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Background: Collaboration between epilepsy centers is essential to integrate 
multimodal data for epilepsy research. Scalable tools for rapid and reproducible data 
analysis facilitate multicenter data integration and harmonization. Clinicians use 
intracranial EEG (iEEG) in conjunction with non-invasive brain imaging to identify 
epileptic networks and target therapy for drug-resistant epilepsy cases. Our goal was to 
promote ongoing and future collaboration by automating the process of “electrode 
reconstruction,” which involves the labeling, registration, and assignment of iEEG 
electrode coordinates on neuroimaging. These tasks are still performed manually in 
many epilepsy centers. We developed a standalone, modular pipeline that performs 
electrode reconstruction. We demonstrate our tool’s compatibility with clinical and 
research workflows and its scalability on cloud platforms. 
 
Methods: We created iEEG-recon, a scalable electrode reconstruction pipeline for 
semi-automatic iEEG annotation, rapid image registration, and electrode assignment on 
brain MRIs. Its modular architecture includes three modules: a clinical module for 
electrode labeling and localization, and a research module for automated data 
processing and electrode contact assignment. To ensure accessibility for users with 
limited programming and imaging expertise, we packaged iEEG-recon in a 
containerized format that allows integration into clinical workflows. We propose a cloud-
based implementation of iEEG-recon, and test our pipeline on data from 132 patients at 
two epilepsy centers using retrospective and prospective cohorts. 
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Results: We used iEEG-recon to accurately reconstruct electrodes in both
electrocorticography (ECoG) and stereoelectroencephalography (SEEG)  cases with a
10 minute running time per case, and ~20 min for semi-automatic electrode labeling.
iEEG-recon generates quality assurance reports and visualizations to support epilepsy
surgery discussions. Reconstruction outputs from the clinical module were radiologically
validated through pre- and post-implant T1-MRI visual inspections. Our use of
ANTsPyNet deep learning approach for brain segmentation and electrode classification
was consistent with the widely used Freesurfer segmentation. 
 
Discussion: iEEG-recon is a valuable tool for automating reconstruction of iEEG
electrodes and implantable devices on brain MRI, promoting efficient data analysis, and
integration into clinical workflows. The tool’s accuracy, speed, and compatibility with
cloud platforms make it a useful resource for epilepsy centers worldwide.
Comprehensive documentation is available at https://ieeg-
recon.readthedocs.io/en/latest/ 
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Introduction 
 
Epilepsy is a neurological disorder that affects around 70 million individuals worldwide, 
with 30% of patients having drug-resistance and experiencing chronic, uncontrolled 
seizures1. To determine the optimal treatment plan, it is essential to precisely localize 
epileptic networks that are responsible for seizures. Clinicians apply a combination of 
non-invasive and invasive techniques, such as magnetic resonance imaging (MRI) and 
intracranial electroencephalography (iEEG), to localize epileptic networks. MRI can 
identify abnormal brain regions with high spatial resolution, while iEEG provides a direct 
measurement of brain activity with high temporal resolution. iEEG involves placing 
electrodes invasively in the brain. After implantation, confirming the  electrodes’ 
anatomical loci is necessary for several reasons. First, it allows for a comprehensive 
evaluation of which brain areas will be effectively sampled during the invasive study, 
which is important to interpret interictal and ictal patterns and to understand variability in 
signal properties (e.g. gray vs. white matter, contacts outside brain parenchyma, and so 
forth). Second, since brain swelling may occur as a result of implantation surgery, it can 
be used to quantify electrode shift by comparing their final location with their intended 
targets. Third, an accurate anatomical map of electrode localization is critical to plan 
and interpret electrical stimulation ictal and functional mapping.  
 
To confirm the location of iEEG contacts post-surgically, the most common approach is 
to align (co-register) an anatomical MRI and a post-implant CT scan. This combination 
provides excellent balance between accurate localization of electrodes (post-implant 
CT) with high-resolution anatomy without surgical distortion or hardware artifacts 
(anatomical MRI). Furthermore, it is often of interest to identify the brain region in which 
the electrode contacts are located, which can be achieved systematically and reliably 
through the use of an MRI-based brain atlas. In this work, we use the term “electrode 
reconstruction” to refer to the workflow of electrode labeling, CT and MRI co-
registration, and atlas-based electrode contact assignment to brain regions. There is a 
critical need to develop rapid, accurate, and scalable iEEG electrode reconstruction 
tools that clinicians can use in their routine workflow. 
  
