 
Outlook 760 

In conclusion, our study presents compelling genetic evidence to support that no organ system is 761 
an island1 – the collective influence of various chronic diseases on these multi-organ systems 762 
and the interconnectedness among these human organ systems. These findings highlight the 763 
importance of comprehensively understanding the underlying causes of chronic diseases within 764 
the multi-organ network. By shedding light on its comprehensive genetic architecture, our study 765 
paves the way for future research to unravel complex disease mechanisms and develop holistic 766 
approaches to ameliorate overall organ health. 767 
  768 

 
1 We adapt the concept of "No Man Is An Island" from the poem by John Donne, highlighting the 
interconnectedness of human organ systems. 
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Methods 769 

Method 1: Support vector machines to predict the chronological age of nine organ systems 770 

Our prior study3 used support vector machines to predict the chronological age of healthy 771 
individuals – defined as no self-reported and healthcare-documented lifetime chronic medical 772 
conditions – based on phenotypes from the nine organ systems. Support vector machine 773 
regression was preferred over linear regression for its enhanced robustness to outliers and 774 
overfitting. We performed a 20-fold cross-validation procedure and developed predictive models 775 
for each organ system. 776 

In each of the 20-fold cross-validation iterations, a linear support vector machine was 777 
employed to predict chronological age. The training set consisted of 19 folds of individuals, and 778 
the fitted regression coefficients (feature weights) were then applied iteratively to the remaining 779 
held-out set (test set) to predict the chronological age of each healthy individual. This approach 780 
ensured that the prediction model was not trained using the same individuals for which it made 781 
predictions, minimizing the risk of overfitting. Before each iteration of model training, all 782 
measures (excluding categorical variables) were standardized using the weighted column mean 783 
and standard deviation computed within the training set. The SVM box constraint and kernel 784 
scale were set to unity, while the half-width of the epsilon-insensitive band was set to a tenth of 785 
the standard deviation of the interquartile range of the predicted variable (chronological age). 786 
The SVM was solved using sequential minimal optimization with a gap tolerance of 0.001. The 787 
mathematical principles of support vector machines are well-established in the field and have 788 
been widely recognized79. Further details on this topic can be found in our previous study3. 789 

The concept of biological age gap derived from artificial intelligence has been widely 790 
investigated, especially the brain age80,81. The calculation of the nine BAGs were established in 791 
our previous works3,14. We previously showed that the prediction accuracy of biological age was 792 
not influenced by the number of phenotypes, despite variations across different organ systems. 793 
While some prior studies82 used deep learning for brain BAG and obtained a lower mean 794 
absolute error, we have previously demonstrated that lower mean absolute error might 795 
compromise sensitivity to disease-related information83. In our previous GWAS14, which 796 
separately examined three multimodal brain BAGs derived from T1-weighted, diffusion, and 797 
resting-state fMRI data, we extensively investigated the influence of various brain imaging 798 
feature types and study designs on the genetic signals. Our results unveiled both the consistency 799 
and distinctions in the genetic foundations across these diverse contexts. Finally, we recognize 800 
that ascertainment bias may be present in our GWAS due to variations in sequencing techniques, 801 
differences between populations (e.g., disease populations vs. healthy controls), and 802 
socioeconomic factors that have not been explicitly modeled in our study. 803 

 804 
Method 2: Study populations 805 

UKBB is a population-based study of approximately 500,000 people recruited between 2006 and 806 
2010 from the United Kingdom. The UKBB study has ethical approval, and the ethics committee 807 
is detailed here: https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/governance/ethics-808 
advisory-committee.  809 