Various techniques have been proposed for iEEG electrode reconstruction2–7. While 
these methods have been useful in research for determining brain areas that produce 
epileptiform activities and assessing overlap with the location of surgery, their clinical 
adoption remains limited. The slow adoption is primarily due to three challenges. First, 
available tools have a steep learning curve for users unfamiliar with programming and 
image processing. Second, current tools are often time-consuming (~4+ hours runtime), 
and require constant user input, which makes them impractical for high-volume centers 
or large multicenter prospective clinical trials. Scalability necessitates consistent and 
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validated pipelines that can process hundreds of cases on both centralized and 
federated platforms, while ensuring appropriate data harmonization. Finally, the 
currently available pipelines do not leverage recent deep learning-based improvements 
in image registration and segmentation techniques, which reduce long runtimes and 
computational requirements, while increasing accessibility. 
 
In this study, we developed and validated iEEG-recon, a standalone pipeline for iEEG 
electrode reconstruction. We achieved this by a) semi-automatically marking the 
electrodes on post-implant computer tomography (CT) images, b) co-registering post-
implant CT to pre-implant MRI using state-of-the-art rapid brain segmentation and co-
registration techniques, and c) incorporating a modular, scalable design consisting of 
core modules for clinical needs and research modules for flexible parameter tuning. We 
developed versions of our pipeline compatible with MATLAB and Python programming 
environments, as well as a stand-alone containerized tool that can be deployed on 
cloud-based infrastructure. We validated our pipeline retrospectively on extensive 
patient datasets containing both stereotactic EEG (SEEG) and electrocorticography 
(ECoG) from post-implant MRI, then tested its viability on data collected prospectively 
from two level-4 U.S. epilepsy centers. For each run, iEEG-recon generates a quality 
assurance report and visualizations that can facilitate discussion in epilepsy surgery 
meetings. Our pipeline is fast, scalable to process hundreds of patient datasets, 
reproducible, and available as an open-access tool for wider adoption. 
 
 
Methods 
  
Participants 
  
We included 132 patients with drug-resistant epilepsy from two epilepsy centers: the 
Hospital University of Pennsylvania (HUP: n = 109) and the Medical University of South 
Carolina (MUSC: n = 23). Our methods were developed and validated on a 
retrospective cohort of 118 patients (HUP: n = 98 and MUSC: n = 20) and implemented 
for prospective testing on 14 patients (HUP: n = 11 and MUSC: n = 3). Patients were 
enrolled serially between 2015 and 2023 after providing written informed consent for 
iEEG data analysis, in line with the University of Pennsylvania's IRB-approved protocol 
(reference number 821778). All patients underwent whole-brain MRI and iEEG 
implantation (ECoG: n = 23 or SEEG: n = 75), followed by post-implant CT scans. All  
patients had a post-implant MRI (n = 98). The retrospective cohort had detailed clinical 
annotations from presurgical evaluation meetings and follow-up records on surgical 
outcomes. Multiple surgical procedures were represented in our dataset, including 
ablation (N = 33), surgical resection (N=34), responsive neurostimulation (N=9), deep 
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brain stimulation (N=1), vagus nerve stimulation (N=1), and no surgery to date (N=18). 
The prospective cohort data were processed before epilepsy surgery meetings by 
clinical coordinators and fellows to assess ease of use in routine clinical workflows. 
Feedback from an expert neuroradiologist (J.S.) was obtained to improve clinical 
reporting; however, iEEG_recon outputs were not used in clinical decision-making. 
Subject demographics and clinical characteristics are summarized in Table 1. 
  
Image Acquisition 
At both centers (HUP and MUSC), MRI data were collected on a 3T Siemens 
Magnetom Trio scanner using a 32-channel phased-array head coil prior to electrode 
implantation. Anatomical images were acquired using a magnetization prepared rapid 
gradient echo (MPRAGE) T1-weighted sequence (HUP: repetition time = 1810ms, echo 
time = 3.51ms, field of view = 240mm, resolution = 0.94x0.94x1.0 mm3; MUSC: 
repetition time = 1900ms, echo time = 2.36ms, field of view = 256mm, resolution = 
1.0x1.0x1.0 mm3). Following electrode implantation, spiral CT images (Siemens) were 
obtained clinically for the purposes of electrode localization. Both bone and tissue 
windows were obtained (120kV, 300mA, axial slice thickness = 1.0mm, same for both 
institutions).  
   
Image Processing 
An overview of the implant reconstruction pipeline is shown in Figure 1. We separated 
our tool into three sequential modules to allow users to choose the level of processing 
for their use case. 
 
Module 1 – VoxTool for Electrode Labeling 
  
In our pipeline, electrode labeling is conducted using VoxTool, a user-friendly graphical 
user interface for electrode labeling. This software was developed in collaboration with 
the Penn Memory Lab (https://memory.psych.upenn.edu/Main_Page). Briefly, post-
implant CT scans are loaded into VoxTool, which applies an intensity threshold to 
accentuate the electrodes. The user manually enters electrode labels, then navigates a 
3D viewer where electrode voxels can be selected by directly clicking on them. VoxTool 
is a semi-automatic tool designed to streamline the electrode labeling process. By 
interpolating electrode labels for grid, strip, and depth electrodes, it accelerates the task 
while maintaining precision. We have created a video tutorial that demonstrates how to 
use VoxTool for loading the 3D graphical user interface (GUI) and semi-automatically 
annotating electrodes. To access the tutorial, please follow this link: 
https://github.com/penn-cnt/ieeg-recon/tree/main/voxTool. 
  
Module 2 – Post-implant CT to Pre-Implant MRI Registration 
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The objective of Module 2 is to register the post-implant CT to the pre-implant MRI. To 
ensure appropriate skull matching between the CT and MRI acquisitions, we first 
threshold the intensity of the post-implant CT scan such that only the skull and electrode 
contacts are visible. After CT thresholding, a rigid registration procedure with 6 degrees 
of freedom (3 rotation and 3 translation) is applied between the thresholded post-
implant CT and the pre-implant MRI. Since brain and skull shapes should not change 
drastically pre- and post-implantation, 6 degrees of freedom are  sufficient for accurate 
registration3,4,6. Our pipeline has the option to use either FLIRT8,9 or Greedy10 
(https://github.com/pyushkevich/greedy) for registration. FLIRT parameters are: 640 
histogram bins to discretize the intensity values of the images being registered, and a 
mutual information cost function with 6 degrees of freedom for registration. For Greedy, 
we initialize the registration at the center of mass of each image and apply a multi-
resolution registration process with 100 iterations at the highest resolution and 100 
iterations at the second highest resolution. We stopped the registration after the second 
highest resolution stage as we did not see significant improvements in registration 
accuracy by including additional lower resolution levels, but runtime increased 
drastically. Greedy registration utilizes normalized mutual information as the cost-
function with 6 degrees of freedom. We recommend using Greedy as it is faster, but in 
cases where it fails, FLIRT is available as a fallback option. 
  
The post-implant CT to pre-implant MRI registration generates a transformation matrix 
which  transforms the original electrode coordinates from the post-implant CT space to 
the pre-implant MRI space. The results of the registration are compiled in an HTML 
report for quality assurance. For visualization of reconstructed electrodes, an interactive 
workspace file is automatically generated for visualization in ITK-Snap11 (Figure 2). ITK-
Snap (www.itksnap.org) is an open-source application to visualize and manipulate 
biomedical images. These visualizations are necessary for manual quality assurance, 
and any residual rotation between scans could be easily corrected within this interface. 
  
While this process is described for registering the post-implant CT to the pre-implant 
MRI as a reference, the same process can be applied to any other pair of images (MRI 
or CT) if one is chosen as a reference. For example, our pipeline also works if the post-
implant MRI is registered to the pre-implant MRI, or the post-surgical MRI is registered 
to the pre-implant MRI (see below). 
  
Module 3 – Electrode Region-of-Interest Assignment 
  
Pre-implant MRI Segmentation 
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The brain can be subdivided into contiguous regions of interest (ROIs) based on the 
structural or functional similarity within each region. Assigning electrodes to specific 
ROIs is useful for confirming iEEG targets12. To assign electrodes to a specific ROI, we 
must identify ROIs on the reference pre-implant MRI. Our pipeline can take as an input 
any atlas–a particular parcellation scheme–that is in the same space as the reference 
pre-implant MRI, including: (1) cortical parcellations and subcortical segmentations from 
either the Desikan-Killany-Tourville (DKT) atlas13,14 or the Taliarach atlas15 from 
FreeSurfer; (2) standard atlases in MNI space (AAL16, Schaffer17, etc) pre-registered to 
the reference pre-implant MRI; (3) outputs from more specialized subcortical 
segmentation approaches such as ASHS18 and THOMAS19. Our pipeline enables users 
to choose any atlas for electrode assignments and encourages application of multiple 
atlases for robustness20. 
  