The current study analyzed multimodal data, including imaging-derived phenotypes 810 
(IDP) and physical and physiological measures in nine human organ systems from 154,774 811 
UKBB participants. In our previous study, we constructed BAGs for eight organ systems using 812 
machine learning, including MRI data for brain BAG from 30,108 participants (European 813 
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ancestry), pulse rate and blood pressure data for cardiovascular BAG, liver-related blood 814 
biomarkers for hepatic BAG, C-reactive protein and blood hematology variables for immune 815 
BAG, blood biomarkers for metabolic BAG, physical measurements and vitamin D for 816 
musculoskeletal BAG, lung functioning measurements for pulmonary BAG, and glomerular 817 
filtration and electrolyte regulation biomarkers for renal BAG from 111,543 participants. 818 
Furthermore, the current study also used 60 optical coherence tomography (OCT)-derived 819 
measures from 36,004 participants to derive the BAG of the ninth organ system – the eye BAG. 820 
The inclusion criteria for the features used to predict the eight BAGs, the machine learning 821 
methods, and cross-validation procedures are detailed in our previous study3. We initially used 822 
the 88 OCT-derived measures (category ID: 10079) for the additional eye BAG in 67,549 823 
participants. Of these measures, 28 were excluded due to a high missing rate (>20% of 824 
participants). Additionally, 4172 participants were excluded due to missing data, and 1798 825 
participants identified as outliers (outside mean +/- 6SD) for the 60 remaining measures were 826 
discarded. This finally resulted in 41,966 participants (36,004 European ancestry participants). 827 
The included 2444 features to derive the BAG of the nine organ systems are presented in 828 
Supplementary eFile 21.  829 

In addition, we also performed GWAS for seven variables from 222,254 UKBB 830 
participants by excluding the 154,774 participants from the BAG populations to avoid bias due 831 
to overlapping samples. These variables included six lifestyle factors and one cognitive variable: 832 
N=219,661 (European ancestry) for coffee intake (Field ID:1498), N=221,393 for fresh fruit 833 
intake (Field ID:1309), N=221,739 for tea intake (Field ID:1488), N=220,765 for sleep duration 834 
(Field ID:1160), N=209,012 for time spent outdoors in summer (Field ID:1050), N=221,337 for 835 
body weight (Field ID:21002), and N=220,624 for reaction time (Field ID:20023).             836 

The current work was jointly performed under application numbers 35148 (i.e., genetic 837 
data) and 60698 (i.e., the generation of the nine BAGs). In total, we analyzed data from 377,028 838 
individuals of European ancestry in the current study. 839 
 840 
Method 3: Genetic analyses 841 

We used the imputed genotype data for all genetic analyses, and our quality check pipeline 842 
resulted in 487,409 participants and 6,477,810 SNPs. After merging with the population for each 843 
BAG, we included 30,108-111,543 European ancestry participants for the nine BAGs (Fig. 1). 844 
To avoid bias due to overlapping populations16, we also used the rest of the UKBB participants 845 
of European ancestry (non-overlapping) to derive the GWAS summary statistics for several 846 
lifestyle factors (Method 3j). We summarize the genetic QC pipeline. First, we excluded related 847 
individuals (up to 2nd-degree) from the complete UKBB sample using the KING software for 848 
family relationship inference.84 We then removed duplicated variants from all 22 autosomal 849 
chromosomes. Individuals whose genetically identified sex did not match their self-850 
acknowledged sex were removed. Other excluding criteria were: i) individuals with more than 851 
3% of missing genotypes; ii) variants with minor allele frequency (MAF) of less than 1% 852 
(dosage mode85); iii) variants with larger than 3% missing genotyping rate; iv) variants that 853 
failed the Hardy-Weinberg test at 1x10-10. To adjust for population stratification,86 we derived 854 
the first 40 genetic principle components (PC) using the FlashPCA software87. Details of the 855 
genetic quality check protocol are described elsewhere14,46,88. Details of the genetic quality check 856 
protocol are described elsewhere29,46.  857 
 858 
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(a): Genome-wide association analysis: For GWAS, we ran a linear regression using Plink89 for 859 
each BAG, controlling for confounders of age, dataset status (training/validation/test or 860 
independent test dataset), age x squared, sex, age x sex interaction, age-squared x sex interaction, 861 
and the first 40 genetic principal components; additional covariates for total intracranial volume 862 
and the brain position in the scanner were included for brain BAG GWAS. We adopted the 863 
genome-wide P-value threshold (5 x 10-8) and annotated independent genetic signals considering 864 
linkage disequilibrium (see below).  865 