ANTsPyNet Segmentation 
  
IEEG-recon has an option to generate and use a cortical, subcortical DKT parcellation, 
and tissue segmentation (DeepAtropos), from pre-implant MRI using ANTsPyNet21. We 
included ANTsPyNet, as opposed to FreeSurfer, due to its speed that allows obtaining 
both cortical and subcortical segmentations in ~5 minutes. If the user has a FreeSurfer 
segmentation they would like to use, as specified in the previous section, the pipeline 
allows it as an input. 
  
Electrode Region of Interest Assignment 
  
Once an atlas has been chosen, the electrodes transformed into pre-implant MRI space 
can then be assigned to the specific ROIs in the pre-implant MRI. To do so, we 
generate a sphere with a user-defined radius around each electrode coordinate 
obtained from Module 2. The percent overlap of this sphere with the atlas brain regions 
is computed, and the region with the most overlap is the one assigned to that electrode. 
This process is repeated for each electrode. Besides identifying the region with the 
highest overlap, the software also generates a ranked list of percent overlaps when an 
electrode comes into contact with multiple regions. This feature enables users to 
choose a specific sphere-ROI overlap threshold that best aligns with their research 
question, offering more flexibility in the analysis process. 
  
Template Space Registration 
  
We provide the option for obtaining coordinates in MNI space after a rigid registration 
applied between the native space reference MRI and the MNI152NLin2009cAsym 
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template. MNI registration is solely for visualization purposes and the outputs of this 
portion of the pipeline should not be used for electrode localization within ROIs. 
  
Post-Surgery and Post-Implant Registration 
  
Our pipeline additionally provides the option for registering a post-surgery MRI (e.g. an 
MRI with a surgical resection cavity) to the original pre-implant MRI. This is useful to 
detect the electrodes that were implanted in resected brain areas. The rigid registration 
between the post-resection MRI and the pre-implant MRI uses the same Greedy 
parameters as the one used for registering the post-implant CT to pre-implant MRI. An 
example output from this post-resection registration pipeline is shown in Figure 3. 
Following similar steps, our pipeline can also register the post-implant MRI to the pre-
implant MRI. 
  
Running iEEG-recon 
  
We provide detailed documentation on how to run iEEG-recon in both Matlab and 
Python (https://ieeg-recon.readthedocs.io). To run the pipeline, the user will need the 
following minimum requirements: labeled electrode coordinates from VoxTool, a pre-
implant MRI, and a post-implant CT. The process also utilizes a BIDS-like structure, 
which organizes the data for each subject according to subject IDs (e.g., sub-PENN01) 
and sessions (e.g., ses-research3T, ses-clinical01) using a BIDS-like naming 
convention. Semi-automatic electrode labeling with VoxTool takes between 20-35 
minutes with a 10-16 electrode contact surgical plan. 
 
For example, let us assume there is a subject called sub-PENN01, with pre-implant MRI 
stored in the session ses-research3T. The labeled electrode coordinates from VoxTool 
and the post-implant CT should be stored under the session ses-clinical01. This folder 
structure is illustrated in Figure 7. 
 
Modules 2 and 3 from ieeg_recon with Greedy as a registration software and 
ANTsPyNet DKT segmentations can be executed in Python as follows: 
  
python ieeg_recon.py -d ~/Desktop/BIDS/ -s sub-PENN01 -rs ses-
research3T -cs ses-clinical01 -m -1 -gc -apn -mni -r 2 
  

● d: specifies the BIDS directory where all the subjects are located 

● s: specifies the name of the subject 
● rs: specifies the session name where the reference MRI is located 
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● cs: specifies the session name where the post-implant CT and the electrode 
coordinates from VoxTool are located 

● m: specifies the module to run (-1 runs both modules 2 and 3) 
● gc: specifies to run using Greedy 

● apn: (optional) specifies to run ANTsPyNet DKT and Atropos segmentation for 
module 3 

● mni: (optional) specifies to run an additional MNI registration in module 3 for 
visualization purposes 

● r: specifies the radius (in mm) of the electrode spheres used to assign regions 
to each electrode coordinate 

  
 

Cloud Implementation 

In order to scale clinical and research workflows, we leverage the capabilities of 
Pennsieve (https://app.pennsieve.io/), an open-source platform for data sharing, and 
Amazon Web Services (AWS) technologies. Pennsieve facilitates cross-collaborator 
data sharing by utilizing AWS's S3 backend service. By deploying S3 as its backend 
storage, Pennsieve eliminates technological hurdles that collaborators may encounter 
when processing data on-site, thus enabling unrestricted access to data for processing. 
 