To check the robustness of our GWAS results, we performed several sensitivity check 866 
analyses, including i) sex-stratified GWAS for males and females, ii) split-sample GWAS by 867 
randomly dividing the entire population into two splits (sex and age-matched), iii) non-European 868 
ancestries GWAS, and iv) fastGWA for linear mixed effect GWAS, hypothesizing that the main 869 
GWASs with European ancestry did not show substantial genomic inflation due to cryptic 870 
population stratification. In all our sensitivity check analyses, we considered linkage 871 
disequilibrium. We only evaluated the independent significant SNPs of the two sets of β 872 
coefficients between splits, genders, ancestry groups, and GWAS methods. The definition of the 873 
independent significant SNPs used the same parameters as in FUMA (Supplementary eMethod 874 
1). We used the raw genotype data and the Plink clump command (250 kb) and defined a set of 875 
SNPs in linkage disequilibrium with the independent significant SNPs – analogous to the 876 
candidate SNPs in FUMA.   877 

 878 
(b): SNP-based heritability: We estimated the SNP-based heritability (h2) using GCTA24 with 879 
the same covariates in GWAS. We reported results from two experiments for each BAG using i) 880 
the full sample sizes and ii) randomly down-sampled sample sizes to that (N=30,108) of the brain 881 
BAG with comparable distributions regarding sex and age – the sample size of brain BAGs was 882 
smaller than the other BAGs.  883 
 884 
(c): Annotation of genomic loci: The annotation of genomic loci and mapped genes was 885 
performed via FUMA90. For the annotation of genomic loci, FUMA first defined lead SNPs 886 
(correlation r2 ≤ 0.1, distance < 250 kb) and assigned them to a genomic locus (non-887 
overlapping); the lead SNP with the lowest P-value (i.e., the top lead SNP) was used to represent 888 
the genomic locus in Fig. 1. For gene mappings, three different strategies were considered. First, 889 
positional mapping assigns the SNP to its physically nearby genes (a 10 kb window by default). 890 
Second, eQTL mapping annotates SNPs to genes based on eQTL associations using the GTEx v8 891 
data. Finally, chromatin interaction mapping annotates SNPs to genes when there is a significant 892 
chromatin interaction between the disease-associated regions and nearby or distant genes90. The 893 
definition of top lead SNP, lead SNP, independent significant SNP, and candidate SNP can be 894 
found in Supplementary eMethod 1. 895 
 For the top lead SNP of each identified genomic locus, we showcased whether it was 896 
previously associated with any clinical traits considering linkage disequilibrium (5000kb around 897 
the top lead SNP) in the EMBL-EBI GWAS Catalog platform 898 
(https://www.ebi.ac.uk/gwas/home). For instance, we aimed to query the locus with the top lead 899 
SNP (rs60569686) associated with the renal BAG. First, we looked up the chromosomal position 900 
(i.e., chromosome 13) and found that the location is chr13:49170160 (GRCh38). We then search 901 
the GWAS Catalog for a 5000kb region around this top lead SNP: “chr13:49167660-49172660” 902 
(https://www.ebi.ac.uk/gwas/regions/chr13:49167660-49172660; query date: 12th October 903 
2023). In this region, we discovered no prior associations. It's important to note that this search is 904 
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not comprehensive, as new GWAS studies continually emerge on various open platforms, such 905 
as IEU OpenGWAS91 (https://gwas.mrcieu.ac.uk/) and GWAS ATLAS23 906 
(https://atlas.ctglab.nl/PheWAS). 907 
 908 
(d): Phenome-wide association look-up queries: We first queried the significant independent 909 
SNPs within each locus in the EMBL-EBI GWAS Catalog (query date: 24th April 2023, via 910 
FUMA version: v1.5.4) to determine their previously identified associations with any other traits 911 
(P-value<1x10-5 by default in the EMBL-EBI GWAS Catalog). For visualization purposes, we 912 
further mapped the associated traits into organ-specific groups and other chronic disease traits 913 
and cognition. We performed the following procedure to fully consider LD and remove 914 
redundant associations among the independent significant SNPs. If the top lead SNP showed any 915 
clinical associations, this would present the current locus; if not, we queried the independent 916 
significant SNPs (in high correlation with the top lead SNP), starting with the most significant 917 
SNPs, until we identified established associations. In this way, only one genetic variant within 918 
each genomic locus was considered. We also conducted a complementary phenome-wide 919 
association query on the GWAS Atlas platform. We applied the same P-value threshold search 920 
criteria as those used in the EMBL-EBI GWAS Catalog. The same procedure, considering 921 
linkage disequilibrium and redundant associations, was applied. These exemplary findings are 922 
presented as a supplementary search to complement the results shown in Fig. 2a, and are 923 
available in Supplementary eText 2. 924 
 925 
(e): Gene set enrichment analysis: We first performed gene-level association analysis using 926 
MAGMA33. First, gene annotation was performed to map the SNPs (reference variant location 927 
from Phase 3 of 1,000 Genomes for European ancestry) to genes according to their physical 928 
positions. Of note, other advanced annotation methods exist that integrate functional insights, 929 
such as brain chromatin interaction92 and cell-type-specific gene expression93. We then 930 
performed gene-level associations based on the SNP GWAS summary statistics to obtain gene-931 
level p-values between the nine BAGs and the curated protein-encoding genes containing valid 932 
SNPs. We performed GSEA using the gene-level association p-values. Gene sets were obtained 933 
from the Molecular Signatures Database (MsigDB, v7.5.1)94, including 6366 curated and 10,402 934 
ontology gene sets. All other parameters were set by default for MAGMA. The Bonferroni 935 
method was used to correct multiple comparisons for all tested gene sets. 936 
 937 
(f): Tissue-specific gene expression analysis: MAGMA performed gene-property analyses to 938 
identify tissue-specific gene expression of the nine BAGs. The gene-property analysis converts 939 
the gene-level association P-values (above) to Z scores and tests a specific tissue's gene 940 
expression value versus the average expression value across all tissues in a regression model. 941 
Bonferroni correction was performed for all tested gene sets. We reported the results from the 54 942 
tissue types using the GTEx V8 data.   943 
 944 
(g): Gene-drug-disease network: We tested the enrichment of the nine BAG-linked genes in the 945 
targeted gene sets for different drug categories from the DrugBank database38. The gene-drug-946 
disease network was constructed to prioritize potentially repositionable drugs. The GREP 947 
software37 performs Fisher's exact tests to examine whether the prioritized genes are enriched in 948 
gene sets targeted by drugs in a clinical indication category for a certain disease or condition. 949 
Bonferroni correction was performed for all tested drugs. 950 
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 951 
(h): Genetic correlation: We used the LDSC17 software to estimate the pairwise genetic 952 
correlation (gc) between each pair of BAGs, as well as between the nine BAG and 41 other 953 
clinical traits, including chronic diseases involving multiple organ systems, such as AD for brain 954 
and chronic kidney disease for kidney, cognition, and lifestyle factors. We used the precomputed 955 
LD scores from the 1000 Genomes of European ancestry. To ensure the suitability of the GWAS 956 
summary statistics, we first checked that the selected study's population was European ancestry; 957 
we then guaranteed a moderate SNP-based heritability h2 estimate. Notably, LDSC corrects for 958 
sample overlap and provides an unbiased estimate of genetic correlation68. The inclusion criteria 959 
and finally included traits are detailed in Supplementary eTable 3. Bonferroni correction was 960 
performed for the 41 clinical traits. 961 
 962 
(i): Partitioned heritability estimate: Our objective is to comprehend how distinct functional 963 
genome categories play varying roles in contributing to the heritability of the nine BAGs. 964 
Therefore, the partitioned heritability analysis via stratified LD score regression calculates the 965 
extent to which heritability enrichment can be attributed to predefined and annotated genome 966 
regions and categories40. Three sets of functional categories and cell and tissue-specific types 967 
were considered. First, the partitioned heritability was calculated for 53 general functional 968 
categories (one including the entire set of SNPs). The 53 functional categories are not specific to 969 
any cell type and include coding, UTR, promoter and intronic regions, etc. The details of the 53 970 
categories are described elsewhere40. Subsequently, cell and tissue type-specific partitioned 971 
heritability was estimated using gene sets from Cahoy et al.41 for three main cell types (i.e., 972 
astrocyte, neuron, and oligodendrocyte), multi-tissue chromatin states-specific data 973 
(ROADMAP42 and ENTEx43), and multi-tissue gene expression data (GTEx V836). Bonferroni 974 
correction was performed for all tested annotations and categories. The detailed methodologies 975 
for the stratified LD score regression are presented in the original work40. The LD scores and 976 
allele frequencies for the European ancestry were obtained from a predefined version based on 977 
data from the 1000 Genomes project. 978 
 979 
(j): Two-sample bi-directional Mendelian randomization: We investigated whether one BAG 980 
was causally associated with another BAG and whether the 41 clinical traits were causally 981 
associated with the nine BAGs (Fig. 5). To this end, we employed a bidirectional, two-sample 982 
Mendelian randomization using the TwoSampleMR package95. Both the forward and inverse 983 
Mendelian randomization were performed between each pair of traits by switching the exposure 984 
and outcome variables. We applied five different Mendelian randomization methods and 985 
reported the results of inverse variance weighted (IVW) in the main text and the four others (i.e., 986 
Egger, weighted median, simple mode, and weighted mode estimators) in the supplement.  987 
 Mendelian randomization needs to fulfill several instrumental variable assumptions96, 988 
including:  989 