To automate the iEEG-recon pipeline on a cloud infrastructure, we deploy our code on 
an AWS EC2 (Amazon Elastic Compute Cloud) instance. For our purposes, we regard 
an EC2 instance (https://docs.aws.amazon.com/ec2/) as a virtual machine capable of 
running the dockerized iEEG-recon software consistently across all collaborators. This 
approach simplifies the process and ensures uniformity, regardless of where the 
collaborator is based. 
 
Our automation process involves the incorporation of AWS Lambda and Eventbridge 
technologies (https://docs.aws.amazon.com/lambda/). AWS Lambda, a powerful service 
for automating interactions between different AWS technologies, works in conjunction 
with Eventbridge, a user-friendly tool for constructing comprehensive pipelines using 
services like Lambda and EC2. This means that the long-term viability of the project is 
ensured even without a data engineer to create and maintain viable workflows. 
  
We streamline the automation process as follows: First, data is uploaded to a public S3 
bucket managed by the Pennsieve API. Eventbridge then monitors the S3 bucket for 
incoming data and applies a user-defined filter to preclude the initiation of an EC2 
instance and prevent unnecessary costs. If Eventbridge identifies a match, it activates 
an EC2 instance. Within the EC2 environment, we compute the checksum of the new 
data and cross-check the output S3 bucket for any identical checksum values. If the 
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data is unique, we run the docker container on the data, calculate the resulting data’s 
checksum, and push the data and its checksum to the output S3 bucket. The EC2 
instance then closes. By running the pipeline only as needed, we can keep user cost to 
a minimum. Eventbridge is also capable of deciding when events run. This allows us to 
define set times when the pipeline runs or allows AWS to schedule the task as low 
priority for reduced cost. 
 
The combination of an easy-to-use event scheduler, flexible pricing, and our dockerized 
container, we believe our approach allows for a scalable processing pipeline that is 
viable for institutions of all sizes. Final implementation of this cloud-based approach 
would require users to upload only anonymized data to avoid inadvertent sharing of 
private health information. 
  
Results 
  
Registration and Electrode ROI Assignment Within Minutes 
  
One of the advantages of our pipeline is that the entirety of Modules 2 and 3, that is, the 
post-implant CT to pre-implant MRI registration and the electrode ROI assignment, run 
in about 10±4 minutes if Greedy is used for registration and ANTsPyNet is used for 
segmentation (default options). We tested the run time on standard laptops with a 
minimum of 8GB of RAM. This allows for fast turnaround times in situations where 
electrode reconstruction results are needed urgently (e.g. when a patient is being 
presented in a surgical conference), or when many subjects are being processed 
simultaneously from raw input images. 
  
Reconstructed Electrode Locations 
  
Reconstructed electrode locations in MNI space (Figure 4) demonstrate a spatial bias 
for the temporal lobes, and specifically, the left temporal lobe. This is consistent with our 
studied population of mostly temporal lobe epilepsy patients. Medio-dorsal and medio-
ventral structures were rarely implanted in our cohort. 
  
Across all patients, 9.2 ± 8.4% of the labeled electrodes were found to be in no tissue 
(e.g. outside the brain), 14.4 ± 8.5% in the CSF, 32.7 ± 11.7% in the gray matter, and 
42.6 ± 13.5% in the white matter when using a 2mm radius for region assignment 
(Figure 5A). By default, ieeg_recon assigns regions based on a majority voting 
procedure, where the region with the most overlap with a 2mm sphere around the 
electrode radius is assigned to that electrode. However, sometimes brain shifts and 
post-surgical swelling can slightly alter the assignment of the electrodes. To overcome 
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this, we provide a detailed JSON file that describes the percent overlap of each 
electrode sphere with all the regions it overlaps with, allowing for re-assignment of 
electrodes to different regions depending on different thresholds of overlap. In Figure 
5B-E we show how the distribution of electrodes changes if we re-assign electrodes 
originally assigned to either white matter, CSF or outside the brain, to a gray matter 
region if their overlap with that region was at least as large as the specified threshold. 
  
Among the gray matter electrodes, we found that the top 3 implanted regions were the 
left middle, inferior and superior temporal gyri, with 71/98, 59/98 and 54/98 subjects 
having those regions implanted (Table 2). Similarly, when counting the number of gray 
matter electrodes implanted in each region, 373/4636 were found in the left middle 
temporal gyrus, 335/4636 in the left superior temporal gyrus, and 215/4636 in the left 
inferior temporal gyrus (Table 3). 
 
The electrode localizations for all patients were validated by visual inspection of post-
implant MRI by a board-certified neuroradiologist (J.S.), which provides confidence in 
the accuracy and reliability of our pipeline. 
  
ANTsPyNet Electrode ROI Assignments are Comparable to FreeSurfer 
  
The deep learning-based DKT segmentation provided by ANTsPyNet allows ieeg_recon 
to run quickly, while still providing accurate electrode ROI assignments. However, the 
most common approach for individualized brain segmentation in electrode 
reconstruction is to use FreeSurfer derived DKT segmentations2–7. We tested how 
consistent the electrode region assignments were between FreeSurfer and ANTsPyNet 
segmentations. At a group level, we found that the number of patients with electrodes 
implanted in each region was highly correlated between ANTsPyNet and FreeSurfer 
segmentations (Pearson’s r=0.96) (Figure 6). A similar correlation is seen if the number 
of electrodes assigned to each region across all patients is counted. However, the 
FreeSurfer implementation took an average of 5 hours on a dedicated computing 
server, whereas the ANTsPyNet approach was completed in an average of 10 minutes 
on the same server. 
 
iEEG-recon is robust to implantable device artifact 
 
Nine of the 98 patients were implanted with a responsive neurostimulation (RNS, 
NeuroPace Inc.) device subsequent to their iEEG implantation. The RNS computer is 
housed in a titanium case that is implanted within the thickness of the skull, and two 
electrode leads are implanted in the tissue of the brain. We used ieeg-recon to localize 
both the RNS electrode contacts and location of the device case by registering a post-
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RNS-implant CT scan to the pre-implant MRI. The post-RNS-implant CT scan 
presented a unique registration challenge due to the device artifact in the skull, since 
the registration steps operate by aligning the contours of the skull between CT and MRI 
images. For all RNS patients, we found that the pipeline outputs were acceptable as 
verified by visual inspection using our quality assessment reports and confirmed by a 
board-certified neuroradiologist (J.S.). The successful electrode localization in these 
RNS patients demonstrates the versatility of our reconstruction pipeline in handling 
multiple types of potential imaging artifacts. 
  
Discussion 
 
We present iEEG-recon, an innovative electrode reconstruction pipeline that leverages 
cutting-edge image registration and segmentation algorithms for rapid and precise 
intracranial electrode localization. iEEG-recon’s scalable modular design enables users 
to select the most suitable options for their research objectives or clinical applications. 
We evaluated and tested iEEG-recon in a cohort of retrospective and prospective 
patients with drug-resistant epilepsy who underwent iEEG implantations at two epilepsy 
centers. The tool’s accuracy, speed, and compatibility with cloud platforms, 
demonstrated through its deployment on the Flywheel and Pennseive data 
infrastructure, make it a valuable resource for epilepsy centers worldwide. Furthermore, 
iEEG-recon proved robust against artifacts caused by RNS, highlighting its utility for 
patients with intracranial devices. In summary, iEEG-recon demonstrates the first step 
towards developing, validating, and testing scalable quantitative tools for standardized 
data analysis and seamless integration into clinical workflows, for advancing epilepsy 
treatment through multicenter collaborations. 
 
Current electrode reconstruction pipelines3,4,7 have several limitations that hinder their 
widespread adoption across clinical sites that we believe iEEG-recon addresses. First, 
there is a steep learning curve for many of these tools, requiring the user to perform 
scripting tasks or to directly write code in a specific programming language in order to 
run the pipeline. iEEG-recon is self-contained, and as long as the input files are in the 
correct format and the electrodes have been labeled, the rest of the pipeline runs with a 
single command. Second, many of these tools are not scalable, as they require complex 
setups, and sometimes closed source software, limiting flexibility and modularity. 
Providing a Docker container allows iEEG-recon to be executed in any machine or 
server capable of running Docker, allowing the exact same software to be executed 
across multiple clinical or research sites. Finally, many currently available pipelines 
make use of effective, yet old, registration and segmentation technology, which leads to 
high computational requirements and running times. By leveraging advances in image 
registration and deep-learning based segmentation, iEEG-recon allows for complete 
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electrode reconstruction and region-of-interest electrode assignments within 10-15 
minutes, a significant improvement relative to current approaches. 
 