• the genotype is associated with the exposure 990 
• the genotype is associated with the outcome through the studied exposure only (exclusion 991 

restriction assumption) 992 
• the genotype is independent of other factors that affect the outcome (independence 993 

assumption97) 994 
 We followed a systematic procedure guided by the STROBE-MR Statement98 in all steps 995 
of our causality analyses, including selecting exposure and outcome variables, reporting 996 
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comprehensive statistics, performing sensitivity checks for potential violations of underlying 997 
assumptions, and performing the analyses using alternative methods and software53,77. For the 998 
causal inference of each pair of BAGs, all GWAS summary statistics were derived from our 999 
analyses by excluding overlapping populations of the two BAGs. For example, to test the causal 1000 
relationship between the brain BAG and cardiovascular BAG, we reran GWAS for the 1001 
cardiovascular BAG by excluding the partially overlapping population from the brain BAG. For 1002 
all the seven body organ systems that had entirely overlapping populations, we used the GWAS 1003 
data from the split-sample analyses (Method 3a). For instance, the GWAS for the cardiovascular 1004 
BAG was from the first-split data, and the pulmonary BAG was from the second-split data. 1005 
Bonferroni correction was performed for the tested BAGs. 1006 
 One key challenge in our hypothesis-driven Mendelian randomization is to select these 1007 
exposure variables unbiasedly. Clinical traits sharing common genetic covariance with nine 1008 
BAGs are more likely to be causally associated with them. We performed a systematic inclusion 1009 
procedure using the following criteria to overcome this. We manually queried the 41 clinical 1010 
traits – used in our genetic correlation analyses – in the IEU GWAS database, specifically 1011 
curated for Mendelian randomization analyses. We ranked all available studies for a certain trait 1012 
(e.g., AD) based on the sample sizes. We then chose the study whose populations were of 1013 
European ancestry and did not include UKBB participants to avoid bias due to overlapping 1014 
populations16. For the traits whose GWAS data were available in the IEU GWAS database, we 1015 
used the TwoSampleMR package to perform the Mendelian randomization analysis. For the 1016 
traits whose data were not appropriate in the IEU GWAS database, we then performed another 1017 
manual query in the EMBL-EBI GWAS Catalog database to download the available GWAS 1018 
summary statistics with the same filter criteria. For the traits whose GWAS data were dominated 1019 
by studies using UKBB participants in both databases, we ran GWAS using our own UKBB data 1020 
by excluding overlapping populations. Finally, after harmonizing their GWAS summary 1021 
statistics (using the function harmonise_data from 2SampleMR), this resulted in 17 clinical traits 1022 
with at least eight valid IVs (i.e., SNPs). The 17 clinical traits included chronic diseases affecting 1023 
multiple organ systems, cognition, and lifestyle factors (Supplementary eTable 7). Bonferroni 1024 
correction was performed for all tested clinical traits.  1025 
 We performed several sensitivity analyses. First, a heterogeneity test was performed to 1026 
check for violating the IV assumptions. Horizontal pleiotropy was estimated to navigate the 1027 
violation of the IV's exclusivity assumption99 using a funnel plot, single-SNP Mendelian 1028 
randomization approaches, and Mendelian randomization Egger estimator100. Moreover, the 1029 
leave-one-out analysis excluded one instrument (SNP) at a time and assessed the sensitivity of 1030 
the results to individual SNP.  1031 