Electrode reconstruction remains a critical component of presurgical epilepsy 
planning22, and iEEG-recon can help streamline and improve this process. iEEG-recon 
could be used to accurately localize intracranial electrodes in patients with refractory 
epilepsy, providing important information for surgical planning, such as where the 
seizure-onset zone (SOZ) electrodes are located23, and whether there is overlap with 
inoperable structures such as the eloquent cortex. We tested iEEG-recon with both 
ECOG and SEEG. While brain shifts—the inward displacement of brain tissue and 
electrodes due to pressure changes related to the craniotomy—were frequently 
observed with ECOG, they seldom occur in SEEG24,25. To address these shifts, 
electrode positions may be projected to align with the brain surface’s normal vector. We 
do not use explicit surface maps to project ECOG grids onto the pre-implant cortical 
surface in iEEG-recon. Although this could be incorporated, it may not be necessary 
due to the growing prevalence of SEEG and lesser incidence of brain shifts on SEEG. 
Furthermore, our majority voting strategy already mitigates the impact of brain shift. 
After a patient has undergone epilepsy surgery, iEEG-recon could be used to confirm 
whether the post-surgical resection site overlaps with the suspected SOZ electrodes. 
iEEG-recon can also be used to identify the location of RNS electrodes for post-surgical 
confirmation. 
 
Electrode reconstruction is also critical for research that involves intracranial 
electrophysiology26. Many intracranial electrophysiology studies focus on specific brain 
regions, such as the hippocampus27,28 and the motor cortex29,30, in order to understand 
function in health and disease. Therefore, accurate identification of electrodes within the 
target regions is necessary to generate reproducible findings, and to ensure that the 
measured signal is associated with the structure of interest. Multimodal studies that 
combine iEEG with neuroimaging, such as diffusion tensor imaging, are also of interest 
across disciplines, including epilepsy12,31,32. Functional neuroimaging, such as resting-
state fMRI, has also demonstrated widespread abnormalities in focal epilepsy33–35, yet 
direct intracranial electrophysiological correlates of these abnormalities are lacking. 
iEEG-recon provides a natural framework for bridging intracranial electrophysiology and 
neuroimaging by allowing different structural and functional neuroimaging based atlases 
to be used in the electrode reconstruction process. 
 
The use of federated data analysis has emerged as a promising approach in 
neuroimaging and iEEG studies, enabling researchers to perform large-scale multi-
center analysis while maintaining data privacy36–38. We built iEEG-recon to work with 
standardized data formats (BIDS) and to streamline the processing of neuroimaging 
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data, reducing the need for specialized technical expertise and enabling researchers to 
focus on interpreting their results. By improving the accessibility of neuroimage 
processing, our pipeline can facilitate the collaboration of multiple research teams 
across centers, ultimately leading to more robust and generalizable findings39. 
 
There are several limitations of our current work. First, while iEEG-recon has been 
successfully tested in two level 4 adult epilepsy centers, its efficacy in pediatric 
populations remains unknown. Second, while self-contained, iEEG-recon leverages 
advances in image registration and segmentation algorithms, which have been sourced 
from other toolboxes that may still be under development. While these advancements 
have enabled the tool to provide more efficient results, it is important to consider the 
potential limitations of these technologies. Finally, it is important to mention that iEEG-
recon is currently not FDA approved, and further testing and optimization are needed 
before it can be implemented reliably in clinical practice. However, the authors invite 
collaboration and feedback from the scientific and medical communities to improve and 
refine the tool's performance. 
 
Conclusion 
 
Reconstructing iEEG electrodes and precisely localizing them is necessary for research 
and clinical applications. A primary goal of our open-access tool is to make electrode 
reconstruction accessible to those with limited computing background or resources. 
Future work should iterate upon our foundation and we envisage improvement of our 
tool with widespread use and feedback.  
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Tables 
 
Table 1 - Subject demographics and clinical characteristics 
 

Subject Demographics 

Characteristic Number of Subjects 

Total Subjects 98  

Age 34±11 

Female 42 

Disease Duration (years) 15±13 

Lesional MRI 40 

Disease Laterality  

Left 47 

Right 32 

Bilateral 11 

Unknown 8 

Type of Implant  

ECoG 23 

SEEG 75 

Type of Surgery  

Ablation 33 

Resection 34 

RNS 9 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 13, 2023. ; https://doi.org/10.1101/2023.06.12.23291286doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.12.23291286
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

DBS 2 

VNS 2 

No Surgery 18 
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Table 2 - MUSC Subject demographics and clinical characteristics 

Subject Demographics - MUSC 

Characteristic Number of Subjects 

Total Subjects 23 

Sex  

Female 10 

Male 11 

Unknown 2 

Race  

White 14 

Black 7 

Unknown 2 

Disease Laterality  

Left 6 

Right 9 

Bilateral 4 

Unknown 4 

Type of Implant  

ECoG 0 

SEEG 23 

Type of Surgery  

Ablation 1 
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Resection 5 

RNS 3 

DBS 0 

VNS 0 

No Surgery 10 

Unknown 4 

  

 
Table 2 - Number of subjects with at least one electrode per DKT ROIs 
 

DKT Atlas ROI 
ANTsPyNet - 
Number of 
Subjects 

FreeSurfer - 
Number of 
Subjects 

Left Middle Temporal 71 69 

Left Inferior Temporal 59 57 

Left Superior Temporal 54 62 

Left Hippocampus 53 58 

Right Middle Temporal 53 55 

Left Supramarginal 49 42 

Right Inferior Temporal 48 48 

Left Rostral Middle 
Frontal 47 45 

Right Hippocampus 45 50 

Left Fusiform 41 45 
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Table 3 - Number of electrodes assigned per DKT ROI 
 

DKT Atlas ROI 
ANTsPyNet - 
Number of 
Electrodes 

FreeSurfer - 
Number of 
Electrodes 

Left Middle Temporal 373 336 

Left Superior Temporal 316 335 

Left Inferior Temporal 232 215 

Left Rostral Middle 
Frontal 222 207 

Right Middle Temporal 198 202 

Left Hippocampus 159 207 

Left Supramarginal 158 109 

Right Inferior Temporal 156 161 

Left Superior Frontal 147 178 

Right Hippocampus 134 172 
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Figures 
  
 

  
Figure 1 – The iEEG-recon pipeline offers a comprehensive solution for electrode
marking and reconstruction. By leveraging semi-automatic electrode identification on
post-implant computer tomography (CT) images (Module 1), it simplifies and
accelerates the process. The pipeline further enhances accuracy by co-registering the
post-implant CT with pre-implant MRI using state-of-the-art rapid brain segmentation
and co-registration techniques. Built with versatility in mind, iEEG-recon encompasses
both core modules tailored for clinical needs (Module 2) and research modules (Module
3) for flexible parameter tuning. This stand-alone and containerized tool can be
effortlessly deployed on cloud-based infrastructure. Such adaptability facilitates its
integration into multi-center prospective clinical trials, expanding its potential impact. 

 

de 
on 
nd 
he 
on 
es 
le 

be 
its 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 13, 2023. ; https://doi.org/10.1101/2023.06.12.23291286doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.12.23291286
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 2 – Quality Control Files for Module 2: The output of Module 2 generates an
HTML report (A.) that shows the accuracy of the registration between the pre-implant
MRI and the post-implant CT, as well as a 3-dimensional scatterplot of the electrodes
from the thresholded CT scan and their manually labeled coordinates in the pre-implant
MRI space. ieeg_recon also generates an ITK-Snap workspace file that overlays the
thresholded post-implant CT and pre-implant MRI in the pre-implant MRI space, and
plots the coordinates of each of the electrodes as well as their electrode labels provided
by VoxTool. This workspace allows for interactive visualization and quality assurance of
the electrodes and their locations. 
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Figure 3 – Estimating the original electrodes located in the post-surgical
resection mask: Pre-resection MRI for an example subject who underwent resective
surgery (A.), post-resection MRI (B.), and the Module 3 pipeline output identifying
electrode contacts within the resected brain region (C.).  
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Figure 4 – Reconstructed electrode locations in MNI template space: Electrode
locations in MNI template space across all 98 subjects. Electrodes are represented as
dots overlaid on an MNI surface template. 
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Figure 5 – Percent of electrodes assigned to each tissue type: Panel A. Shows the 
percent of electrodes assigned to an empty label (outside of the brain), cerebrospinal 
fluid (CSF), gray matter (GM) and white matter (WM) across all subjects using a 
majority voting approach, that is, the region that had the largest overlap with the 
electrode sphere was assigned to that electrode. Panels B-E show the distribution of 
electrode assignments if the regions originally assigned to Empty Label, CSF or WM, 
was reassigned to a GM region if the GM overlap was above the specified threshold of 
0.35 (B.), 0.25 (C.), 0.15 (D.), and 0.05 (E.). 
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Figure 6 – FreeSurfer and ANTsPyNet Desikan-Killany-Tourville atlas electrode
assignments across subjects: Panels A-B. show the number of subjects for which an
electrode was assigned to each of the regions in the Desikan-Killany-Tourville (DKT)
atlas when the atlas segmentation was done by FreeSurfer (A.) or ANTsPyNet (B.).
Panel C shows the correlation of that count across ROIs for the FreeSurfer and
ANTsPyNet segmentations. r – Pearson’s r 
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Figure 7 - Folder Structure for iEEG-recon inputs 
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