Following these analyses, we performed three supplementary sensitivity checks for some 1032 
specific significant causal signals: i) The exclusion of two common SNPs/IVs (rs429358 and 1033 
rs7412) in the APOE gene, considering their potential pleiotropic effects for the hepatic BAG on 1034 
musculoskeletal BAG; ii) Incorporating body weight as a covariate in the GWAS for the bi-1035 
directional causality between the hepatic BAG and musculoskeletal BAG, as body weight 1036 
displayed causal associations with BAGs in multiple organ systems; iii) Re-executing the 1037 
Mendelian randomization analysis using alternative software. Specifically, we scrutinized the 1038 
causal relationship between the hepatic BAG and musculoskeletal BAG using the latent causal 1039 
variance (LCV) model53. Employing different modeling assumptions and instrumental variables 1040 
in contrast to Mendelian randomization, it examined the causal relationship between two 1041 
interchangeable traits without distinction between the direct and inverse directions. A latent 1042 
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causal variable (L) acted as a mediator for the genetic correlation between the two traits, 1043 
allowing us to quantify the genetic causality proportion (GCP). A positive GCP value between 0 1044 
and 1 indicates that trait 1 is partially genetically causal; a negative GCP value means trait 2 is 1045 
partially genetically causal.   1046 
 1047 
(h): Bayesian colocalization: The R package (coloc) was employed to investigate the genetic 1048 
colocalization signals between two traits at each genomic locus defined by the pulmonary BAG 1049 
GWAS. We employed the Fully Bayesian colocalization analysis using Bayes Factors 1050 
(coloc.abf). The method tests five hypotheses, denoted by their posterior probabilities: H0 (no 1051 
association with either trait), H1 (association with trait 1 but not trait 2), H2 (association with 1052 
trait 2 but not trait 1), H3 (association with both traits but with separate causal variants), and H4 1053 
(association with both traits with a shared causal variant). It examines the posterior probability 1054 
(PP.H4.ABF: Approximate Bayes Factor) to evaluate hypothesis H4, which suggests the 1055 
presence of a single shared causal variant associated with both traits within a specific genomic 1056 
locus. To determine the significance of the H4 hypothesis, we set a threshold of 1057 
PP.H4.ABF>0.820 and at least 100 SNPs were included within the genomic locus. All other 1058 
parameters (e.g., the prior probability of p12) were set as default.  1059 
  1060 
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Data Availability 1061 

The GWAS summary statistics corresponding to this study are publicly available on the 1062 
MEDICINE knowledge portal (https://labs-laboratory.com/medicine).  1063 
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Code Availability 1064 

The software and resources used in this study are all publicly available:  1065 
• MEDICINE: https://labs-laboratory.com/medicine, knowledge portal for dissemination 1066 
• BioAge: https://github.com/yetianmed/BioAge, biological age prediction 1067 
• PLINK: https://www.cog-genomics.org/plink/, linear model GWAS 1068 
• FUMA: https://fuma.ctglab.nl/, gene mapping, genomic locus annotation 1069 
• GCTA: https://yanglab.westlake.edu.cn/software/gcta/#Overview, heritability estimates, 1070 

mixed effect GWAS  1071 
• LDSC: https://github.com/bulik/ldsc, genetic correlation, and partitioned heritability 1072 
• TwoSampleMR: https://mrcieu.github.io/TwoSampleMR/index.html, Mendelian 1073 

randomization  1074 
• Coloc: https://github.com/chr1swallace/coloc, Bayesian colocalization 1075 
• LCV: https://github.com/lukejoconnor/LCV, Latent causal variable for causal inference   1076 
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